Linear-Competitive Convex Body Chasing

C.J. Argue¹ / Mark Sellke

¹Joint with Anupam Gupta, Guru Guruganesh, Ziye Tang

some slides courtesy of Guru Guruganesh

Formal Definition

r > 0, Input: convex sets $K_1, K_2, K_3, \dots, K_T \subseteq \mathbb{R}^d$

- ► Choose online $x_i \in K_i$
- Cost $ALG = \sum_{i=1}^{T} ||x_i x_{i-1}||$
- ► Goal minimize competitive ratio f(d) s.t. $ALG \leq f(d) \cdot r$

$$\frac{ALG(\sigma)}{\text{instance }\sigma} \frac{ALG(\sigma)}{OPT(\sigma)}$$

- Equivalent problem
 - Guess-and-double

"r = OPT"

Motivation

Function chasing / Smooth online convex optimization

 \blacktriangleright Function chasing \cong body chasing

[Bubeck, Lee, Li, Sellke 19]

- Metrical task systems
- Paging, k-Server (fractional)

Progress

- Previous best known
 - **b** Lower bound: $\Omega(\sqrt{d})$
 - ▶ Nested: $O(\sqrt{d \log d})$, simple O(d)
 - ► General: 2^{0(d)}

This talk

► General: simple *O*(*d*)

[Friedman, Linial 93] [Bubeck, Klartag, Lee, Li, Sellke 20] [Bubeck, Lee, Li, Sellke 19]

Steiner Point

Steiner Point Definition

►
$$st(K) \coloneqq \lim_{\gamma \to \infty} cg(K + \gamma B)$$

► $B \coloneqq$ unit ball

More equivalent definitions in Part 2

Steiner Point Algorithm (Nested)

[Bubeck, Klartag, Lee, Li, Sellke 20]

- $\blacktriangleright x_t = st(K_t)$
- \triangleright O(d) competitive
- Simple and beautiful!!

Reducing General to Nested

Given:

- ▶ General instance: $r > 0, K_1, ..., K_T$
- \triangleright O(d) competitive nested algo <u>NEST</u>
- ► Goal: Construct sets $\Omega_1, ..., \Omega_T$ s.t.
 - $\blacktriangleright \Omega_t$ convex
 - $\blacktriangleright \ \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T$
 - $\blacktriangleright NEST(\Omega_1, \dots, \Omega_t) \le O(d) \cdot r$
 - ► $NEST(\Omega_i) \in K_i$

Work Function

- Classical technique for related problems
- ► $w_t(x) \coloneqq \min \text{ cost to satisfy requests } 1, ..., t$ and end at x

$$= \min_{y_i \in K_i} \sum_{i=1}^t ||y_i - y_{i-1}|| + ||y_t - x||$$

$$w_2(x) = 7$$

 $w_2(y) = 3 + 2 + 1$

 Ω_t convex $\Omega_1 ⊇ \Omega_2 ⊇ \cdots ⊇ \Omega_T$ $cost ≤ O(d) \cdot r$ $NEST(\Omega_t) ∈ K_i$

 $\begin{array}{l} \blacktriangleright \ \Omega_t \text{ convex} \\ \blacktriangleright \ \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T \\ \blacktriangleright \ cost \leq O(d) \cdot r \\ \blacktriangleright \ NEST(\Omega_t) \in K_i \end{array}$

$$\Omega_t \coloneqq \{x \mid w_t(x) \le r\}$$

Sublevel set of work function

Convexity

 $\begin{array}{l} \triangleright \ \Omega_t \text{ convex} \\ \triangleright \ \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T \\ \triangleright \ cost \leq O(d) \cdot r \\ \triangleright \ NEST(\Omega_t) \in K_i \end{array}$

 w_t convex

Nestedness

\$\Omega_t\$ convex\$
\$\Omega_1\$ \geq \Omega_2\$ \geq \dots \geq \Omega_T\$
\$cost\$ \le \$O(d)\$ \cdots r\$
\$NEST(\Omega_t)\$ \in \$K_i\$

 $w_t(x) \le w_{t+1}(x) \implies \{x \mid w_t(x) \le r\} \supseteq \{x \mid w_{t+1}(x) \le r\}$ $\Omega_t \supseteq \Omega_{t+1}$

- Cost to satisfy requests 1, ..., t + 1 and end at x

Cost to satisfy requests 1, ..., t and end at x

 $\begin{array}{l} \blacktriangleright \ \Omega_t \text{ convex} \\ \blacktriangleright \ \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T \\ \vdash \ cost \leq O(d) \cdot r \\ \blacktriangleright \ NEST(\Omega_t) \in K_i \end{array}$

$$\Omega_1 = \{ x \mid w_1(x) \le r \} \subseteq B(0, r)$$

 $cost \le O(d) \cdot OPT(\Omega_1, ..., \Omega_T)$ $\le O(d) \cdot diam(\Omega_1)$ $\le O(d) \cdot r$

