Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY 21.260 Differential Equations January 2001

SEPARATION OF VARIABLES

Consider a 1st order ODE of the form

$$\frac{dy}{dx} = g(x)h(y),\tag{1}$$

where g is continuous, and h is continuously differentiable.

- To find *all* the solutions of (1):
 - 1. Find all the real numbers y^* satisfying $h(y^*) = 0$. For each such y^* , the constant function $y = y^*$ is a solution of (1).
 - 2. Separate variables and integrate, i.e.

$$\int \frac{dy}{h(y)} = \int g(x) \ dx + C,$$
(2)

where C is a constant of integration. If possible, use (2) to express y explicitly in terms of x.

• To solve the initial-value problem

$$\frac{dy}{dx} = g(x)h(y), \quad y(x_0) = y_0:$$

- 1. If $h(y_0) = 0$, then the constant function $y = y_0$ is the solution.
- 2. If $h(y_0) \neq 0$, use the initial condition $y(x_0) = y_0$ to solve for the constant C in (2). If possible, express y explicitly in terms of x.

Note: It follows from the uniqueness theorem that for a solution of (1), either y is a constant (i.e. $h(y) \equiv 0$) or h(y) never vanishes. This is why the procedure described above works.