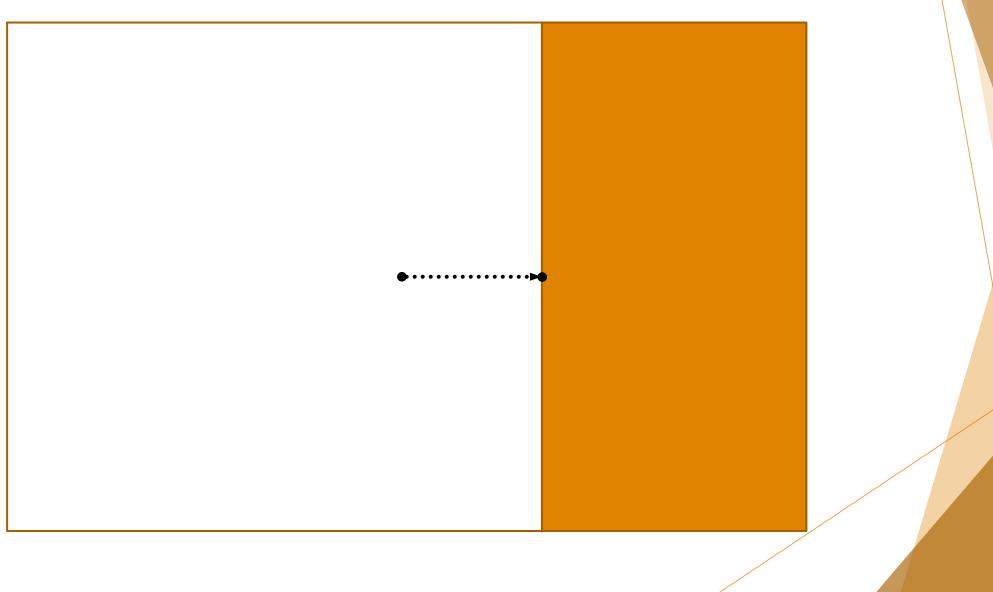
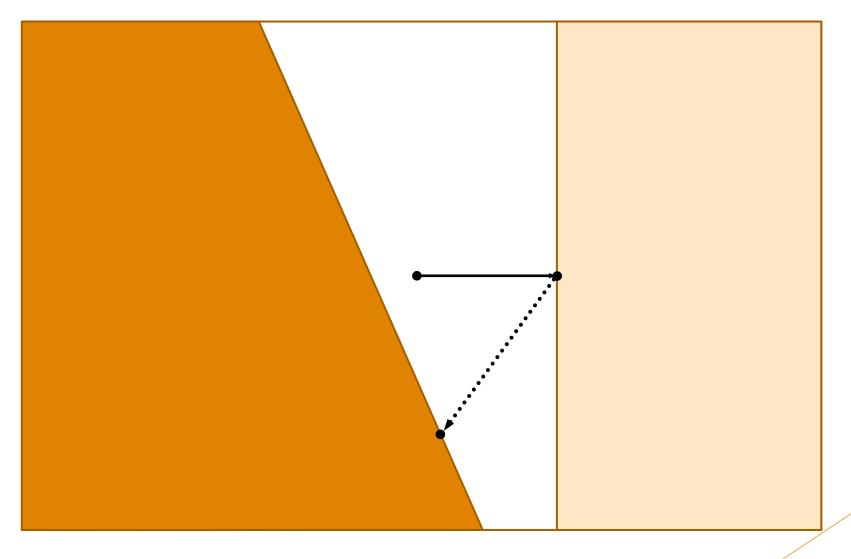
# Chasing Nested Convex Bodies

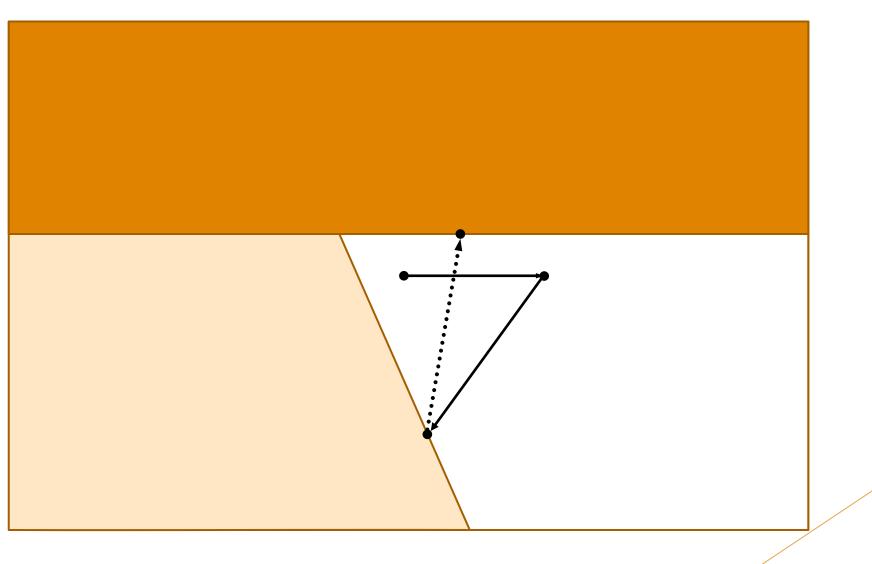
C.J. Argue

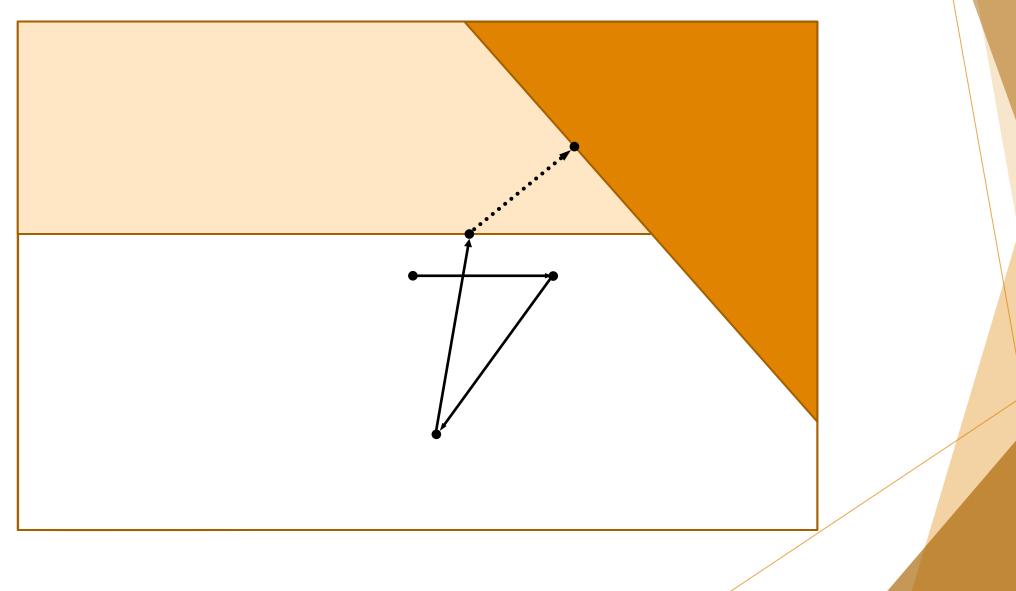
Joint with Sébastien Bubeck, Michael Cohen

