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Formal Definition

u Input: convex sets 𝐾(, 𝐾*, 𝐾+, … , 𝐾- ⊆ ℝ0

u Choose online 𝑥2 ∈ 𝐾2
u Cost 𝐴𝐿𝐺 = ∑26(- ||𝑥2 − 𝑥29(||
u Goal – minimize competitive ratio

u Equivalent problem
u Guess-and-double

cr(𝐴𝐿𝐺) ≔ max
BCDEFCGH I

𝐴𝐿𝐺 𝜎
𝑂𝑃𝑇 𝜎

𝑟 > 0,

^

𝑓(𝑑) s.t. 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝑟

“𝑟 = 𝑂𝑃𝑇”



Motivation

u Function chasing / Smooth online convex optimization
u Function chasing ≅ body chasing

[Bubeck, Lee, Li, Sellke 19]

u Metrical task systems
u Paging, k-Server (fractional)



Nested – Important Special Case



Nested – Important Special Case



Nested – Important Special Case



Nested – Important Special Case



Nested – Important Special Case



Nested – Important Special Case

𝐴𝐿𝐺

𝑂𝑃𝑇



Progress

u Previous best known
u Lower bound: Ω 𝑑 [Friedman, Linial 93]

u Nested: 𝑂 𝑑 log 𝑑 , simple 𝑂 𝑑 [Bubeck, Klartag, Lee, Li, Sellke 20]

u General: 2[(\) [Bubeck, Lee, Li, Sellke 19]

u This talk
u General: simple 𝑂 𝑑



Steiner Point

u Average of extreme points 
in all directions

𝑠𝑡(𝐾)

u Average of extreme points 
weighted by size of normal 
cone

𝑠𝑡(𝐾)



Steiner Point Definition

u 𝑠𝑡 𝐾 ≔ lim
`→b

𝑐𝑔 𝐾 + 𝛾𝐵

u 𝐵 ≔ unit ball

u More equivalent definitions 
in Part 2

𝐾 + 𝛾𝐵

𝐾



Steiner Point Algorithm (Nested)
[Bubeck, Klartag, Lee, Li, Sellke 20]

u 𝑥h = 𝑠𝑡 𝐾h
u 𝑂(𝑑) competitive
u Simple and beautiful!!



Reducing General to Nested

u Given: 
u General instance: 𝑟 > 0, 𝐾(, … , 𝐾-
u 𝑂(𝑑) competitive nested algo 𝑁𝐸𝑆𝑇

u Goal: Construct sets Ω(,… , Ω- s.t.
u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑁𝐸𝑆𝑇 Ω(,… , Ωh ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇 Ω2 ∈ 𝐾2

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2



𝑦

Work Function

u Classical technique for related problems
u 𝑤h 𝑥 ≔ min cost to satisfy requests 1,… , 𝑡

and end at 𝑥

= min
st∈ut

v
26(

h

𝑦2 − 𝑦29( + 𝑦h − 𝑥

𝐾(

𝐾*

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

73
12

𝑥

𝑤* 𝑥 = 7
𝑤* 𝑦 = 3 + 2 + 1



Defining Ωh

Ωh ≔ {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}

Sublevel set of work function

𝐾(

𝑎

𝑟 − 𝑎
Ω(

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

0



u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

Convexity

𝑤h convex
⟹Ωh = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟} convex

𝑥

𝑦𝑦(

𝑥(
(𝑥 + 𝑦)/2

(𝑥( + 𝑦()/2

𝐾(

0



u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

Nestedness

𝑤h 𝑥 ≤ 𝑤h�((𝑥) ⟹ {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟} ⊇ {𝑥 ∣ 𝑤h�( 𝑥 ≤ 𝑟}
Ωh ⊇ Ωh�(

Cost to satisfy requests 1,… , 𝑡 + 1 and end at 𝑥

Cost to satisfy requests 1,… , 𝑡 and end at 𝑥



u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

Cost

0

Ω(

𝐾(

𝑟

Ω( = 𝑥 𝑤( 𝑥 ≤ 𝑟 ⊆ 𝐵(0, 𝑟)

𝐵(0, 𝑟)

𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑂𝑃𝑇(Ω(,… , Ω-)
≤ 𝑂 𝑑 ⋅ 𝑑𝑖𝑎𝑚 Ω(
≤ 𝑂 𝑑 ⋅ 𝑟



u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

(In)feasibility

u Ωh ⊈ 𝐾h
u May play infeasible point

𝐾(

Ω(

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2



u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑁𝐸𝑆𝑇(Ωh) ∈ 𝐾2

Feasibility

Feasibility Lemma: 𝑠𝑡 Ωh ∈ 𝐾h

Main Theorem: 𝑥h = 𝑠𝑡 Ωh is 𝑂(𝑑)-competitive
[Argue, Gupta, Guruganesh, Tang 20]

u Ωh convex
u Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u 𝑐𝑜𝑠𝑡 ≤ 𝑂 𝑑 ⋅ 𝑟
u 𝑠𝑡(Ωh) ∈ 𝐾2

Feasibility Lemma: 𝑠𝑡 Ωh ∈ 𝐾h



Proof of Feasibility Lemma

𝐾h = 𝑥 𝑎, 𝑥 ≥ 𝑏 (w.l.o.g.)

For 𝑦 ∉ 𝐾h, �𝑦 ≔ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡(𝑦)

Claim: If 𝒚 ∈ 𝛀𝐭 then �𝒚 ∈ 𝛀𝒕
𝑤h 𝑦 = min

�∈u�
𝑦 − 𝑧 + 𝑤h9( 𝑧

⇒ 𝑤h �𝑦 ≤ 𝑤h 𝑦 ≤ 𝑟

𝐾h

Ωh

𝑦

�𝑦

𝑧

Goal: 𝒔𝒕 𝜴𝒕 ∈ 𝑲𝒕
ΩE = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}
𝑠𝑡 Ωh = lim

`→b
𝑐𝑔(Ωh + 𝛾𝐵)



Proof of Feasibility Lemma
𝐾hΩh + 𝛾𝐵
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`→b
𝑐𝑔(Ωh + 𝛾𝐵)

Ωh
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𝐾hΩh + 𝛾𝐵

Goal: 𝒔𝒕 𝜴𝒕 ∈ 𝑲𝒕
ΩE = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}
𝑠𝑡 Ωh = lim

`→b
𝑐𝑔(Ωh + 𝛾𝐵)



Proof of Feasibility Lemma
𝐾hΩh + 𝛾𝐵

cg(Ωh + 𝛾𝐵)

Goal: 𝒔𝒕 𝜴𝒕 ∈ 𝑲𝒕
ΩE = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}
𝑠𝑡 Ωh = lim

`→b
𝑐𝑔(Ωh + 𝛾𝐵)

cg(Ωh + 𝛾𝐵) ∈ 𝐾h
for all 𝛾 ≥ 0

st(Ωh) ∈ 𝐾h



Recap of Part 1

u Algo: 𝑥h = 𝑠𝑡(Ωh)
u ΩE = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}

u 𝑂 𝑑 competitiveness
u Ωh convex, Ω( ⊇ Ω* ⊇ ⋯ ⊇ Ω-
u Feasibility: 𝑥h ∈ 𝐾h
u 𝐴𝐿𝐺 ≤ 𝑂 𝑑 ⋅ 𝑟

𝐾h

Ωh



Part 2: Functional Steiner Point

u Instead of using Steiner out-of-the-box, redefine it.

u Define the Functional Steiner Point of a convex function, and apply to work function.

u Again two formulas via divergence theorem. Support function becomes Fenchel dual.

u Same min(𝑑, 𝑂 𝑑 ⋅ 𝑙𝑜𝑔 𝑇 competitive ratio.

u Same proofs as nested chasing with Steiner point in previous talk.

u Coincides with Steiner point of a large level set.



Steiner Point: Two Equivalent Definitions

u Definition ([Ste 1840]): the Steiner point 𝑠𝑡 𝐾 ∈ 𝐾 of a convex set 𝐾 ∈ ℓ0* is:

𝑠𝑡 𝐾 = �
� �(

𝑓u 𝑣 𝑑𝑣 = 𝑑 ⋅ �
� 6(

ℎu 𝜃 𝜃𝑑𝜃

u Both integrals are normalized to be expectations over the unit ball and sphere 
in ℝ0. And:

𝑓u 𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥�∈u 𝑣, 𝑥 , ℎu 𝜃 = max
�∈u

⟨𝜃, 𝑥⟩ = 𝜃, 𝑓u 𝜃 .

u First definition is primal: 𝑓u� 𝑣 ∈ 𝐾h implies 𝑠𝑡 𝐾h ∈ 𝐾h by convexity. 

u Second definition is dual: used to upper bound movement.

