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The Problem – Formal Definition

u Given convex sets 𝐾(, 𝐾*, … , 𝐾, in ℝ.

u Choose 𝑥0 ∈ 𝐾0 online (𝑥2 = 0)
u Cost 𝐴𝐿𝐺 = ∑07(, ||𝑥0 − 𝑥0:(||
u Goal – minimize competitive ratio

u 𝜎 arbitrary instance
u 𝑂𝑃𝑇(𝜎) optimal offline cost

cr(𝐴𝐿𝐺) ≔ max
C

𝐴𝐿𝐺 𝜎
𝑂𝑃𝑇 𝜎
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Motivation

u Metrical task systems (MTS)
u Given convex functions 𝑓(, 𝑓*, … , 𝑓,
u Choose 𝑥0 online (𝑥2 = 0)

u Cost 𝐴𝐿𝐺 = ∑07(, ||𝑥0 − 𝑥0:(|| + 𝑓0 𝑥0

u Convex body chasing – role of geometry in MTS
u Nested – manageable, gives insight into general problem
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Results

u [FL 93] 𝑑 lower bound, 
Competitive general chasing for 𝑑 = 2 case

u [BB+ 17] 𝑑J(.)-competitive nested chasing
u [AB+ 18] 𝑶(𝒅 𝐥𝐨𝐠𝒅)-competitive nested chasing

u [BL+ 18] 𝑂 𝑑 log 𝑑 -competitive nested chasing, 
𝑒𝑥𝑝 𝑑 -competitive general chasing



Talk outline

1. Motivating ideas
u Reduction to “Tighten” problem
u Centroid and Recursive Greedy

2. Recursive Centroid
u 𝑂 𝑑 log 𝑑 -competitive algorithm
u Analysis (sketch)



Part 1 – Motivating ideas
Centroid, Recursive Greedy, and why neither is good enough



Reduction to Tighten

u Bounded – 𝑑𝑖𝑎𝑚(𝐾() = 𝑂 1 , 𝑂𝑃𝑇 = Ω(1)
u 𝑓 𝑑 ⋅ 𝑑𝑖𝑎𝑚(𝐾() total cost ⇒ 𝑓 𝑑 -competitive
u Guess-and-double

u Tighten – end when 𝑑𝑖𝑎𝑚 𝐾, ≤ (
* 𝑑𝑖𝑎𝑚 𝐾(

u Apply repeatedly
u Cost decreases geometrically



Idea 1 – Centroid

u “Move to center so any cut is good”
u Centroid algorithm: 𝑥, = 𝜇 𝐾, ≔ ∫̂ _ 𝑥 𝑑𝑥

u (𝐾, bounded)

u Grünbaum [‘60] ⇒ 𝑉𝑜𝑙 𝐾, ≤ (1 − 𝑐) ⋅ 𝑉𝑜𝑙(𝐾,:()

u Volume drops 𝑂(2.) in 𝑂(𝑑) steps
≤ 1 − 𝑐 , ⋅ 𝑉𝑜𝑙(K2)
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Not competitive 
L

Diameter constant



Idea 2 – Recursive Greedy

u “Refuse to move back and forth”
u In ℝ(, run Greedy
u In ℝ.

u Fix orthogonal hyperplanes 𝑆(, … , 𝑆.
u For 𝑖 = 1,… , 𝑑

u Run 𝑅𝐺.:( on sets 𝐾, ∩ 𝑆0

𝑅𝐺.:( – Recursive Greedy in (𝑑 − 1) dimensions



Idea 2 – Recursive Greedy

𝑆(
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Real World 𝐴𝐿𝐺’s world
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Idea 2 – Recursive Greedy

Diameter ↓↓↓

J

Competitive algorithm 
[BB+ ‘17]

𝑆(

𝑆*



Problem with Recursive Greedy

u 𝑑J(.)-competitive 
u Expensive recursive calls

u Diameter ↓ only 𝑂 1 − ⁄1 𝑑 after 𝑑 recursive calls



Recap of Part 1

u Centroid
u Volume drops quickly
u Diameter stays constant

u Recursive Greedy
u Controls individual dimensions
u Expensive recursive calls
u Diameter shrinks slowly