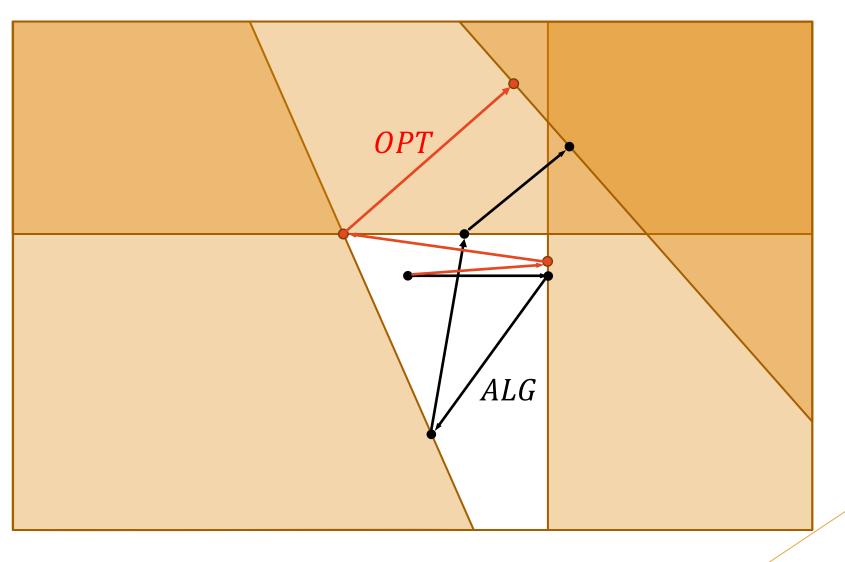
Anupam Gupta, Yin Tat Lee











# **The Problem – Formal Definition**

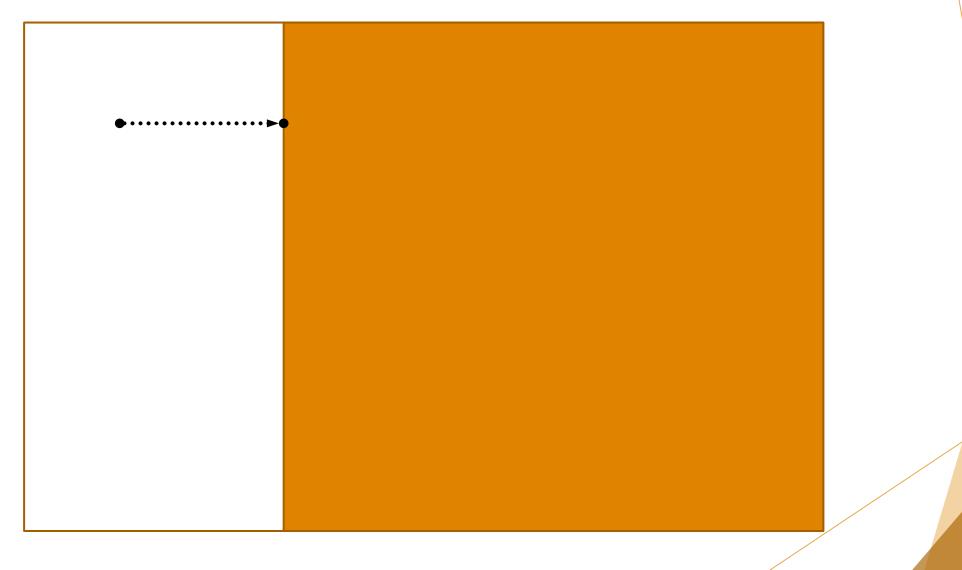
- ▶ Given convex sets K<sup>1</sup>, K<sup>2</sup>, ..., K<sup>t</sup> in ℝ<sup>d</sup>
  ▶ Choose x<sup>i</sup> ∈ K<sup>i</sup> online (x<sup>0</sup> = 0)
- Cost  $ALG = \sum_{i=1}^{t} ||x^i x^{i-1}||$

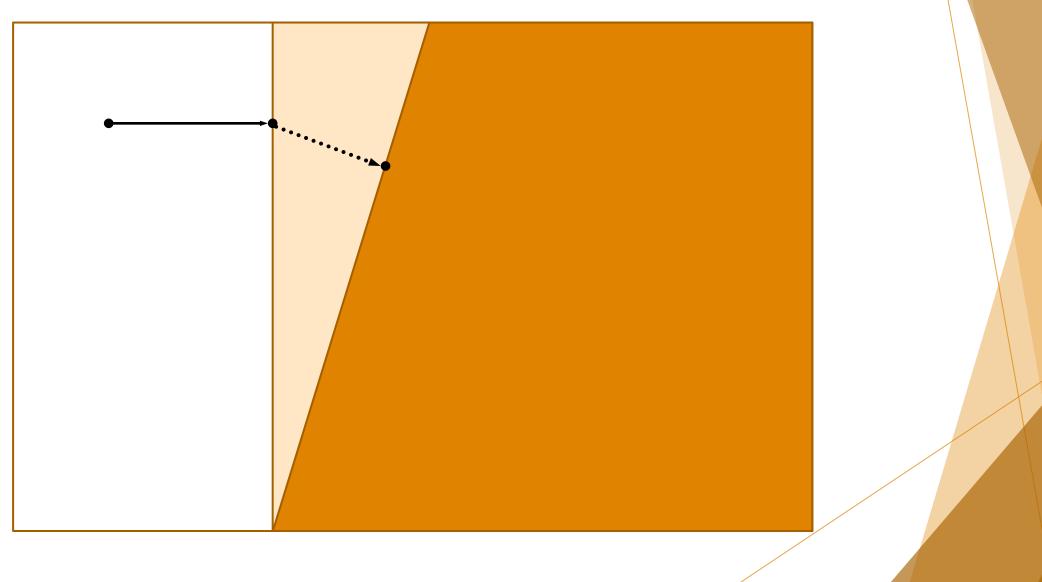
Goal – minimize competitive ratio

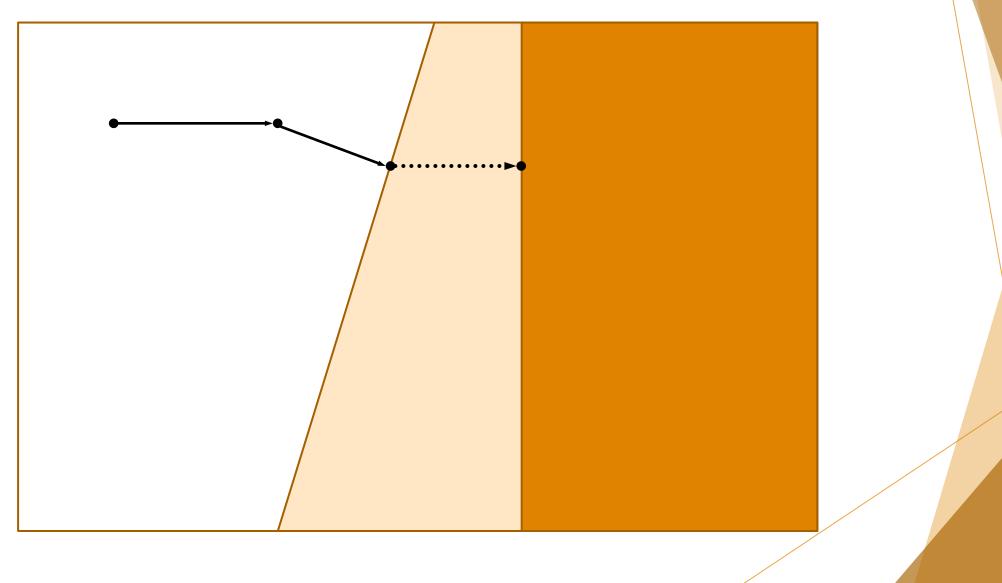
$$\operatorname{cr}(ALG) \coloneqq \max_{\sigma} \frac{ALG(\sigma)}{OPT(\sigma)}$$

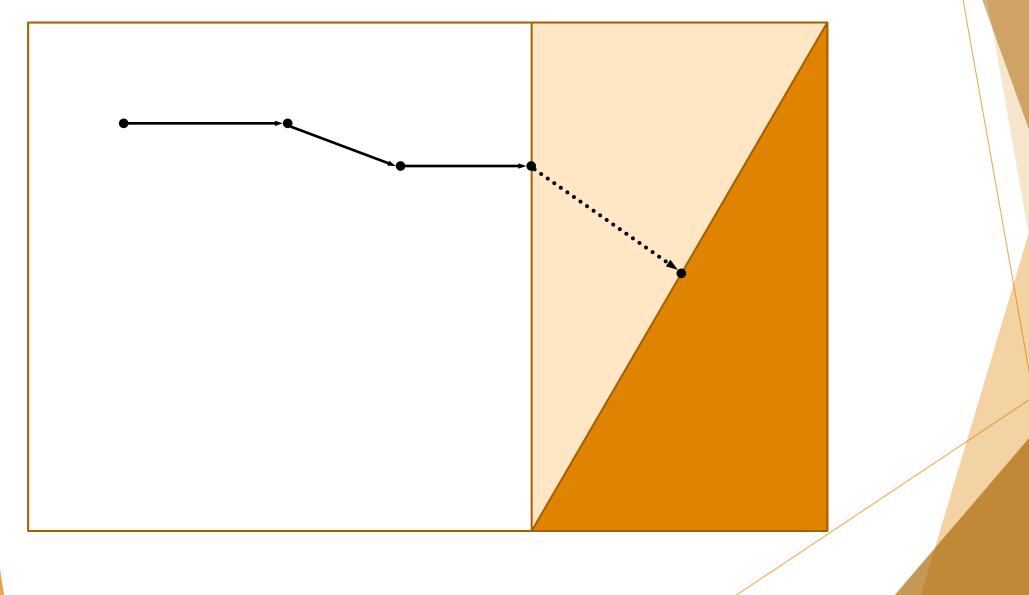
 $\triangleright \sigma$  arbitrary instance

