SEPARATION OF VARIABLES

Consider a 1st order ODE of the form

$$
\begin{equation*}
\frac{d y}{d x}=g(x) h(y), \tag{1}
\end{equation*}
$$

where g is continuous, and h is continuously differentiable.

- To find all the solutions of (1):

1. Find all the real numbers y^{*} satisfying $h\left(y^{*}\right)=0$. For each such y^{*}, the constant function $y=y^{*}$ is a solution of (1).
2. Separate variables and integrate, i.e.

$$
\begin{equation*}
\int \frac{d y}{h(y)}=\int g(x) d x+C \tag{2}
\end{equation*}
$$

where C is a constant of integration. If possible, use (2) to express y explicitly in terms of x.

- To solve the initial-value problem

$$
\frac{d y}{d x}=g(x) h(y), \quad y\left(x_{0}\right)=y_{0}:
$$

1. If $h\left(y_{0}\right)=0$, then the constant function $y=y_{0}$ is the solution.
2. If $h\left(y_{0}\right) \neq 0$, use the initial condition $y\left(x_{0}\right)=y_{0}$ to solve for the constant C in (2). If possible, express y explicitly in terms of x.

Note: It follows from the uniqueness theorem that for a solution of (1), either y is a constant (i.e. $h(y) \equiv 0$) or $h(y)$ never vanishes. This is why the procedure described above works.

