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THIRD SEMESTER EXAM

OPERATIONS RESEARCH

(Part I, 5 hours; part II, 3 hours)

I. Mathematical Programming

1. Consider the problem (P) of minimizing
n . n

1 £ ec..x..

w 151 j=1 YA

subject to

-(2) xij + vy - Yj.E 0. i,ij=1,...,n
(4) xij =0 or 1, i,j=1,...,n.

Let (Pl) be the problem obtained from (P) by substituting = for > ip (2)

and (3), and jet (LP) and (LP') pe the problems obtained freom (P) and (P')
: P s

respectively, by Substituting xij_2‘0 for Xij =40 or 1 ip 4).
(a) Discuss the relationship between P, (P'), (LP) and (LPI), in

the two cases when (a) c. .

1 >0, i,j=1,...ln, and (b) cij is of arbitrary

sign, i,j=1,...,n.

(b) Give 3 sufficient condition for (P) to be:éolvable by a

polynomial-tipe algorithm.

T I~ )




2. _ Let (P) be a mixed integer program and (LP) its linear Programming
relaxation. Call a solution integer if it satisfies the lntegrallty requ1rements
noninteger otherwise.

Consider the following procedure for soi&ing (P):
Step 1. Apply the primail simplex method to (LP) for as long as you canp
pivot without making the solutlon noninteger. If this is not any longer possible,
denote the current (integer) solution by xo, and go to Step 2.
Step 2. Perform a primal simplex pivot and denote the (noninteger).solution
obtained by xl. Generate a valid inequality that cuts of £ xl, add it to
the sgmplex tableau, and pi%ot id the cut row to obtain x° as 2 basic feasible
solutioA to the amended Tinear program; then return to stép 1.
(a) Show that step 2 cap élways be carried out. Whar is the difference

between the o1d and the new basisg associated with %°? When does x° satisfy

the cut with equality?

(b) The cut of step 2 can be génerated difectly (i.eﬁ, as
2 "primal” cut) from the first tableay associated with xo, without aéfually
carrying out the pivot that produces xl. Derive a formula fér this "primaj' - .
cut,

(c) Does the above procedure converge in a finite number of steps?



. -3-
3. Suppose you are given a simpie graph G = (V;E)(finite, undirected, with
no loops and no mﬁltiple edges). A matching in G is any collection.of edges,
o two of which meet at a vertex. A cover of G is any collection of vertices

for which every edge of E meets some vertex in the cover.

(a) State an integer program for finding a maximum cardinality matching in G,

(b) Use linear programming duality énd fundamental properties of integer programs
to show that when G is bipartite the size of a maximum matching equals. the
size of a minimum cover.

(c) Comversely, can you say that if the size of.a maximum matching eqﬁals the size
of'a minimum cover, then G is bipartite? Justify yoﬁr answer.

(d) To ever matching in G associate the vector x = (xé)eEE defined by X, = 1
if the edge e is in the matéhing, 0 if it is not. Let P(G) be the convex hull
of the 0-1 vectors agsociated with the matchings in G. what‘is the dimeﬁsion
of the polytope P(G)? Prove that for every e€E the inequality X, 2 0 is a
facet of P(G). For which vertices v of G is the inequality\ I x <1a
facet of P(G)? Does P(G) have other facets when G is (i) biii:tite,

(ii) nonbiparti t_é ?

(e) Comsider the graph G with edge's. numbered 1 through 7:

Prove or disprove that

P(G) = {XZEOIXZ + Xy + xe + X, <1, X, + Xs. + X <1, x

. v
Xy + x2 + x7 < 1, Xg + X +—x7 <1, Xq + x4 + X6 <1, Xl + x2 + x, +'x f Xe <2




You are reminded of two results-

(A) If the linear program

minimize ch subject to Ax =b  and X >0

g L)

has an optimal solution, then it has one, say x, such that if o denotes the

index set of positive Q—variables, then the columns A'a are linearly

independent.

(B) 1f thé linear complementarity problem

T+Mz >0, 2>0, 2T(q+mM) =0 .

has a solution, then it Kas one, say E, such that if o denotes the index

set of positive E-variables, then the columns'M.a are linearly independent. o

Use these two results to give two proofs to the following assertion:

If the convex quadratic program

minimize>%yTDy +clx + dTy subject to y =pPx |

0

1AV

has an optimal solution,

then it has one such thar the number of positive

x-variables will not eXceed m which is the dimension of the vector y. :

5. Let X and Y be two nonempty polyhedral sets with Y'containing

at least two points. Consider the problem: find a scalar s and a vector

L to

minimize s  subject to .y CsX + ¢t

where

SX+t={2z:2=gx+¢ for some x €X } .