▶  $OPT(\sigma)$  optimal offline cost

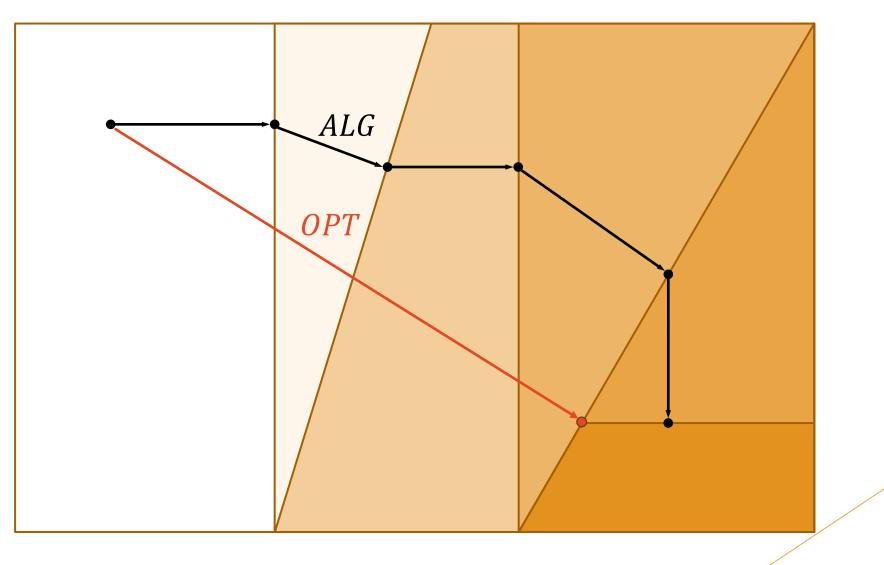








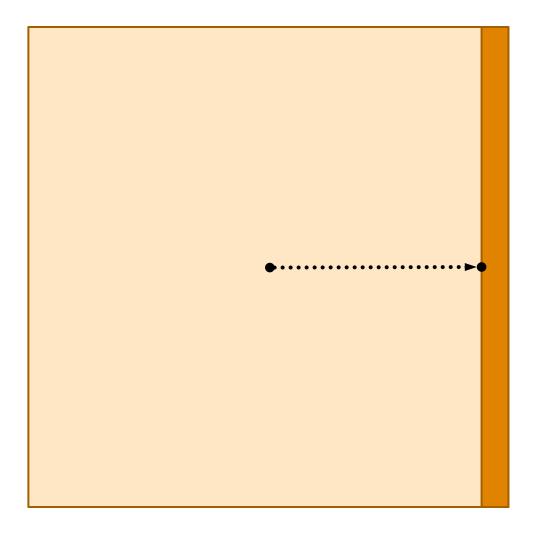




# **Motivation**

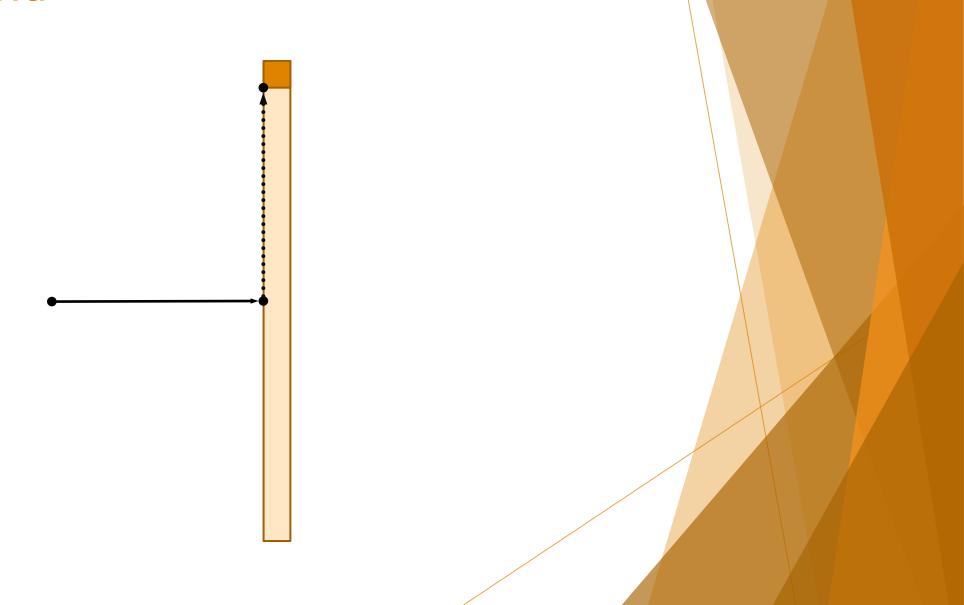
- Metrical task systems (MTS)
  - ► Given convex functions  $f_1, f_2, ..., f_t$
  - Choose  $x^i$  online  $(x^0 = 0)$
  - Cost  $ALG = \sum_{i=1}^{t} ||x^i x^{i-1}|| + f_i(x^i)$
- Convex body chasing role of geometry in MTS
- Nested manageable, gives insight into general problem

# Lower Bound





# Lower Bound



#### Lower Bound

ALG **OPT** 

 $ALG \ge \sqrt{2} \cdot OPT$  $ALG \ge \sqrt{d} \cdot \frac{OPT}{OPT}$ 

# Results

FL 93]  $\sqrt{d}$  lower bound,

Competitive general chasing for d = 2 case

- ▶ [BB+ 17] *d*<sup>0(d)</sup>-competitive nested chasing
- [AB+ 18] O(d log d)-competitive nested chasing
- ► [BL+ 18]  $O(\sqrt{d \log d})$ -competitive nested chasing, exp(d)-competitive general chasing

# Talk outline

- 1. Motivating ideas
  - Reduction to "Tighten" problem
  - Centroid and Recursive Greedy
- 2. Recursive Centroid
  - $\triangleright$   $O(d \log d)$ -competitive algorithm
  - Analysis (sketch)