Extreme 
Point 
(Vector)

Support Function (Scalar)



Why Do The Definitions Agree?

𝑠𝑡 𝐾h = �
� �(

𝑓u� 𝑣 𝑑𝑣 = 𝑑 ⋅ �
� 6(

ℎu� 𝜃 𝜃𝑑𝜃

𝑓u 𝑣 = argmax
£∈u

𝑣, 𝑥 , ℎu 𝜃 = max
�∈u

⟨𝜃, 𝑥⟩ = ⟨𝜃, 𝑓u 𝜃 ⟩

u Key: 𝑓u = 𝛻ℎu, and 𝜃 = �𝑛(𝜃) is the outward normal to the sphere at 𝜃.
u General Gauss-Green Theorem (variant of Divergence Theorem): 

�
¦
𝛻ℎ 𝑣 𝑑𝑣 = �

§¦
ℎ 𝑣 �𝑛 𝑣 𝑑𝑣.

u Factor 𝑑 from change in total measure – the colored integrals are 
normalized.

Both sides are 
∇� ∫¦�� ℎ 𝑣 𝑑𝑣



Nested Chasing with Steiner Point

u Start with 𝐾( a unit ball, request sequence 𝐾( ⊇ 𝐾* ⊇ 𝐾+ … . Set 𝑥h = 𝑠𝑡(𝐾h).

u Claim: total movement ≤ 𝑑.

u Nested condition is equivalent to support function decreasing:

ℎuª 𝜃 ≥ ℎu« 𝜃 ≥ ℎu¬ 𝜃 …

u Triangle inequality now says: 

st 𝐾h9( − st 𝐾h ≤ 𝑑 ⋅ �
� 6(

ℎu�ª 𝜃 − ℎu� 𝜃 𝑑𝜃.

u Summing over t for total movement, RHS telescopes! Hence upper bound of d.

u To get 𝑂 𝑑 ⋅ log 𝑇 : only very small sets of the sphere can correlate much.



Defining Functional Steiner Point
u Two	definitions	of	Steiner	point,	equivalent	by	Gauss-Green	and	∇ℎ = 𝑓:

𝑠𝑡 𝐾h = �
� �(

𝑓u� 𝑣 𝑑𝑣 = 𝑑 ⋅ �
� 6(

ℎu� 𝜃 𝜃𝑑𝜃

𝑓u 𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥�∈u 𝑣, 𝑥 = 𝛻ℎu(𝜃), ℎu 𝜃 = max
�∈u

⟨𝜃, 𝑥⟩

u We replace ℎu with the Fenchel dual 𝑊h
∗ of 𝑊h to define the functional Steiner point:

𝑠𝑡 𝑊h = �
� �(

𝑣h∗𝑑𝑣 = (−𝑑) ⋅ �
� 6(

𝑊h
∗ 𝜃 ⋅ 𝜃𝑑𝜃

𝑣h∗ = argmin
�∈ℝÀ

𝑊h 𝑥 − 𝑣, 𝑥 = −𝛻𝑊h
∗ 𝑣

𝑊h
∗ 𝜃 = min

�∈ℝÀ
𝑊h 𝑥 − ⟨𝜃, 𝑥⟩ = 𝑊h 𝑣h∗ − ⟨𝜃, 𝑣h∗⟩

u First	defn:	𝔼 � �([ 𝑎𝑟𝑔𝑚𝑖𝑛� 𝑊h 𝑥 − 𝑣, 𝑥 ) . Aka	follow	the	perturbed	leader.	
u 𝑊h

∗(𝜃) measures the height of a 𝜃 –slope tangent plane to 𝑊h at input 0. 