In each of the following two cases, formulate the above problem as a

linear program.

@ X={x : &x<a] ana Y={r :By <b)
(1) X = { x . ax <a}l and vy = {y -y =pr+ Qu for some A, >0

and eTl =1} .

Here A, B, P and Q are arbitrary matrices of appropriate size; a and b

are arbitrary vectors and e is the vector of opes, ’ i

Note:  You need to give a Computationally practical formulation for
each case. In other words, you can Dot say that since (i) and (ii) are

theoretically e€quivalent, therefore one formulation is sufficient.

. — n .
6. Given a set Y in R and a mapping F from g% into Rn, consider the

stationagz point problem: fing 4 Vector u€x such that

(x - u)T F(u)'z 0o for all x€ x
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Consider the integer program

m n
1 z; = max T L ec..x..

i=1 j= 13 1]
. . n ) .
(2) z X =1 i=1,...,m

j=1 H |

m .
3 I x., Sb.y, i=1,...,n

i=1 I J° 3
) =< i = - 1 =
(4) Xij yj 1 l:"':ms J l)“'sn
(5) 0 =x, . i=1,...,m; j=1,...,n

13

(6) Osyj =1 i=1,...,n
(7) yj integer ij=1,...,n
where bj’ i=1,...,n, are nonnegative integers and Cij’ i=1,...,n,

J= 1,...,n are real numbers.

'(a) Prove that the optimal value zI is not changed if the constraints

(4) are dropped from the integer program (1)-(7).

(b) "The integer program (1)-(7) is NP-complete." Explain very briefly

what this sentence means to you.

(¢} Assume that one wants to find an optimal solution to (D-(7). 1List
the different methods. that could be used. Alsoe list the methods that

you know in integer programming and which do not apply to this problem.

n n om
A, (X x.  -1) - % ou(z X..~b.y.)]
1 1 j=1 13 j=1 J =1 13 373

=}

m n
(d) Let z, = max[ I L ¢, .x_. -
i=1 j=1 Y4

™

subject to (4)~(7). How would you call this program? Prove that
z; = z; whenever A =0 for all i = 1,...,m and by =0 for
all j =1,...,n.

(e) Prove that the constraint matrix for (4)—(6) is totally unimodular.
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Consider the standard linear programming problem:

Maximize c¢x

Subject to Ax <p
x =0

where A is mwm, and the dimensions of the other vectors are defined
to correspond. Let e = (1,...,1) be an n—component vector of all 1'g.

(a) Suppose the objective function is changed from c¢x to (ctre)x, .
where A is a parameter. Write conditions that A must satisfy qniiiﬁa
that the optimal solution for the original problem also be optimal

for the modified problem. ﬁ;o aAjgrkanc ~oﬁ - £
. E R ~ o aA

(b) Suppose.9neqoi—ehe~eonsc¥aiﬁfs—e£-the original problemYEs of the

form ex = 1/k where k is a constant. How does this change
your answer to (a)?

be




Consider the linear program

(a)

(b)

(c)

(d)

Maximize x,
Subject to

—x; + X, =1
<

Xi-+ x2 3

X =2
>

Xl,X2 0 .

Draw the bounding lines of the constraints and show that there are
9 points of intersection of these lines.

Show that 5 of the 9 intersection points found in (a) are primal
feasible, and the rest primal infeasible. :

Show that 3 of the 9 intersection points are dual feasible and
the rest dual infeasible.

State a simple geometric condition which characterizes such an
intersection point as being dual feasible. [Hint. Use the
outward pointing normals to the half spaces which define the

feasible set, and the normal direction of the objective function. ]




-

Questions 4 and 5 involve graphs. We State first some relevant definitions.

