Carnegie Mellon University
Department of Mathematical Sciences
21-260 Differential Equations
Spring 2004

Solutions of First Order ODEs - Summary

1. Simplest Equations: $y^{\prime}=f(x)$.

$$
y(x)=\int f(x) d x+c
$$

2. Linear Equations: $y^{\prime}+p(x) y=g(x)$

$$
y(x)=\frac{1}{\mu(x)}\left[\int g(x) \mu(x) d x+c\right]
$$

where $\mu(x)=\exp \int p(x) d x$.
3. Separable Equations: $y^{\prime}=g(x) h(y)$
(a) If $h\left(y^{*}\right)=0$ for some constant y^{*}, then $y=y^{*}$.
(b) If $h(y) \neq 0$, then y is given by

$$
\int \frac{d y}{h(y)}=\int g(x) d x+c
$$

4. Exact Equations: $M(x, y)+N(x, y) y^{\prime}=0$, where $M_{y}(x, y)=N_{x}(x, y)$. The solution is given in an implicit form by $\psi(x, y)=c$, where

$$
\begin{equation*}
\psi(x, y)=\int M(x, y) d x+h(y) \tag{1}
\end{equation*}
$$

(Here, $h(y)$ is determined by differentiating (1) with respect to y and using the relation $\psi_{y}=N$.)
5. Substitutions: Here are some types of equations that can be solved by making a suitable substitution.
(a) Bernoulli Equations: $\frac{d y}{d x}+p(x) y=q(x) y^{n}, n \neq 0,1$.

Set $v=y^{1-n}$. The equation becomes

$$
\frac{d v}{d x}+(1-n) p(x) v=(1-n) q(x)(\text { linear })
$$

(b) Homogeneous Equations: $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$

Set $v=\frac{y}{x}$. The equation becomes

$$
x \frac{d v}{d x}+v=F(v) \text { (separable). }
$$

(c) Miscellaneous Equations:

i. $\frac{d y}{d x}=F(x \pm y)$

Set $v=x \pm y$. The equation becomes

$$
\pm\left(\frac{d v}{d x}-1\right)=F(v) \text { (separable). }
$$

ii. $\frac{d y}{d x}=f(x, y)$

It might be easier to solve

$$
\frac{d x}{d y}=\frac{1}{f(x, y)}
$$

(I.e. find $x(y)$ instead of $y(x)$.)