Functional Steiner Point is an Online 
Selector

𝑠𝑡 𝑊h = �
� �(

𝑣h∗𝑑𝑣 ; 𝑣h∗ = argmin
�∈ℝÀ

𝑊h 𝑥 − 𝑣, 𝑥

Lemma: 𝑠𝑡 𝑊h ∈ 𝐾h.

By construction, 𝑠𝑡 𝑊h is a weighted average of 𝑣 with 𝛻𝑊h 𝑣 < 1.  

𝛻𝑊h 𝑣 < 1 implies 𝑣 ∈ 𝐾h. 

If 𝑣 ∉ 𝐾h, the best path ending at 𝑣 came from w ∈ 𝐾h. 𝛻𝑊h 𝑣 points in the direction 𝑣𝑤.

Lemma follows by convexity of 𝐾h.



The Dual Definition in 1 Dimension

𝒔𝒕(𝑾𝒕)

𝑦 = 𝑊h(𝑥)

𝐶𝑜𝑠𝑡h 𝑂𝑃𝑇 = min
�
𝑊h(𝑥)

is at least this high.

−𝑾∗(𝟏) 𝑾∗(−𝟏)

Tangents lower 
bound 𝑾𝒕

∗

u Functional Steiner Point in 1 dimension: intersect tangent lines with slopes ±1.

u Equivalent to 𝑠𝑡 𝑊h = Ì�∗ ( 9Ì�∗ 9(
*

. Tangents move up over time. 

u Movement of 𝑠𝑡 𝑊h ≤ tangents’ total upward movement.

u Tangents’ total upward movement = height of tangents’ intersection

u Height of tangents’ intersection ≤ 𝐦𝐢𝐧
𝒙
𝑾𝒕 𝒙 . 

u Combining, Functional Steiner is 1-competitive.



Recall: 𝑠𝑡 𝑊h = −𝑑 ⋅ ∫� 6(𝑊h
∗ 𝜃 𝜃𝑑𝜃 ; 𝑊h

∗ 𝜃 = min
�∈ℝÀ

𝑊h 𝑥 − ⟨𝜃, 𝑥⟩

Properties of work and dual work function:

1. 𝑊h
∗(𝜃) is concave, increasing in time from 𝑾𝟎

∗ 𝜽 = 𝟎. 

2. min
£
(𝑊E(x)) = Cost OPTE .

Therefore: 

For small T, concentration of measure in the first inequality gives 𝑂 𝑑 ⋅ log 𝑇 .

𝑑 ⋅ �
� 6(

𝑊-
∗ 𝜃 𝑑𝜃

Functional Steiner Point is 𝑑-Competitive

v
hÖ-

𝑠𝑡 𝑊h − 𝑠𝑡 𝑊h9(

𝑑 ⋅ 𝑊-
∗ 0 = d ⋅ min

£
(𝑊-(𝑥))= d ⋅ Cost OPT× ∎

𝑑v
hÖ-

�
� 6(

|𝑊h
∗ 𝜃 −𝑊h9(

∗ 𝜃 |𝑑𝜃≤ =

≤



Chasing Convex Functions

u Chasing convex functions: same problem but with soft constraint.

u Given online positive convex functions 𝑓h, be competitive for:

𝐶𝑜𝑠𝑡 𝐴𝐿𝐺 =v
h6(

-

| 𝑥h − 𝑥h9( | + 𝑓h 𝑥h

u Previously known to be equivalent to CBC, reduction simple but ad-hoc.

u Functional Steiner point works directly here too. No reduction needed!

u Movement 𝑑-competitive, service cost ∫Ù
- 𝑓h 𝑥h 𝑑𝑡 is 1-competitive. Overall d+1 competitive.



Other Norms

u Steiner and Functional Steiner point work in any normed space. 
u In general, integrate over 𝑣, 𝜃 in the dual ball/sphere.

u Definition depends on the norm. Less obvious what measure to put on sphere.

u Theorem: Functional Steiner Point is 𝑑-competitive for chasing convex bodies 
in any normed space. 

u 𝑂 𝑑 ⋅ log 𝑇 is specific to ℓ*. Concentration of measure depends on norm.



Functional Steiner Point via Level Sets
Consider again a (convex) level set Ωh,Ú = 𝑥:𝑊h 𝑥 ≤ 𝑅 of 𝑊h.