(In)feasibility

 $\blacktriangleright \Omega_t \not\subseteq K_t$

May play infeasible point

 Ω_t convex $\Omega_1 ⊇ \Omega_2 ⊇ \cdots ⊇ \Omega_T$ $cost ≤ O(d) \cdot r$ $NEST(\Omega_t) ∈ K_i$

$$\begin{split} & \square \Omega_t \text{ convex} \\ & \square \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T \\ & \text{ cost} \leq O(d) \cdot r \\ & \quad \text{ MEDT (} K_i \in K_i \end{aligned}$$

Feasibility Lemma: $st(\Omega_t) \in K_t$

Main Theorem: $x_t = st(\Omega_t)$ is O(d)-competitive [Argue, Gupta, Guruganesh, Tang 20]

 $K_t = \{ x \mid \langle a, x \rangle \ge b \} \text{ (w.l.o.g.)}$

For $y \notin K_t$, $\hat{y} \coloneqq reflect(y)$

Claim: If $y \in \Omega_t$ then $\hat{y} \in \Omega_t$ $w_t(y) = \min_{z \in K_t} ||y - z|| + w_{t-1}(z)$ $\Rightarrow w_t(\hat{y}) \le w_t(y) \le r$:

Recap of Part 1

- Algo: $x_t = st(\Omega_t)$ $\Omega_t = \{x \mid w_t(x) \le r\}$
 - O(1) = O(1)
- ► O(d) competitiveness
 - $\blacktriangleright \Omega_t \text{ convex}, \, \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_T$
 - Feasibility: $x_t \in K_t$
 - $\blacktriangleright ALG \le O(d) \cdot r$

Part 2: Functional Steiner Point

- Instead of using Steiner out-of-the-box, redefine it.
- ▶ Define the *Functional Steiner Point* of a convex function, and apply to work function.
- > Again two formulas via divergence theorem. Support function becomes Fenchel dual.
- Same $\min(d, O(\sqrt{d \cdot log(T)})$ competitive ratio.
- Same proofs as nested chasing with Steiner point in previous talk.
- Coincides with Steiner point of a large level set.

Steiner Point: Two Equivalent Definitions

▶ Definition ([Ste 1840]): the **Steiner point** $st(K) \in K$ of a convex set $K \in \ell_d^2$ is:

$$st(K) = \int_{|v|<1} f_K(v) dv = d \cdot \int_{|\theta|=1} h_K(\theta) \theta d\theta$$

Both integrals are normalized to be expectations over the unit ball and sphere in R^d. And:

Support Function (Scalar)

Extreme

Point $f_K(v) = argmax_{x \in K} \langle v, x \rangle$, (Vector)

 $f_K(v) = argmax_{x \in K} \langle v, x \rangle, \qquad h_K(\theta) = \max_{x \in K} \langle \theta, x \rangle = \langle \theta, f_K(\theta) \rangle.$

- First definition is primal: $f_{K_t}(v) \in K_t$ implies $st(K_t) \in K_t$ by convexity.
- Second definition is dual: used to upper bound movement.

Why Do The Definitions Agree?

$$st(K_t) = \oint_{|v|<1} f_{K_t}(v) dv = d \cdot \oint_{|\theta|=1} h_{K_t}(\theta) \theta d\theta$$

$$f_{K}(v) = \underset{x \in K}{\operatorname{argmax}}(\langle v, x \rangle), \qquad h_{K}(\theta) = \underset{x \in K}{\max}(\langle \theta, x \rangle) = \langle \theta, f_{K}(\theta) \rangle$$

▶ Key: $f_K = \nabla h_K$, and $\theta = \hat{n}(\theta)$ is the outward normal to the sphere at θ .

► General **Gauss-Green** Theorem (variant of Divergence Theorem): $\int_{U} \nabla h(v) dv = \int_{\partial U} h(v) \hat{n}(v) dv.$ Both sides are $\nabla_{x} \int_{U+x} h(v) dv$

Factor d from change in total measure – the colored integrals are normalized.