# Part 1 – Motivating ideas

Centroid, Recursive Greedy, and why neither is good enough

#### **Reduction to Tighten**

► Bounded –  $diam(K^1) = O(1), OPT = \Omega(1)$ 

►  $f(d) \cdot diam(K^1)$  total cost  $\Rightarrow$  f(d)-competitive

Guess-and-double

▶ Tighten – end when  $diam(K^t) \le \frac{1}{2} diam(K^1)$ 

Apply repeatedly

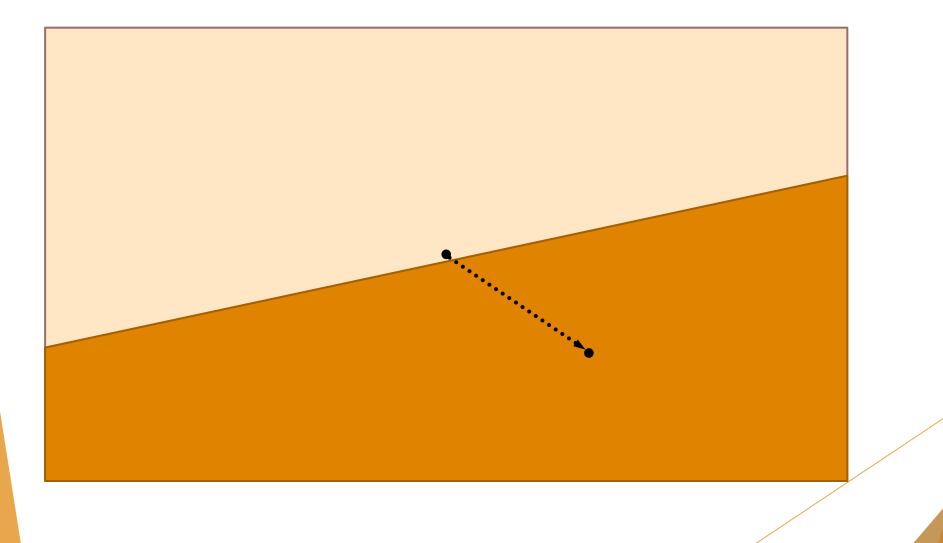
Cost decreases geometrically

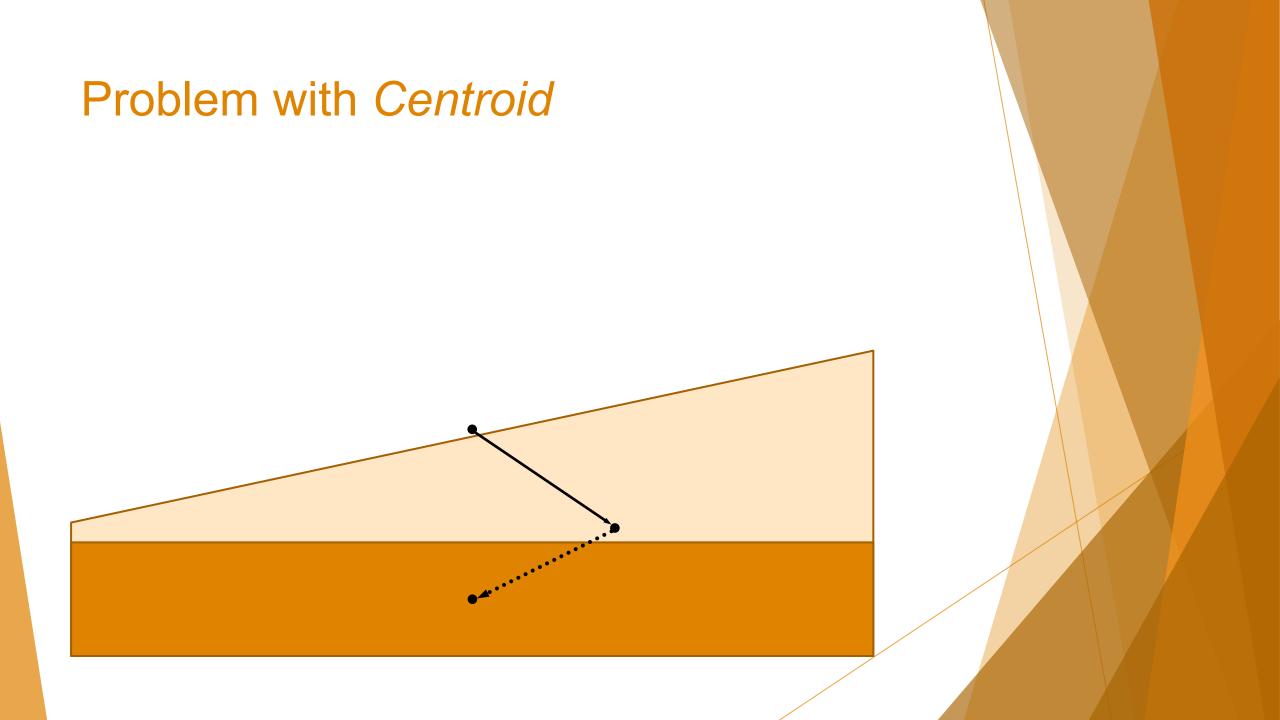
#### Idea 1 – Centroid

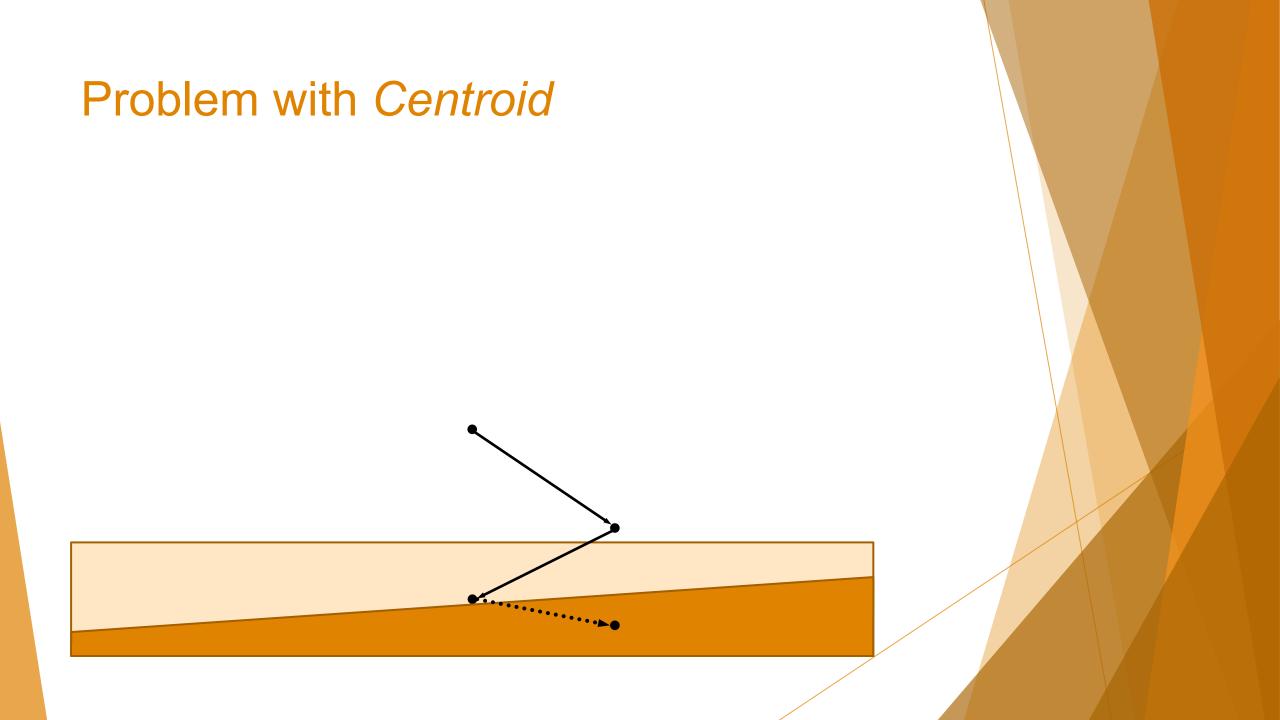
- "Move to center so any cut is good"
- Centroid algorithm:  $x^t = \mu(K^t) \coloneqq \int_{K^t} x \, dx$ 
  - ► (*K<sup>t</sup>* bounded)
- ► Grünbaum ['60]  $\Rightarrow Vol(K^t) \le (1-c) \cdot Vol(K^{t-1})$  $\le (1-c)^t \cdot Vol(K^0)$

