Linear-Competitive Convex Body Chasing C.J. Argue ${ }^{1}$ / Mark Sellke

${ }^{1}$ Joint with Anupam Gupta, Guru Guruganesh, Ziye Tang

Convex Body Chasing - The Problem

Formal Definition

$$
r>0
$$

"r = OPT"

- Input: convex sets $K_{1}, K_{2}, K_{3}, \ldots, K_{T} \subseteq \mathbb{R}^{d}$
- Choose online $x_{i} \in K_{i}$
- Cost $A L G=\sum_{i=1}^{T}\left\|x_{i}-x_{i-1}\right\|$
- Goal-minimize compentive ratio $f(d)$ s.t. $A L G \leq f(d) \cdot r$

- Equivalent problem
- Guess-and-double

Motivation

- Function chasing / Smooth online convex optimization
- Function chasing \cong body chasing
[Bubeck, Lee, Li, Sellke 19]
- Metrical task systems
- Paging, k-Server (fractional)

Nested - Important Special Case

Nested - Important Special Case

Nested - Important Special Case

Nested - Important Special Case

Nested - Important Special Case

Nested - Important Special Case

Progress

- Previous best known
- Lower bound: $\Omega(\sqrt{d})$
- Nested: $O(\sqrt{d \log d})$, simple $O(d)$
- General: $2^{O(\mathrm{~d})}$
[Friedman, Linial 93]
[Bubeck, Klartag, Lee, Li, Sellke 20]
[Bubeck, Lee, Li, Sellke 19]
- This talk
- General: simple $O(d)$

Steiner Point

- Average of extreme points in all directions

- Average of extreme points weighted by size of normal cone

Steiner Point Definition

- $s t(K):=\lim _{\gamma \rightarrow \infty} c g(K+\gamma B)$
- $B:=$ unit ball
- More equivalent definitions in Part 2

Steiner Point Algorithm (Nested)

[Bubeck, Klartag, Lee, Li, Sellke 20]

- $x_{t}=s t\left(K_{t}\right)$
- $O(d)$ competitive
- Simple and beautiful!!

Reducing General to Nested

- Given:
- General instance: $r>0, K_{1}, \ldots, K_{T}$
- $O(d)$ competitive nested algo NEST
- Goal: Construct sets $\Omega_{1}, \ldots, \Omega_{T}$ s.t.
- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- $\operatorname{NEST}\left(\Omega_{1}, \ldots, \Omega_{t}\right) \leq O(d) \cdot r$
- $\operatorname{NEST}\left(\Omega_{i}\right) \in K_{i}$

Work Function

- Classical technique for related problems
- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- cost $\leq O(d) \cdot r$
- $\operatorname{NEST}\left(\Omega_{t}\right) \in K_{i}$
- $w_{t}(x):=$ min cost to satisfy requests $1, \ldots, t$ and end at x
$=\min _{y_{i} \in K_{i}} \sum_{i=1}^{t}\left\|y_{i}-y_{i-1}\right\|+\left\|y_{t}-x\right\|$

$$
\begin{aligned}
& w_{2}(x)=7 \\
& w_{2}(y)=3+2+1
\end{aligned}
$$

Defining Ω_{t}

$$
\Omega_{t}:=\left\{x \mid w_{t}(x) \leq r\right\}
$$

Sublevel set of work function

Convexity

w_{t} convex

- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- cost $\leq O(d) \cdot r$
- $\operatorname{NEST}\left(\Omega_{t}\right) \in K_{i}$
$\Rightarrow \Omega_{t}=\left\{x \mid w_{t}(x) \leq r\right\}$ convex