Nested Chasing with Steiner Point

- Start with K_1 a unit ball, request sequence $K_1 \supseteq K_2 \supseteq K_3 \dots$. Set $x_t = st(K_t)$.
- Claim: total movement $\leq d$.
- Nested condition is equivalent to support function decreasing:

 $h_{K_1}(\theta) \ge h_{K_2}(\theta) \ge h_{K_3}(\theta) \dots$

Triangle inequality now says:

$$|\operatorname{st}(K_{t-1}) - \operatorname{st}(K_t)| \leq d \cdot \int_{|\theta|=1} h_{K_{t-1}}(\theta) - h_{K_t}(\theta) d\theta.$$

Summing over t for total movement, RHS telescopes! Hence upper bound of d.

• To get $O(\sqrt{d \cdot \log(T)})$: only very small sets of the sphere can correlate much.

Defining Functional Steiner Point

• Two definitions of Steiner point, equivalent by Gauss-Green and $\nabla h = f$:

 $st(K_t) = \int_{|v|<1} f_{K_t}(v) dv = d \cdot \int_{|\theta|=1} h_{K_t}(\theta) \theta d\theta$

 $f_K(v) = argmax_{x \in K}(\langle v, x \rangle) = \nabla h_K(\theta),$

$$h_K(\theta) = \max_{x \in K}(\langle \theta, x \rangle)$$

We replace h_K with the Fenchel dual W_t^* of W_t to define the functional Steiner point:

$$st(W_t) = \int_{|v|<1} v_t^* dv = (-d) \cdot \int_{|\theta|=1} W_t^*(\theta) \cdot \theta d\theta$$

 $v_t^* = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}}(W_t(x) - \langle v, x \rangle) = -\nabla W_t^*(v)$

 $W_t^*(\theta) = \min_{x \in \mathbb{R}^d} (W_t(x) - \langle \theta, x \rangle) = W_t(v_t^*) - \langle \theta, v_t^* \rangle$

First defn: E^{|v|<1}[argmin_x(W_t(x) - (v, x))]. Aka follow the perturbed leader.
 W^{*}_t(θ) measures the height of a θ –slope tangent plane to W_t at input 0.

Functional Steiner Point is an Online Selector

$$st(W_t) = \oint_{|v|<1} v_t^* dv; \qquad v_t^* = \operatorname*{argmin}_{x \in \mathbb{R}^d} (W_t(x) - \langle v, x \rangle)$$

Lemma: $st(W_t) \in K_t$.

By construction, $st(W_t)$ is a weighted average of v with $|\nabla W_t(v)| < 1$.

 $|\nabla W_t(v)| < 1$ implies $v \in K_t$.

If $v \notin K_t$, the best path ending at v came from $w \in K_t$. $\nabla W_t(v)$ points in the direction \overline{vw} .

Lemma follows by convexity of K_t .

The Dual Definition in 1 Dimension

Functional Steiner Point in 1 dimension: intersect tangent lines with slopes ±1.

Equivalent to $st(W_t) = \frac{W_t^*(1) - W_t^*(-1)}{2}$. Tangents move up over time.

- Movement of $st(W_t) \le tangents'$ total upward movement.
- Tangents' total upward movement = height of tangents' intersection
- Height of tangents' intersection $\leq \min_{x} W_t(x)$.
- Combining, Functional Steiner is 1-competitive.

Tangents lower bound W_t^* $y = W_t(x)$ $Cost_t(OPT) = \min W_t(x)$ is at least this high. $-W^{*}(1)$ $W^{*}(-1)$ $st(W_t)$

Functional Steiner Point is *d*-Competitive

Recall: $st(W_t) = (-d) \cdot f_{|\theta|=1} W_t^*(\theta) \theta d\theta; \quad W_t^*(\theta) = \min_{x \in \mathbb{R}^d} (W_t(x) - \langle \theta, x \rangle)$

Properties of work and dual work function:

1. $W_t^*(\theta)$ is concave, increasing in time from $W_0^*(\theta) = 0$. 2. $\min_x(W_t(x)) = \text{Cost}(\text{OPT}_t)$.

Therefore:

$$\sum_{t \le T} |st(W_t) - st(W_{t-1})| \le d \sum_{t \le T} \oint_{|\theta|=1} |W_t^*(\theta) - W_{t-1}^*(\theta)| d\theta = d \cdot \oint_{|\theta|=1} W_T^*(\theta) d\theta$$
$$\le d \cdot W_T^*(0) = d \cdot \min_{\mathbf{x}} (W_T(x)) = d \cdot \operatorname{Cost}(\operatorname{OPT}_T) \blacksquare$$

For small T, concentration of measure in the first inequality gives $O(\sqrt{d \cdot \log(T)})$.