Volume drops  $O(2^d)$  in O(d) steps

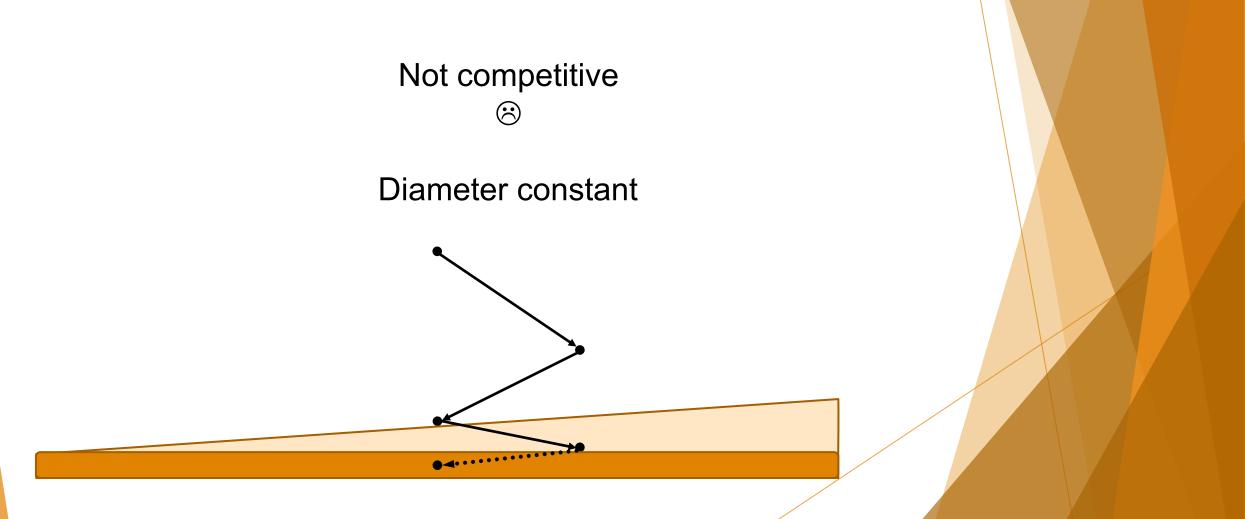
# Problem with Centroid









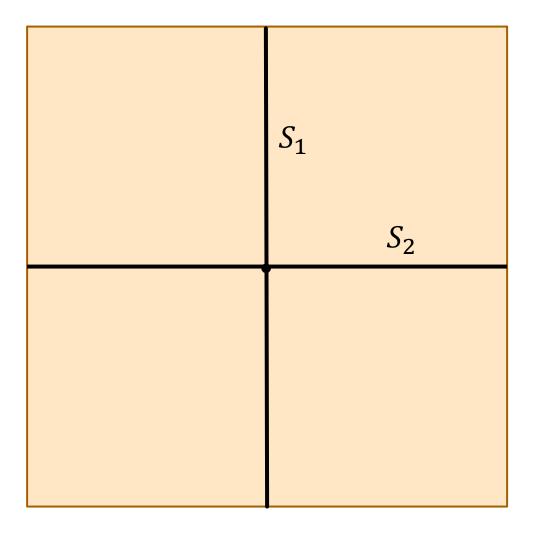


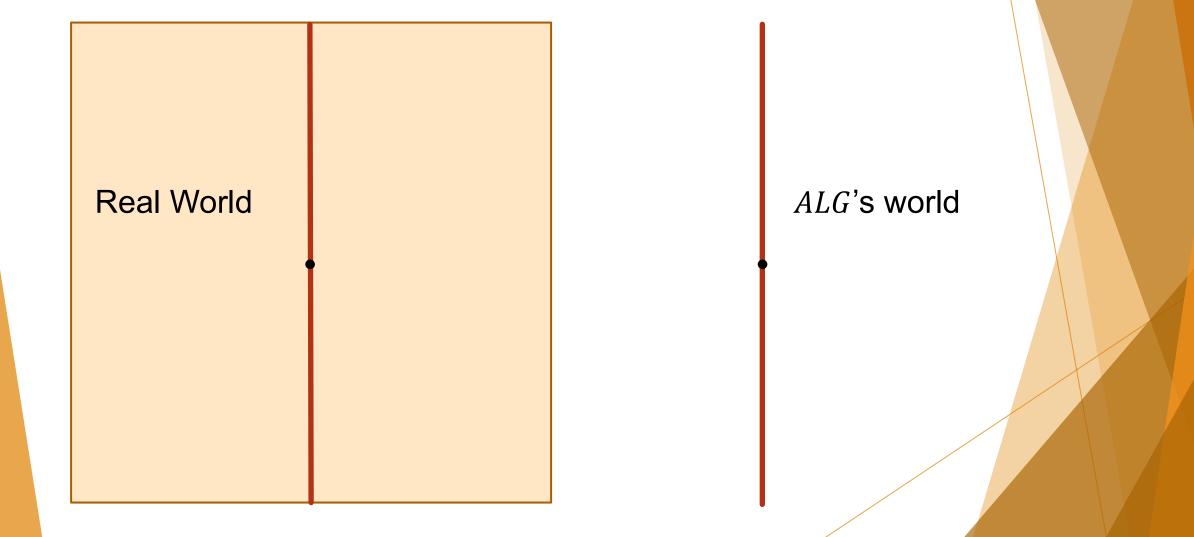
- "Refuse to move back and forth"
- ▶ In  $\mathbb{R}^1$ , run *Greedy*
- $\blacktriangleright$  In  $\mathbb{R}^d$ 
  - Fix orthogonal hyperplanes  $S_1, \dots, S_d$