Nestedness

- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- cost $\leq O(d) \cdot r$
- $\operatorname{NEST}\left(\Omega_{t}\right) \in K_{i}$

$$
w_{t}(x) \leq w_{t+1}(x) \Longrightarrow\left\{x \mid w_{t}(x) \leq r\right\} \supseteq\left\{x \mid w_{t+1}(x) \leq r\right\}
$$

$$
\Omega_{t} \supseteq \Omega_{t+1}
$$

Cost to satisfy requests $1, \ldots, t+1$ and end at x

Cost to satisfy requests $1, \ldots, t$ and end at x

- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- cost $\leq O(d) \cdot r$
$-\operatorname{NEST}\left(\Omega_{t}\right) \in K_{i}$

$$
\begin{aligned}
\Omega_{1}=\{x \mid & \left.w_{1}(x) \leq r\right\} \subseteq B(0, r) \\
\operatorname{cost} & \leq O(d) \cdot \operatorname{OPT}\left(\Omega_{1}, \ldots, \Omega_{T}\right) \\
& \leq O(d) \cdot \operatorname{diam}\left(\Omega_{1}\right) \\
& \leq O(d) \cdot r
\end{aligned}
$$

(In)feasibility

- $\Omega_{t} \nsubseteq K_{t}$
- May play infeasible point

Feasibility

Feasibility Lemma: $\operatorname{st}\left(\Omega_{t}\right) \in K_{t}$

- Ω_{t} convex
- $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- cost $\leq O(d) \cdot r$
- Atecst)($\mathbb{E}_{t} \mathbb{K}_{i} \in K_{i}$

Main Theorem: $x_{t}=s t\left(\Omega_{t}\right)$ is $O(d)$-competitive [Argue, Gupta, Guruganesh, Tang 20]

Proof of Feasibility Lemma

$$
K_{t}=\{x \mid\langle a, x\rangle \geq b\} \text { (w.l.o.g.) }
$$

For $y \notin K_{t}, \hat{y}:=\operatorname{reflect}(y)$
Claim: If $\boldsymbol{y} \in \boldsymbol{\Omega}_{\mathrm{t}}$ then $\hat{\boldsymbol{y}} \in \boldsymbol{\Omega}_{\boldsymbol{t}}$

$$
\begin{aligned}
& w_{t}(y)=\min _{z \in K_{t}}\|y-z\|+w_{t-1}(z) \\
& \Rightarrow w_{t}(\hat{y}) \leq w_{t}(y) \leq r
\end{aligned}
$$

```
Goal: st (\Omega}\mp@subsup{\Omega}{t}{})\in\mp@subsup{K}{t}{
\Omega
st(\Omegat)= \mp@subsup{\operatorname{lim}}{\gamma->\infty}{c}cg(\mp@subsup{\Omega}{t}{}+\gammaB)
```


Proof of Feasibility Lemma

$$
\begin{aligned}
& \text { Goal: } \operatorname{st}\left(\Omega_{t}\right) \in K_{t} \\
& \Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\} \\
& \operatorname{st}\left(\Omega_{t}\right)=\lim _{\gamma \rightarrow \infty} \operatorname{cg}\left(\Omega_{t}+\gamma B\right)
\end{aligned}
$$

Proof of Feasibility Lemma

$$
\begin{aligned}
& \text { Goal: } \operatorname{st}\left(\Omega_{t}\right) \in K_{t} \\
& \Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\} \\
& \operatorname{st}\left(\Omega_{t}\right)=\lim _{\gamma \rightarrow \infty} \operatorname{cg}\left(\Omega_{t}+\gamma B\right)
\end{aligned}
$$

Proof of Feasibility Lemma

$$
\begin{aligned}
& \text { Goal: } \operatorname{st}\left(\Omega_{t}\right) \in K_{t} \\
& \Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\} \\
& \operatorname{st}\left(\Omega_{t}\right)=\lim _{\gamma \rightarrow \infty} \operatorname{cg}\left(\Omega_{t}+\gamma B\right)
\end{aligned}
$$