In a connected graph G = (V,E) the distance d(u,v) between vertices
u and v is the length of the shortest pzth joining - u apd v. (Here the
length of a path means its number of edges.) The diamefer 8(G) of ¢ is
d(u,v). Finally You are reminded that a cirecuit is a closed path

u,veV

with positive length.

i) Every two vertices of ¢ are connected'by at most one path of
length 6&(@) or smaller. :

ii) € has no circuit of length 26(G) or smaller.

iii) Either ¢ is<§i§§§§§§fbr the length of the shortest circuit is
©28(G) + 1. L

Mufb’v

5. Prove or disprove:
i) If §(G) = 2, then G has a Spanning star.
ii) If G has a Spamning star, then 3(G) = 2,

(A‘spapning star of G = (V,E) is a subgraph of the form
(V,{(Vb,w){wev - {VO}}) for some vertex veV.) '




Let A be an n x n“symmetric positive semi-definite matrix and

. m
Fan mxn matrix. Let ¢ denote the set of all vectors y € R

satisfying

. AFy =0, £y =0 and y >0

where f dig g m—vector. -

(i) Show that C is the characteristic cone of all nonempty level sets

Y(A)v

={y>20: o@) <2}
where 3
- 1 T
Py) = (£ + FAa)T y + = yY FAF y.

2

(ii) Deduce from (i) that if the LCP(f + FAa, FAFT) is feasible,

then it has a bounded solution set if and only if C = {0}.
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Consider the integer pProgram

(1)

(2)

3

(%)
(5)
(6)

(7)

where

i=1

(a)

(b)

()

(d)

(e)

m n
zI = max I L c..x..
i=1 j=1 13
n
z X, =1 . i=1,...,m
j=1
m
I x . Sp.y, i=1,...,n
j=1 1ii 373
< i =1 .o - 3 = ..
Xij yj 1 S sW3; ] 1: s
0 =x_. i=1,...,m; i=1,...,n
ij : i
0=y =3 i=1,...,n
J .
yj integer i=1,...,n

bj’ j=1,...,n, are nonnegative integers and Ciss 1 =1,...,m,

>-++,0 are real numbers.

Prove that the optimal value Z; is not changed if the constraints

(4) are drobped from the integer program (1)-(7).

"The integer Program (1)-(7) is NP-complete." Explain very briefly

what this sentence means to you.

Assume that one wants to find an optimal solution to O-(7). 1List
the different methods that could be used. Also list the methods that

you know in integer Programming and which do not apply to this problen. .

B n m ! o m
Let z =max{ £ c..x.. - A, (X x, -1) - w(Zx -by.)]
L i=1g=1 MW g 1 T4 =1 J 4= 13 373

subject to (4)-(7). How would you call this program? Prove that

z. 2 z_  vhenever A, €0 for all i = d,--.om and p. 29 for
L I i ]
all j = 1,...,n.

Prove that the constraint matrix for (4)~(6) is totally unimodular.
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Fs:

1. Consider the following liﬁearAprogram having two objective functions:

Maximize c(l)x
Maximize c(z)x
Subject to
Ax = b
X 20

*
A Pareto optimal solution to this pProblem is a feasible vector x such

that there is no other feasible vector satisfying

c(l)x = c(l)x*

c(z)x < C(Z)X*

with at least one of the inequalities being proper.

Discuss an algorithm for finding the frontier set, i.e. the set of all

Pareto optimal solutions by using the ordinary linear program

@,

Maximize ¢

Subject to
c(z)x = d

Ax = p
x 20

and performing parametric variation on the number d.




Let G = (V,E) be an undirected graph. Define a cut in G as an edge

set‘of the form

(S,V\8) = {(i,5) e Elies, 5 ¢ v \ s}

for some s < vy,

(a) How many cuts are there in G?

(b) Which problem is easier: finding a minimum cardinality cut, or

2 maximum cardinality cut in G? Outline a method for solving the

easier of these two problems. Is it polynomial in (V)2




3.

Consider the problem
min cx

(r) Ax > b

Tx. =0, VS cN:|s| =k
jes 3 .

where A is m X n, ¢ and b are conformable with A, N = {1, e, n},
means product, and k is a positive integer, 1 <k < n.

(a) Find kO such that for every k > ko, (P) is polynomially solvablei |
(b) Outline an algorithm for solving (P) for some k < ko.-

(c) Characterize the convex hull of the feasible solutions of (P).

5




Consider an undirected graph G = (V,BE). Define a tour of G as a cycle
(closed walk) gqing at least once thfough each node of C. (Note: nodes
as well as edges cap be traversed twice or more. )
(a) Relate tours to the vectors x = (xe;eeE) wﬁich satisfy

(i) Xe 2 0 and integer for a1l ecE,

(ii) z X, 22 for al1 s V, S # P where C(S,v-8) = { (i, )eE:
eeC(S,V-5) _ .

ieS, jeV—S},'and
(iii) z(xe: - € incident with node i) is even for alil ieVv,

(b) Let G be the following graph: L '

For this graph, are there any vectors x which satisfy conditions

(i) and (ii) but nor condition (i1i)? TIs the inequality Ex >10
. eeE e

valid for all vectors which satisfy conditions (i) and (11)? Ts it

valid for vectors which satisfy (i), (ii) and (1i1)?