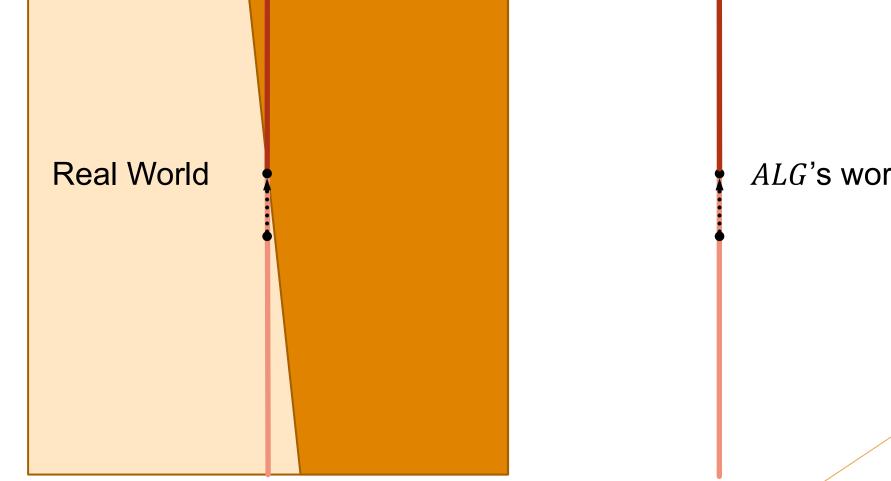
For 
$$i = 1, ..., d$$

▶ Run  $RG^{d-1}$  on sets  $K^t \cap S_i$ 

 $RG^{d-1}$  – Recursive Greedy in (d-1) dimensions

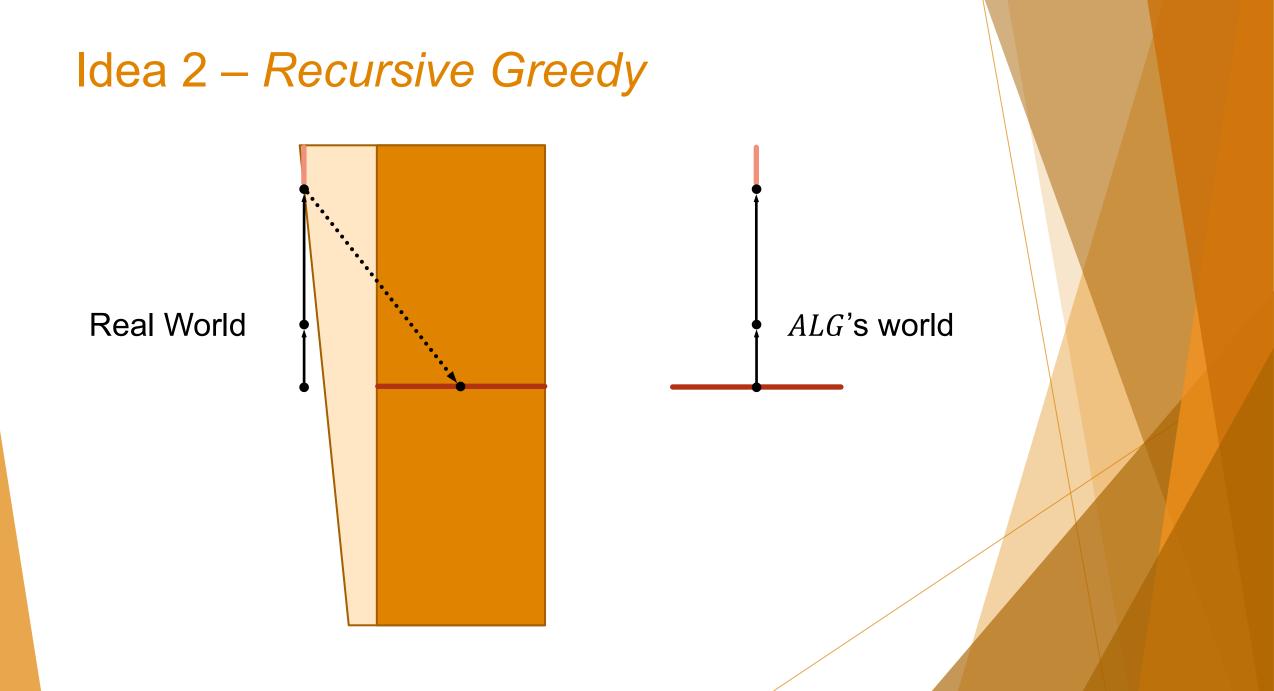


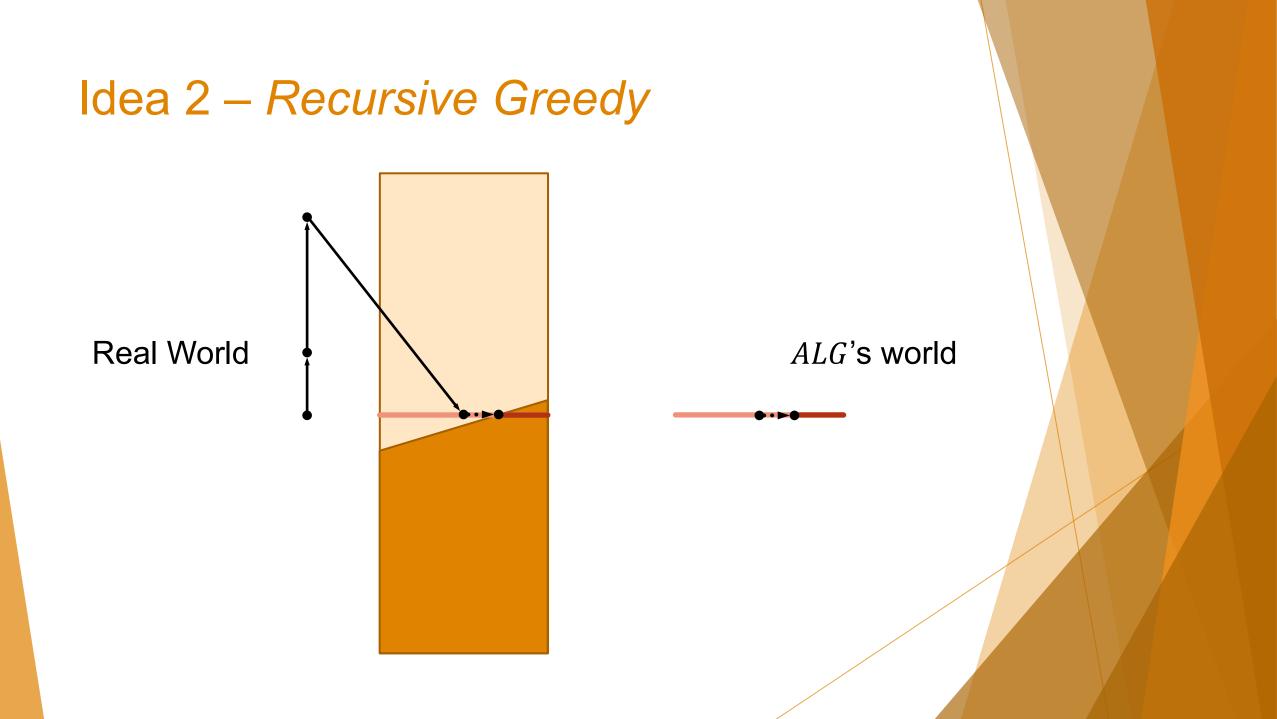


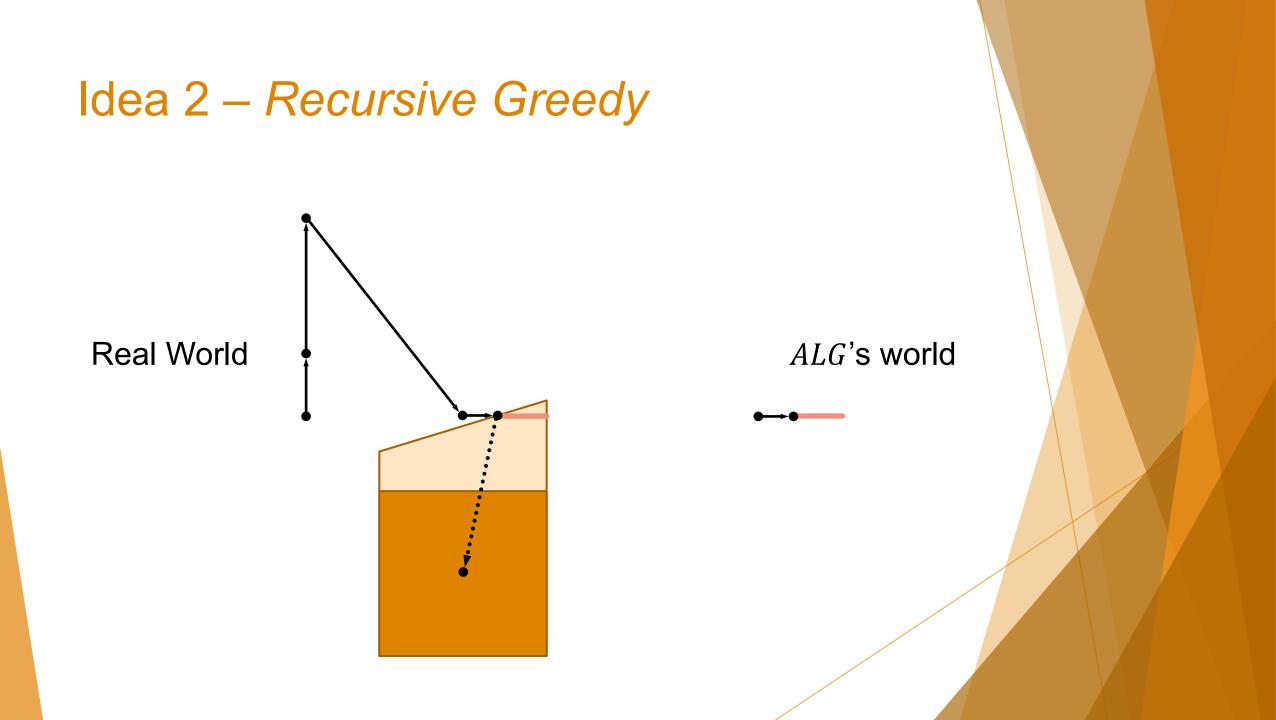


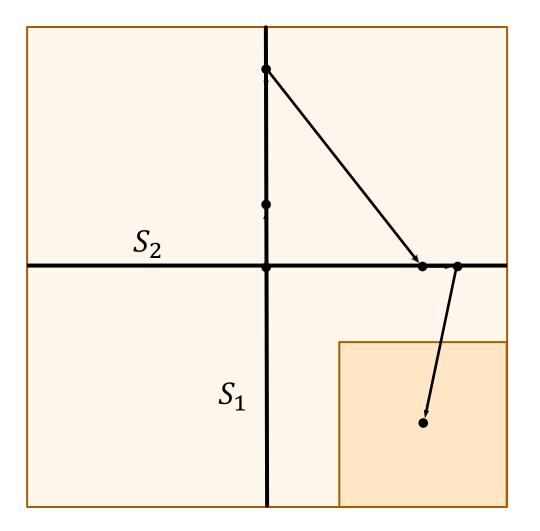


# Idea 2 – *Recursive Greedy* Real World ALG's world









Diameter III

Competitive algorithm [BB+ '17]

# Problem with Recursive Greedy

 $\blacktriangleright$   $d^{O(d)}$ -competitive

Expensive recursive calls

▶ Diameter ↓ only  $O\left(\sqrt{1-1/d}\right)$  after *d* recursive calls

# Recap of Part 1

#### Centroid

- Volume drops quickly
- Diameter stays constant
- Recursive Greedy
  - Controls individual dimensions
  - Expensive recursive calls
  - Diameter shrinks slowly

# Part 2 – *Recursive Centroid*

Fusion of *Centroid* and *Recursive Greedy* 

#### **New Ideas**

Recursion on skinny subspace

Cheap

► Hyperplane separation  $\Rightarrow$  cut parallel to skinny subspace

Progress on fat subspace

Play centroid in recursion

# **Skinny Subspace**

- ► Directional width  $-w(K, v) \coloneqq \max_{x,y \in K} \langle x y, v \rangle$
- Skinny direction -v such that  $w(K^t, v) \leq 1/d^2$
- $\blacktriangleright$  S := span of k skinny directions
  - Add directions over time
- ►  $F := S^{\perp}$  (fat subspace)