Proof of Feasibility Lemma

$\operatorname{cg}\left(\Omega_{t}+\gamma B\right) \in K_{t}$
\quad for all $\gamma \geq 0$

$$
\operatorname{st}\left(\Omega_{t}\right) \in K_{t}
$$

$$
\begin{aligned}
& \text { Goal: } \operatorname{st}\left(\Omega_{t}\right) \in K_{t} \\
& \Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\} \\
& \operatorname{st}\left(\Omega_{t}\right)=\lim _{\gamma \rightarrow \infty} c g\left(\Omega_{t}+\gamma B\right)
\end{aligned}
$$

Recap of Part 1

- Algo: $x_{t}=\operatorname{st}\left(\Omega_{t}\right)$
- $\Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\}$
- $O(d)$ competitiveness
- Ω_{t} convex, $\Omega_{1} \supseteq \Omega_{2} \supseteq \cdots \supseteq \Omega_{T}$
- Feasibility: $x_{t} \in K_{t}$
- $A L G \leq O(d) \cdot r$

Part 2: Functional Steiner Point

- Instead of using Steiner out-of-the-box, redefine it.
- Define the Functional Steiner Point of a convex function, and apply to work function.
- Again two formulas via divergence theorem. Support function becomes Fenchel dual.
- Same $\min (d, O(\sqrt{d \cdot \log (T)})$ competitive ratio.
- Same proofs as nested chasing with Steiner point in previous talk.
- Coincides with Steiner point of a large level set.

Steiner Point: Two Equivalent Definitions

- Definition ([Ste 1840]): the Steiner point $s t(K) \in K$ of a convex set $K \in \ell_{d}^{2}$ is:

$$
s t(K)=\int_{|v|<1} f_{K}(v) d v=d \cdot \int_{|\theta|=1} h_{K}(\theta) \theta d \theta
$$

- Both integrals are normalized to be expectations over the unit ball and sphere in \mathbb{R}^{d}. And:

Support Function (Scalar)

Extreme

Point $\quad f_{K}(v)=\operatorname{argmax}_{x \in K}\langle v, x\rangle$,
(Vector)

$$
h_{K}(\theta)=\max _{x \in K}\langle\theta, x\rangle=\left\langle\theta, f_{K}(\theta)\right\rangle
$$

- First definition is primal: $f_{K_{t}}(v) \in K_{t}$ implies $s t\left(K_{t}\right) \in K_{t}$ by convexity.
- Second definition is dual: used to upper bound movement.

Why Do The Definitions Agree?

$$
\begin{gathered}
\operatorname{st}\left(K_{t}\right)=f_{|v|<1} f_{K_{t}}(v) d v=d \cdot f_{|\theta|=1} h_{K_{t}}(\theta) \theta d \theta \\
f_{K}(v)=\underset{\mathrm{x} \in K}{\operatorname{argmax}}(\langle v, x\rangle), \quad h_{K}(\theta)=\max _{x \in K}(\langle\theta, x\rangle)=\left\langle\theta, f_{K}(\theta)\right\rangle
\end{gathered}
$$

- Key: $f_{K}=\nabla h_{K}$, and $\theta=\hat{n}(\theta)$ is the outward normal to the sphere at θ.
- General Gauss-Green Theorem (variant of Divergence Theorem):

$$
\int_{U} \nabla h(v) d v=\int_{\partial U} h(v) \hat{n}(v) d v . \quad \begin{array}{ll}
& \text { Both sides are } \\
\nabla_{x} \int_{U+x} h(v) d v
\end{array}
$$

- Factor d from change in total measure - the colored integrals are normalized.