Chasing Convex Functions

- Chasing convex functions: same problem but with soft constraint.
- Given online positive convex functions f_t , be competitive for:

$$Cost(ALG) = \sum_{t=1}^{r} ||x_t - x_{t-1}|| + f_t(x_t)$$

- Previously known to be equivalent to CBC, reduction simple but ad-hoc.
- Functional Steiner point works directly here too. No reduction needed!
- Movement *d*-competitive, service cost $\int_0^T f_t(x_t) dt$ is 1-competitive. Overall d+1 competitive.

Other Norms

- Steiner and Functional Steiner point work in any normed space.
 - ln general, integrate over v, θ in the **dual** ball/sphere.
 - Definition depends on the norm. Less obvious what measure to put on sphere.
- Theorem: Functional Steiner Point is *d*-competitive for chasing convex bodies in **any** normed space.
- $O(\sqrt{d \cdot \log(T)})$ is specific to ℓ_2 . Concentration of measure depends on norm.

Functional Steiner Point via Level Sets

Consider again a (convex) level set $\Omega_{t,R} = \{x: W_t(x) \le R\}$ of W_t .

We know:

1. $\operatorname{st}(\Omega_{t,R}) \in K_t$ (first half) 2. $\operatorname{st}(W_t) \in K_t$ (this half)

Theorem: for R large enough that $K_t \subseteq \Omega_{t,R}$, we have $st(W_t) = st(\Omega_{t,R})$.

Takeaway: the two solutions in this talk are essentially equivalent!

Proof outline: all tangents with slope $|\theta| = 1$ touch the graph of W_t above $\Omega_{t,R}$. Hence $W_t^*(\theta) = h_{\Omega_{t,R}}(\theta) - R$. Since $\int_{|\theta|=1} R\theta d\theta = 0$, dual definitions of $st(W_t)$, $st(\Omega_{t,R})$ are equal.

Open Questions

- $O(\sqrt{d})$ -competitive chasing.
- Mildly non-convex problems
 - ▶ [Bubeck-Rabani-**s** 20+]: If $d, k \ge 2$, **no** competitive algorithm to chase convex sets with k servers.
 - Quasi-convex functions?
- New Applications?
 - ▶ [Bubeck-Li-Luo-Wei 19] apply CBC to a bandit problem.
 - Do these techniques carry over to other MTS?

Thank you!

Questions?

References

- "Chasing Convex Bodies with Linear Competitive Ratio" Argue, Gupta, Guruganesh, Tang, SODA '20 [This talk]
- "A Nearly-Linear Bound for Chasing Nested Convex Bodies" Argue, Bubeck, Cohen, Gupta, Lee, SODA '19
- "Chasing Nested Convex Bodies Nearly Optimally," Bubeck, Klartag, Lee, Li, Sellke, SODA '20
- "Competitively Chasing Convex Bodies" Bubeck, Lee, Li, Sellke, STOC '19
- "Chasing Convex Bodies and Functions" Friedman, Linial, Discrete and Computational Geometry '93
- "Chasing Convex Bodies Optimally" Sellke, SODA '20 [This talk]

Formal Definition

- ▶ Input: convex sets $K_1, K_2, K_3, ..., K_T \subseteq \mathbb{R}^d$
- ► Choose online $x_i \in K_i$
- Cost $ALG = \sum_{i=1}^{T} ||x_i x_{i-1}||$
- Goal minimize competitive ratio

$$\operatorname{cr}(ALG) \coloneqq \max_{\text{instance } \sigma} \frac{ALG(\sigma)}{OPT(\sigma)}$$

Reduction – Bounded Sets, Bound Cost

- ▶ Input: r > 0, convex sets $K_1, K_2, K_3, ..., K_T \subseteq B(0, r)$
- ► Choose online $x_i \in K_i$
- Cost $ALG = \sum_{i=1}^{T} ||x_i x_{i-1}||$
- ► Goal minimize $ALG \leq f(d) \cdot r \approx f(d) \cdot diam(K_1)$
- Equivalent problem
 - ▶ Imagine $OPT = \Theta(r)$
 - Guess and double

Steiner Point Definitions

Visually intuitive $st(K) = \int \nabla s_K(\theta) \, d\theta$ $\nabla s_K(\theta) \coloneqq \underset{x \in K}{\operatorname{argmax}} \langle \theta, x \rangle$ $\|\theta\|=1$ $= d \cdot \int_{X \in K} s_{K}(\theta) \cdot \theta \, d\theta \qquad s_{K}(\theta) \coloneqq \max_{x \in K} \langle \theta, x \rangle$ Useful for the proof in the previous talk Useful for the proof in this talk $= \lim_{\gamma \to \infty} cg(K + \gamma B)$ B = B(0,1)

Progress

Proof of Feasibility Lemma