#### **Recursive Centroid**

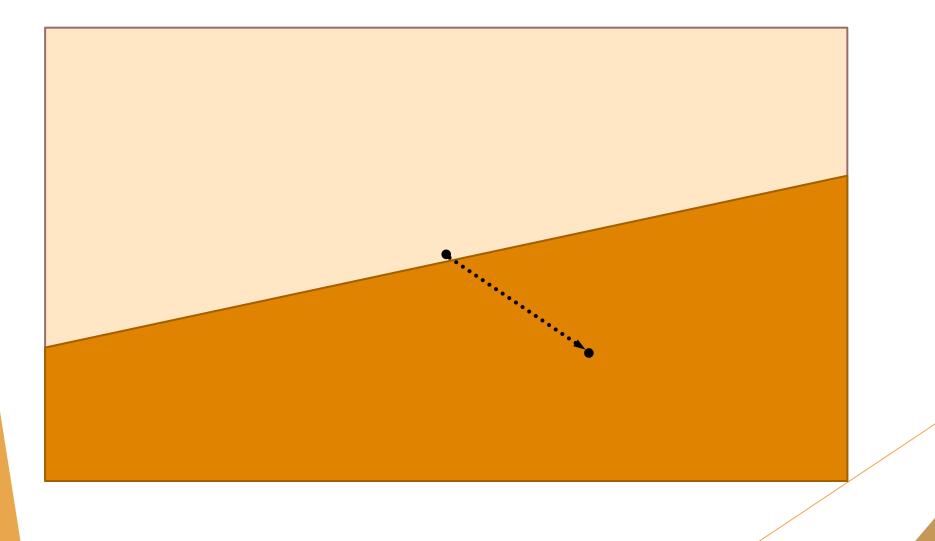
- $\blacktriangleright \text{ If } S \neq \{0\}$ 
  - $\blacktriangleright S' \leftarrow x_t + S$
  - ▶ Run  $RC^{\dim(S)}$  on  $K^t \cap S'$  until empty
- $\blacktriangleright x_t \leftarrow \mu(K^t)$
- ▶ While  $\exists$  skinny direction  $v \in F$

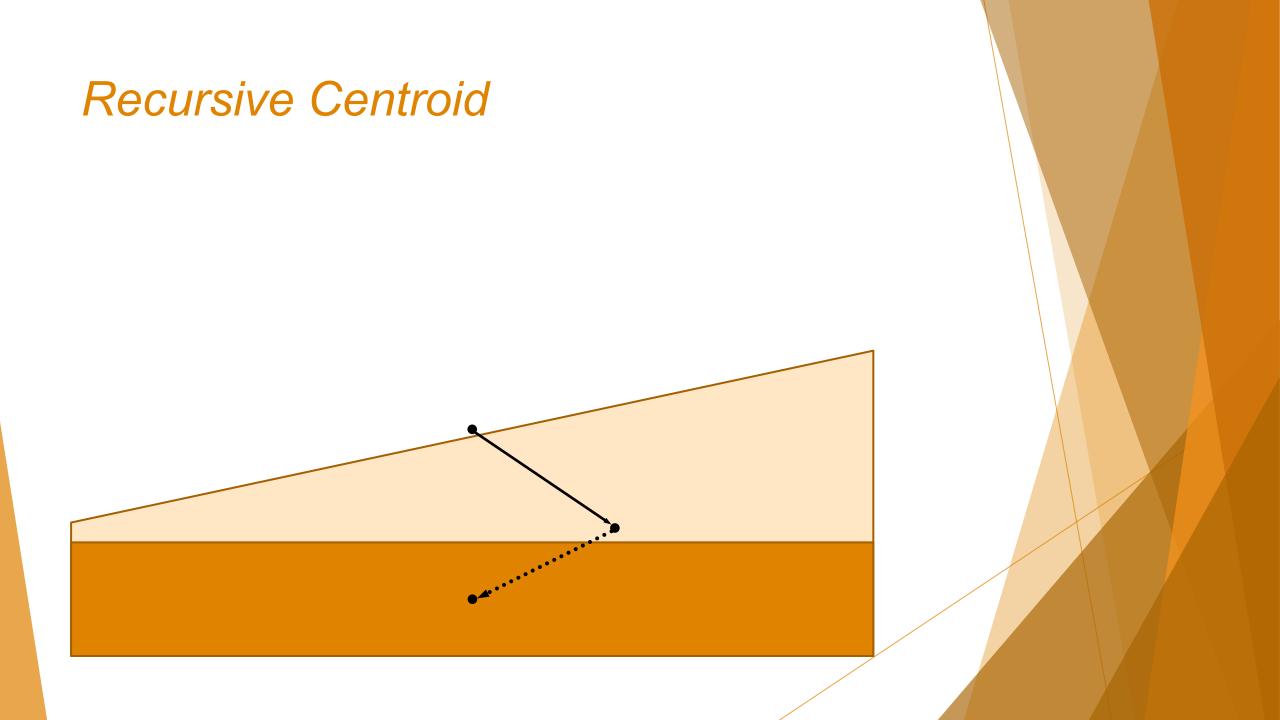
 $\blacktriangleright S \leftarrow span(S, v)$ 

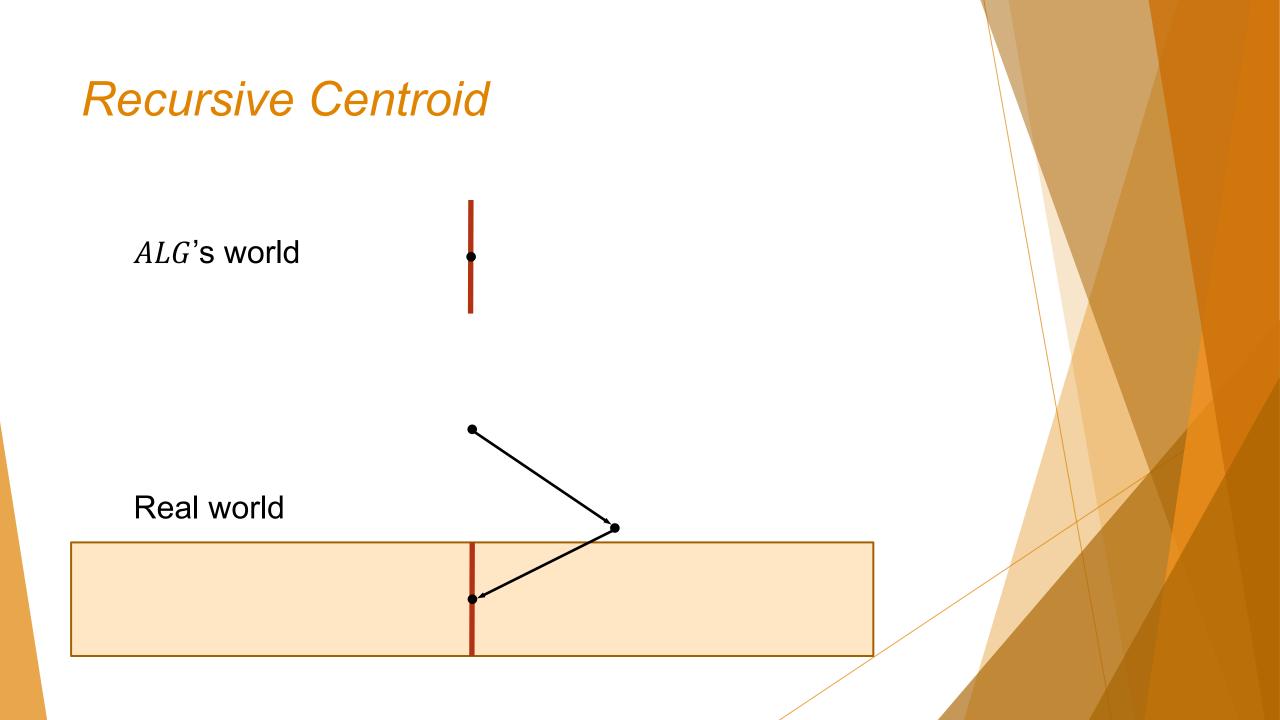
▶ Repeat until  $diam(K^t) \le 1/2 \cdot diam(K^1)$ 