Nested Chasing with Steiner Point

- Start with K_{1} a unit ball, request sequence $K_{1} \supseteq K_{2} \supseteq K_{3} \ldots$. Set $x_{t}=\operatorname{st}\left(K_{t}\right)$.
- Claim: total movement $\leq d$.
- Nested condition is equivalent to support function decreasing:

$$
h_{K_{1}}(\theta) \geq h_{K_{2}}(\theta) \geq h_{K_{3}}(\theta) \ldots
$$

- Triangle inequality now says:

$$
\left|\operatorname{st}\left(K_{t-1}\right)-\operatorname{st}\left(K_{t}\right)\right| \leq d \cdot f_{|\theta|=1} h_{K_{t-1}}(\theta)-h_{K_{t}}(\theta) d \theta
$$

- Summing over t for total movement, RHS telescopes! Hence upper bound of d .
- To get $O(\sqrt{d \cdot \log (T)})$: only very small sets of the sphere can correlate much.

Defining Functional Steiner Point

- Two definitions of Steiner point, equivalent by Gauss-Green and $\nabla h=f$:

$$
s t\left(K_{t}\right)=f_{|v|<1}^{1} f_{K_{t}}(v) d v=d \cdot f_{|\theta|=1} h_{K_{t}}(\theta) \theta d \theta
$$

$$
f_{K}(v)=\operatorname{argmax}_{x \in K}(\langle v, x\rangle)=\nabla h_{K}(\theta), \quad h_{K}(\theta)=\max _{x \in K}(\langle\theta, x\rangle)
$$

- We replace h_{K} with the Fenchel dual W_{t}^{*} of W_{t} to define the functional Steiner point:

$$
\begin{aligned}
s t\left(W_{t}\right) & =\int_{|v|<1} v_{t}^{*} d v=(-d) \cdot f_{|\theta|=1} W_{t}^{*}(\theta) \cdot \theta d \theta \\
v_{t}^{*} & =\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}}\left(W_{t}(x)-\langle v, x\rangle\right)=-\nabla W_{t}^{*}(v) \\
W_{t}^{*}(\theta) & =\min _{x \in \mathbb{R}^{d}}\left(W_{t}(x)-\langle\theta, x\rangle\right)=W_{t}\left(v_{t}^{*}\right)-\left\langle\theta, v_{t}^{*}\right\rangle
\end{aligned}
$$

\Rightarrow First defn: $\mathbb{E}^{|v|<1}\left[\operatorname{argmin}_{x}\left(W_{t}(x)-\langle v, x\rangle\right)\right]$. Aka follow the perturbed leader.

- $W_{t}^{*}(\theta)$ measures the height of a θ-slope tangent plane to W_{t} at input 0 .

Functional Steiner Point is an Online Selector

$$
s t\left(W_{t}\right)=f_{|v|<1} v_{t}^{*} d v ; \quad v_{t}^{*}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}}\left(W_{t}(x)-\langle v, x\rangle\right)
$$

Lemma: $s t\left(W_{t}\right) \in K_{t}$.
By construction, $s t\left(W_{t}\right)$ is a weighted average of v with $\left|\nabla W_{t}(v)\right|<1$.
$\left|\nabla W_{t}(v)\right|<1$ implies $v \in K_{t}$.
If $v \notin K_{t}$, the best path ending at v came from $\mathrm{w} \in K_{t} . \nabla W_{t}(v)$ points in the direction $\overline{v w}$.

Lemma follows by convexity of K_{t}.

The Dual Definition in 1 Dimension

- Functional Steiner Point in 1 dimension: intersect tangent lines with slopes ± 1.
- Equivalent to $s t\left(W_{t}\right)=\frac{W_{t}^{*}(1)-W_{t}^{*}(-1)}{2}$. Tangents move up over time.
- Movement of $s t\left(W_{t}\right) \leq$ tangents' total upward movement.
- Tangents' total upward movement = height of tangents' intersection
- Height of tangents' intersection $\leq \min _{x} W_{t}(x)$.
- Combining, Functional Steiner is 1-competitive.