Part 2 – Recursive Centroid
Fusion of Centroid and Recursive Greedy



New Ideas

u Recursion on skinny subspace
u Cheap

u Hyperplane separation ⇒ cut parallel to skinny subspace
u Progress on fat subspace

u Play centroid in recursion



Skinny Subspace

u Directional width – 𝑤 𝐾, 𝑣 ≔ max
l,m∈^

⟨𝑥 − 𝑦, 𝑣⟩

u Skinny direction – 𝑣 such that 𝑤 𝐾,, 𝑣 ≲ 1/𝑑*

u 𝑆 ≔ span of 𝑘 skinny directions
u Add directions over time

u 𝐹 ≔ 𝑆u (fat subspace)



Recursive Centroid

u If 𝑆 ≠ {0}
u 𝑆y ← 𝑥, + 𝑆

u Run 𝑅𝐶|}~(�) on 𝐾, ∩ 𝑆′ until empty
u 𝑥, ← 𝜇(𝐾,)

u While ∃ skinny direction 𝑣 ∈ 𝐹
u 𝑆 ← 𝑠𝑝𝑎𝑛 𝑆, 𝑣

u Repeat until 𝑑𝑖𝑎𝑚 𝐾, ≤ ⁄1 2 ⋅ 𝑑𝑖𝑎𝑚 𝐾(

𝑅𝐶|}~(�) – Recursive Centroid in dim(𝑆) dimensions
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Recursive Centroid

𝐴𝐿𝐺’s world

Real world Cut parallel to 𝑆



Main theorem

u Recall 𝑑 lower bound

Recursive Centroid is 𝑂(𝑑 log 𝑑)-competitive [ABCGL ‘18]



Proof outline

u Potential Φ, ≔ 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾,

u ‘Step’ = Recursive call + move to centroid of 𝐾,

1. Cost of 1 step = 𝑂(1)
2. 𝑂(𝑑 log 𝑑) steps
u 𝑂(𝑑 log 𝑑) total cost



Proof part I – A single step 

u Cost 𝑂(1)
u Recursion: ⁄𝑂(𝑑 log 𝑑) ⋅ 1 𝑑* = 𝑜(1)
u Move to centroid: 𝑂(1)

u Φ, drops (1 − 𝑐)
u 𝐾, cut by halfspace parallel to 𝑆

Φ, = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾,



Proof part II – 𝑂(𝑑 log 𝑑) steps

u Φ, drops ≥ 1 − 𝑐 �

u m = # of steps
u Φ, increases ≤ 𝑑J(.)

u Φ�:( ≥ 𝑑:J .

𝑑J(.) 1 − 𝑐 �:( ≥ ⁄Φ�:( Φ2 ≥ 𝑑:J(.)

𝑚 ≤ 𝑂(𝑑 log 𝑑)

Φ, = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾,



Recap of Part 2

u Recursion on skinny subspaces
u Cheap, good cuts

u Play centroid
u Volume drop

u Φ, = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾,



Open questions

u 𝑝𝑜𝑙𝑦(𝑑)-competitive general chasing

u 𝑒𝑥𝑝 𝑑 lower bound for general chasing
u Efficient algorithms



Thank you!
Questions?



In memory of Michael Cohen



References

u “A Nearly-Linear Bound for Chasing Nested Convex Bodies” 
Argue Bubeck Cohen Gupta Lee, SODA ‘19

u “Nested Convex Bodies are Chasable” 
Bansal Bohm Elias Koumoutsos Umboh, SODA ‘18

u “Chasing Nested Convex Bodies Nearly Optimally,” 
“Competitively Chasing Convex Bodies”
Bubeck Lee Li Selke, Preprints ‘18

u “Chasing Convex Bodies and Functions”
Friedman Linial, Discrete and Computational Geometry ‘93