We know:
1. st(Ωh,Ú) ∈ 𝐾h (first half)

2. st(𝑊h) ∈ 𝐾h (this half)

Theorem: for R large enough that 𝐾h ⊆ Ωh,Ú, we have 𝑠𝑡 𝑊h = 𝑠𝑡(Ωh,Ú). 

Takeaway: the two solutions in this talk are essentially equivalent!

Proof outline: all tangents with slope 𝜃 = 1 touch the graph of 𝑊h above Ωh,Ú.

Hence 𝑊h
∗ 𝜃 = ℎÜ�,Ý 𝜃 − 𝑅.

Since ∫� 6( 𝑅𝜃𝑑𝜃 = 0, dual definitions of 𝑠𝑡 𝑊h , 𝑠𝑡 Ωh,Ú are equal.



Open Questions

u 𝑂( 𝑑)-competitive chasing. 

u Mildly non-convex problems
u [Bubeck-Rabani-S 20+]: If 𝑑, 𝑘 ≥ 2, no competitive algorithm to chase convex sets with 𝑘 servers.

u Quasi-convex functions?

u New Applications?
u [Bubeck-Li-Luo-Wei 19] apply CBC to a bandit problem.

u Do these techniques carry over to other MTS?



Thank you!
Questions?
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Formal Definition

u Input: convex sets 𝐾(, 𝐾*, 𝐾+, … , 𝐾- ⊆ ℝ0

u Choose online 𝑥2 ∈ 𝐾2
u Cost 𝐴𝐿𝐺 = ∑26(- ||𝑥2 − 𝑥29(||
u Goal – minimize competitive ratio

cr(𝐴𝐿𝐺) ≔ max
BCDEFCGH I

𝐴𝐿𝐺 𝜎
𝑂𝑃𝑇 𝜎



Reduction – Bounded Sets, Bound Cost

u Input: 𝑟 > 0, convex sets 𝐾(, 𝐾*, 𝐾+, … , 𝐾- ⊆ 𝐵(0, 𝑟)
u Choose online 𝑥2 ∈ 𝐾2
u Cost 𝐴𝐿𝐺 = ∑26(- ||𝑥2 − 𝑥29(||
u Goal – minimize 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝑟 ≈ 𝑓 𝑑 ⋅ 𝑑𝑖𝑎𝑚 𝐾(

u Equivalent problem
u Imagine 𝑂𝑃𝑇 = Θ 𝑟
u Guess and double



Steiner Point Definitions

𝑠𝑡(𝐾) 𝛻𝑠u 𝜃 ≔ argmax
�∈u

𝜃, 𝑥

𝑠u 𝜃 ≔ max
�∈u

⟨𝜃, 𝑥⟩

𝐵 = 𝐵(0,1)

Visually intuitive

Useful for the proof in the previous talk

= 𝑑 ⋅ �
� 6(

𝑠u 𝜃 ⋅ 𝜃 𝑑𝜃

= �
� 6(

∇𝑠u 𝜃 𝑑𝜃

= lim
`→b

𝑐𝑔(𝐾 + 𝛾𝐵)

Useful for the proof in this talk



Progress

𝑂 𝑑 log 𝑑 nested
“Recursive Centroid”

[ABCGL 18]

𝑂 𝑑 nested
“Steiner Point”

[BKLLS 18]

𝑂 𝑑 log 𝑑 nested

[BKLLS 18]

2[(0) general

[BLLS 18]

𝑂 𝑑 general
“SP+Work function”

[AGGT 20], [S 20]

Work Function



Proof of Feasibility Lemma

u 𝐾h = 𝑥 𝑎, 𝑥 ≥ 𝑏 (w.l.o.g.)
u Define

�𝑦 = á𝑟𝑒𝑓𝑙𝑒𝑐𝑡 𝑦 𝑦 ∉ 𝐾h
𝑦 𝑦 ∈ 𝐾h

𝐾h

𝑦

�𝑦

Goal: 𝒔𝒕 𝜴𝒕 ∈ 𝑲𝒕
ΩE = {𝑥 ∣ 𝑤h 𝑥 ≤ 𝑟}
𝑠𝑡 Ωh = lim

`→b
𝑐𝑔(Ωh + 𝛾𝐵)