Tangents lower bound W_{t}^{*}

$$
y=W_{t}(x)
$$

Functional Steiner Point is d-Competitive

Recall:

$$
\operatorname{st}\left(W_{t}\right)=(-d) \cdot f_{|\theta|=1} W_{t}^{*}(\theta) \theta d \theta ; \quad W_{t}^{*}(\theta)=\min _{x \in \mathbb{R}^{d}}\left(W_{t}(x)-\langle\theta, x\rangle\right)
$$

Properties of work and dual work function:

1. $W_{t}^{*}(\theta)$ is concave, increasing in time from $W_{0}^{*}(\theta)=0$.
2. $\min _{\mathrm{x}}\left(W_{\mathrm{t}}(\mathrm{x})\right)=\operatorname{Cost}\left(\mathrm{OPT}_{\mathrm{t}}\right)$.

Therefore:

$$
\begin{gathered}
\sum_{t \leq T}\left|s t\left(W_{t}\right)-s t\left(W_{t-1}\right)\right| \leq d \sum_{t \leq T} f_{|\theta|=1}\left|W_{t}^{*}(\theta)-W_{t-1}^{*}(\theta)\right| d \theta=d \cdot f_{|\theta|=1} W_{T}^{*}(\theta) d \theta \\
\leq d \cdot W_{T}^{*}(0)=\mathrm{d} \cdot \min _{\mathrm{x}}\left(W_{T}(x)\right)=\mathrm{d} \cdot \operatorname{Cost}\left(\mathrm{OPT}_{\mathrm{T}}\right) \square
\end{gathered}
$$

For small T, concentration of measure in the first inequality gives $O(\sqrt{d \cdot \log (T)})$.

Chasing Convex Functions

- Chasing convex functions: same problem but with soft constraint.
- Given online positive convex functions f_{t}, be competitive for:

$$
\operatorname{Cost}(A L G)=\sum_{t=1}^{T}\left\|x_{t}-x_{t-1}\right\|+f_{t}\left(x_{t}\right)
$$

- Previously known to be equivalent to CBC, reduction simple but ad-hoc.
- Functional Steiner point works directly here too. No reduction needed!
- Movement d-competitive, service cost $\int_{0}^{T} f_{t}\left(x_{t}\right) d t$ is 1 -competitive. Overall d+1 competitive.

Other Norms

- Steiner and Functional Steiner point work in any normed space.
- In general, integrate over v, θ in the dual ball/sphere.
- Definition depends on the norm. Less obvious what measure to put on sphere.
- Theorem: Functional Steiner Point is d-competitive for chasing convex bodies in any normed space.
- $O(\sqrt{d \cdot \log (T)})$ is specific to ℓ_{2}. Concentration of measure depends on norm.

Functional Steiner Point via Level Sets

Consider again a (convex) level set $\Omega_{t, R}=\left\{x: W_{t}(x) \leq R\right\}$ of W_{t}.

We know:

1. $\operatorname{st}\left(\Omega_{t, R}\right) \in K_{t}$ (first half)
2. $\operatorname{st}\left(W_{t}\right) \in K_{t}$ (this half)

Theorem: for R large enough that $K_{t} \subseteq \Omega_{t, R}$, we have $\operatorname{st}\left(W_{t}\right)=\operatorname{st}\left(\Omega_{t, R}\right)$.

Takeaway: the two solutions in this talk are essentially equivalent!

Proof outline: all tangents with slope $|\theta|=1$ touch the graph of W_{t} above $\Omega_{t, R}$.
Hence $W_{t}^{*}(\theta)=h_{\Omega_{t, R}}(\theta)-R$.
Since $\int_{|\theta|=1} R \theta d \theta=0$, dual definitions of $\operatorname{st}\left(W_{t}\right), \operatorname{st}\left(\Omega_{t, R}\right)$ are equal.

Open Questions

- $O(\sqrt{d})$-competitive chasing.
- Mildly non-convex problems
- [Bubeck-Rabani-s $20+\mathrm{f}$: If $d, k \geq 2$, no competitive algorithm to chase convex sets with k servers.
- Quasi-convex functions?
- New Applications?
- [Bubeck-Li-Luo-Wei 19] apply CBC to a bandit problem.
- Do these techniques carry over to other MTS?