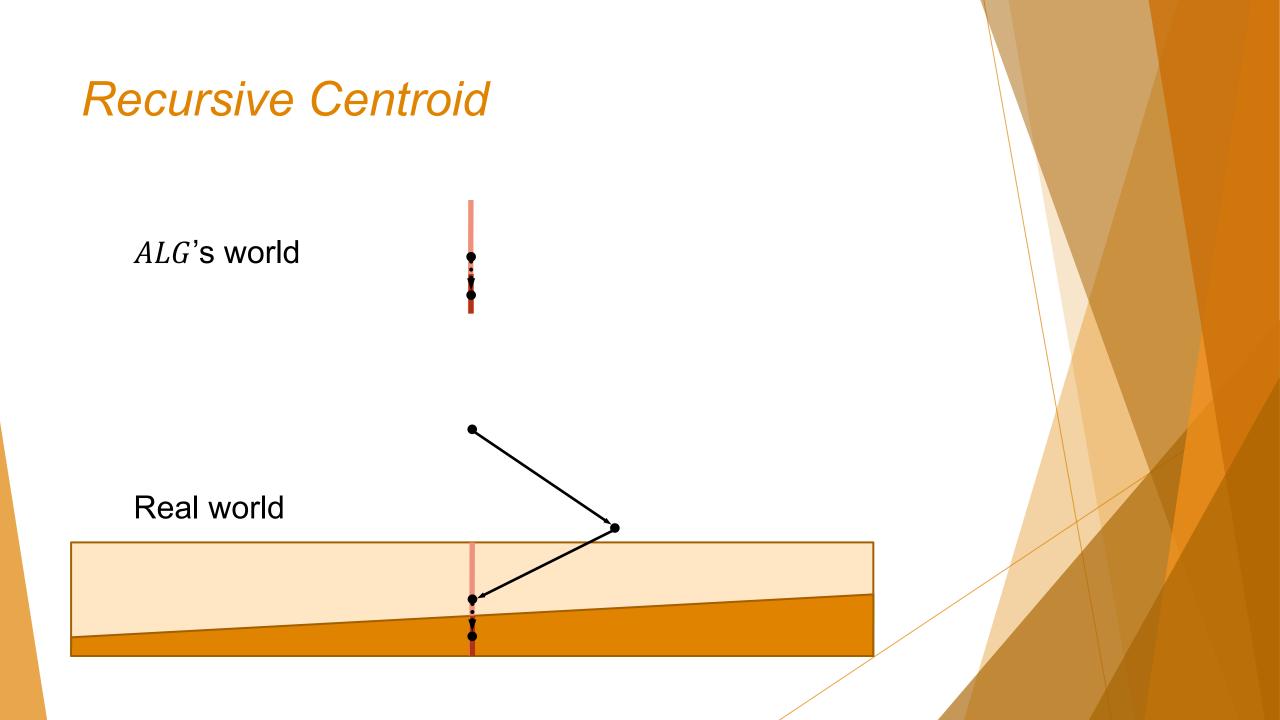
 $RC^{\dim(S)}$  – Recursive Centroid in dim(S) dimensions

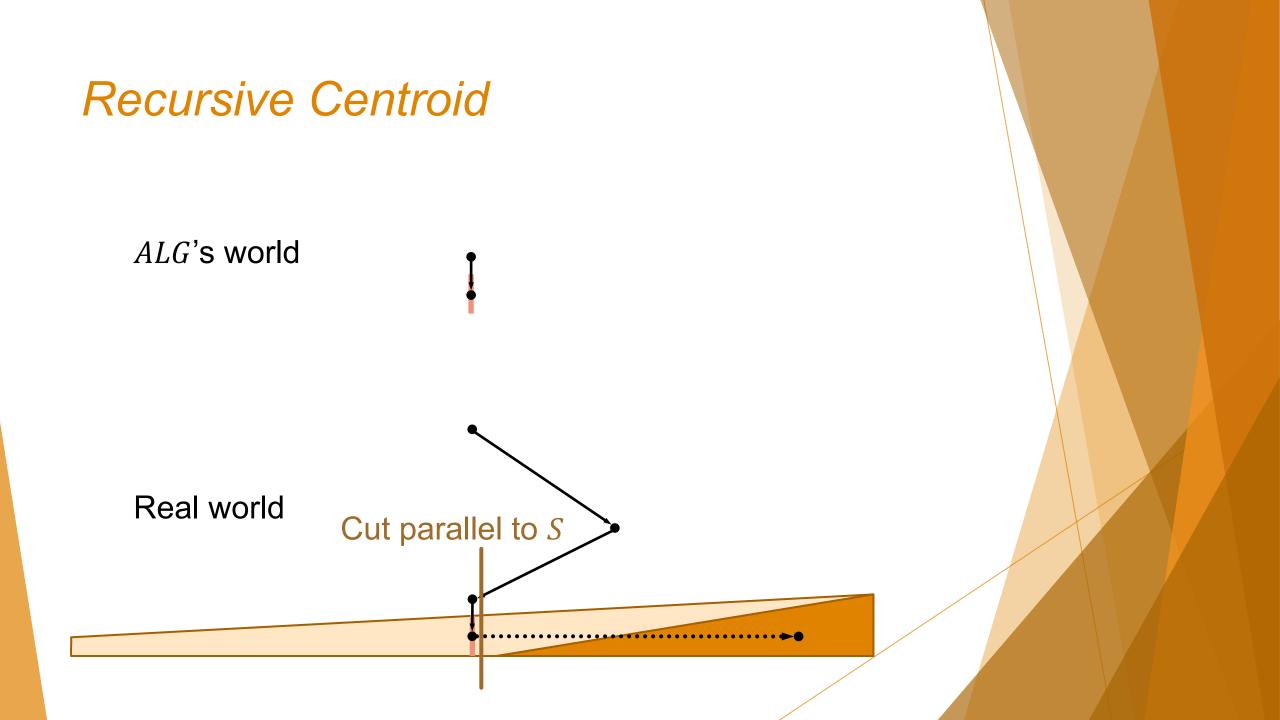
# **Recursive Centroid**













*Recursive Centroid* is  $O(d \log d)$ -competitive [ABCGL '18]

**Recall**  $\sqrt{d}$  lower bound

#### **Proof outline**

▶ Potential  $\Phi^t \coloneqq Vol(Proj_F(K^t))$ 

▶ 'Step' = Recursive call + move to centroid of  $K^t$ 

- 1. Cost of 1 step = O(1)
- 2.  $O(d \log d)$  steps
- $\triangleright$   $O(d \log d)$  total cost

# Proof part I – A single step

$$\Phi^t = Vol(Proj_F(K^t))$$

▶ Cost *0*(1)

- ▶ Recursion:  $O(d \log d) \cdot 1/d^2 = o(1)$
- Move to centroid: O(1)
- $\Phi^t$  drops (1 c)
  - $\triangleright$  K<sup>t</sup> cut by halfspace parallel to S

# Proof part II – $O(d \log d)$ steps

$$\Phi^t = Vol(Proj_F(K^t))$$

•  $\Phi^t \operatorname{drops} \ge (1-c)^m$ 

m = # of steps

▶  $\Phi^t$  increases  $\leq d^{O(d)}$ 

 $\blacktriangleright \Phi^{T-1} \ge d^{-O(d)}$ 

$$d^{O(d)}(1-c)^{m-1} \ge \Phi^{T-1}/\Phi^0 \ge d^{-O(d)}$$

 $m \le O(d \log d)$ 

# Recap of Part 2

Recursion on skinny subspaces

Cheap, good cuts

- Play centroid
  - Volume drop
- $\blacktriangleright \Phi^t = Vol(Proj_F(K^t))$

# **Open questions**

- poly(d)-competitive general chasing
- $\blacktriangleright exp(d)$  lower bound for general chasing
- Efficient algorithms

# Thank you!

Questions?

# In memory of Michael Cohen



#### References

- "A Nearly-Linear Bound for Chasing Nested Convex Bodies" Argue Bubeck Cohen Gupta Lee, SODA '19
- "Nested Convex Bodies are Chasable" Bansal Bohm Elias Koumoutsos Umboh, SODA '18
- "Chasing Nested Convex Bodies Nearly Optimally," "Competitively Chasing Convex Bodies" Bubeck Lee Li Selke, Preprints '18
- "Chasing Convex Bodies and Functions" Friedman Linial, Discrete and Computational Geometry '93