Review Problems for Test 1

1. Given the vectors $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}-2 \mathbf{k}$, and $\mathbf{c}=-\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, compute the following expressions.
(a) $\mathbf{a} \times \mathbf{b}+\mathbf{c}$
(b) $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}-2|\mathbf{c}|^{2} \mathbf{a}$
(c) $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{a})$
2. Consider the matrices

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 0 & -2 & 3 \\
2 & -1 & 0 & 4 \\
2 & 1 & -1 & 2
\end{array}\right] \\
B=\left[\begin{array}{ccc}
-1 & 0 & 5 \\
0 & -3 & 0 \\
-1 & -4 & 2 \\
1 & -1 & 2
\end{array}\right]
\end{gathered}
$$

(a) Find $\operatorname{det}(A)$
(b) Find $2 A B-A^{T} B$
3. Using the inverse of the matrix of coefficients, determine the solution of the system of equations

$$
\left\{\begin{array}{l}
3 x+2 y=2 \\
2 x-2 y=3
\end{array}\right.
$$

4. Consider the vectors $\mathbf{a}^{T}=[-1,2,3], \mathbf{b}^{T}=[0,1,-3], \mathbf{c}^{T}=[2,-4,2], \mathbf{d}^{T}=[2,0,-5]$.
(a) Determine whether $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent.
(b) Determine whether $\mathbf{b}, \mathbf{c}, \mathbf{d}$ are linearly independent.
(c) Determine whether $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are linearly independent.
5. Using Gaussian elimination, solve the following systems of equations.
(a) $\left\{\begin{array}{c}x-2 y+3 z=2 \\ -3 x+y-z=1 \\ -x-3 y+5 z=3\end{array}\right.$
(b) $\left\{\begin{aligned} 3 x+y-z+3 t & =2 \\ -x+4 y+2 z-2 t & =-1 \\ 2 x+5 y+z+t & =1\end{aligned}\right.$
(c) $\left\{\begin{aligned} 2 x-y+z & =1 \\ -3 x+y+2 z & =-2 \\ -x+z & =0\end{aligned}\right.$
6. Find the lengths of the sides of the triangle $A B C$, where $A(-1,2,5), B(4,0,3)$, and $C(3,-2,-1)$.
7. Find the angle between $\mathbf{a}=\mathbf{i}+3 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.
8. Find the value of x that ensures that the vectors $\mathbf{a}=-\mathbf{i}+3 \mathbf{j}+x \mathbf{k}$ and $\mathbf{b}=2 x \mathbf{i}+\mathbf{j}+\mathbf{k}$ are orthogonal.
9. Find the area of the triangle $A B C$, where $A(-1,-2,2), B(4,-3,1)$, and $C(3,-4,2)$.
10. Find a vector orthogonal to the plane determined by the points $A(0,2,-1), B(-2,3,1)$, and $C(4,-1,5)$.
11. Find the volume of the parallelepiped with adjacent edges $A B, A C$, and $A D$, where $A(0,2,1)$, $B(2,-3,4), C(-4,5,1)$, and $D(3,2,0)$.