Thank you!
Questions?

References

- "Chasing Convex Bodies with Linear Competitive Ratio" Argue, Gupta, Guruganesh, Tang, SODA '20 [This talk]
- "A Nearly-Linear Bound for Chasing Nested Convex Bodies" Argue, Bubeck, Cohen, Gupta, Lee, SODA '19
- "Chasing Nested Convex Bodies Nearly Optimally," Bubeck, Klartag, Lee, Li, Sellke, SODA '20
- "Competitively Chasing Convex Bodies" Bubeck, Lee, Li, Sellke, STOC ‘19
- "Chasing Convex Bodies and Functions" Friedman, Linial, Discrete and Computational Geometry '93
- "Chasing Convex Bodies Optimally" Sellke, SODA '20 [This talk]

Formal Definition

- Input: convex sets $K_{1}, K_{2}, K_{3}, \ldots, K_{T} \subseteq \mathbb{R}^{d}$
- Choose online $x_{i} \in K_{i}$
- Cost $A L G=\sum_{i=1}^{T}\left\|x_{i}-x_{i-1}\right\|$
- Goal - minimize competitive ratio

$$
\operatorname{cr}(A L G):=\max _{\text {instance } \sigma} \frac{A L G(\sigma)}{O P T(\sigma)}
$$

Reduction - Bounded Sets, Bound Cost

- Input: $r>0$, convex sets $K_{1}, K_{2}, K_{3}, \ldots, K_{T} \subseteq B(0, r)$
- Choose online $x_{i} \in K_{i}$
- Cost $A L G=\sum_{i=1}^{T}\left\|x_{i}-x_{i-1}\right\|$
- Goal - minimize $A L G \leq f(d) \cdot r \approx f(d) \cdot \operatorname{diam}\left(K_{1}\right)$
- Equivalent problem
- Imagine $O P T=\Theta(r)$
- Guess and double

Steiner Point Definitions

$$
\operatorname{st}(K)=\int_{\|\theta\|=1} \nabla s_{K}(\theta) d \theta \quad \nabla s_{K}(\theta):=\underset{x \in K}{\operatorname{argmax}}\langle\theta, x\rangle
$$

$$
=d \cdot \int_{\|\theta\|=1} s_{K}(\theta) \cdot \theta d \theta \quad s_{K}(\theta):=\max _{x \in K}\langle\theta, x\rangle
$$

$$
=\lim _{\gamma \rightarrow \infty} \operatorname{cg}(K \stackrel{\text { Useful for the proof in this talk }}{+\gamma B) \quad B=B(0,1)}
$$

Progress

$O(d \log d)$ nested "Recursive Centroid" [ABCGL 18]	$O(\sqrt{d \log d})$ nested [BKLLS 18]
Work Function	$2^{O(d)}$ general [BLLS 18]
$O(d)$ nested "Steiner Point" [BKLLS 18]	O (d) general "SP+Work function" [AGGT 20], [S 20]

Proof of Feasibility Lemma

- $K_{t}=\{x \mid\langle a, x\rangle \geq b\}$ (w.l.o.g.)
- Define

$$
\hat{y}= \begin{cases}\operatorname{reflect}(y) & y \notin K_{t} \\ y & y \in K_{t}\end{cases}
$$

$$
\begin{aligned}
& \text { Goal: } \operatorname{st}\left(\Omega_{t}\right) \in K_{t} \\
& \Omega_{\mathrm{t}}=\left\{x \mid w_{t}(x) \leq r\right\} \\
& \operatorname{st}\left(\Omega_{t}\right)=\lim _{\gamma \rightarrow \infty} \operatorname{cg}\left(\Omega_{t}+\gamma B\right)
\end{aligned}
$$