(c) Consider again the general graph G. Let P be the convex hull of

the‘vectors satisfying (i), (ii) and (1ii). Show thar P is full

dimensional if g is connected ang empty otherwise. 7Is p bounded?

(d) Show that‘xe‘g'o is a facet of P if and only if the 8raph (V,E-{e})

is connected,
(e) How would you modify conditions (1) - (iii) in order to obtain the

ijcidence'vectors of the Hamilton c cles of G? Let be the convex:
y

hull of the incidence vectors of Hamilton cycles of G. 1Is it

Correct to say that the Polytope Q is a face of p?




() Let C < KP pe 5 convex set. Show that X = x e " : x = Ap,
P e C}, where A is a given n x P real matrix, is a convex set
in fﬂ,
: . 2.2 .
(b) Find minima of the function f(x,y) = (x -y) among all the points

satisfying hecessary conditions for an extremum.

(¢) Let x* be an optimal solution of the problem

‘n
min ¥ f (x.)
Coye1 303

subject tovlez 0 3=1, -, 1

where fj are differentiable functions. Show that there exists a number

L such that

tooky *.
LY . *
fj(XJ) 2 91 if Xj =0

where the prime indicates differentiation.
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fll:

1.

Iif a system of m llnear equatlons (whlch may arlse from m 1inear

1nequa11t1es to whlch slack variables have been added) has a nonnegative

solution, then jt has a solutlon with at most n variables positive.

[Hint. Use pivoting techniques. ]




Ax S p, x 29 ' | (1)

The firm has two goals for pext year, a profit goal of p apg a sales goa]l

of s. For activity x j¢ can achieveva Profit of cx and sales of dx.

In order to measure its deviatiop from the above goals ir defines nonnegative
+ + - '

quantities P> P, s and g . as follows:

- \

cx-p=p-p,920,p20 (2) »

dx ~ s =g _ ¢ s '8 = O,- s =20, o i - (3)

(a) Show that in any basic solution of” (2) ang (3) the foliowing hold

+_
Pp =0,

o+ -
Ss =90

(b) Show that | - -
lex - p] = p* 4,
rldx - sf = s + g

measure the deviationg from each goal.

" the following linear Program:

+ + -
Minimize P +p + g5 4 s

Subject to (1), (2), and (3).




3. " Consider the polytope
4 .
X = conv{x ¢{0,1} ixl + 3x_2 + 3xy + 4x4 > 43,

(a) Show that X = P, where

i=1 1

P ={XeKalX1+x222}
P ={X€K4IX1+X322} ' -
Py=fx e Kl}‘x2 + x5 > 2}

P, = {x ¢ 1<4|:r:4 > 1}

and

’ iifting.




4, Associate with the undirected graph G = (V,E) the Symmetric
bipartite graph ¢/ = (vluvz, E.'), where V = {1,...,n}, v, = {11,.;.,n1'jr,
v, = {12,...,n2}, and (i,j)¢eE implies (i1, j2)eE’, (31, i2)eE’, while
(i,3)4E implies (i1, j2)4E, (31, i2) 4k, Call a matching MgG; antisymmetric

if for all 1,3, (i1, j2)em tmplies (j1, i2)MM. Show that there is a 1.1

correspondence between 2—matchings in G and_antisymmetric l—matchings in g7,
Formulate the antisymmetric matching problem in a Symmetric bipartite graph
as a lipear pProgram. ' , _ -

[Hint: the linear Programming formulation of the Z-matching problem ip G ig

max ¥ Z ¢, . x

iev j>p 13 Ei -
xji+<txi.52 ieV
ilG,iyer ila, e 13
0< Xy <1 (},J)GE

D X +3 x .. |s| + ng‘” SCV, Fc (s,W\s), [F| odd, ”
@0eEE) M (G gy 1

where E(S) is the set of edgeé with both ends in S.]




5. Let f be a continuously differentiable concave function, let c be

an r-vector and let B be an rxn matrix, r < n, with linearly independent

rows, Consider the problem

max f£(x)

(1)

Bx = ¢

(2) Use classical optimality conditions to show that x* is optimal

for this problem if and only if

CBx* = ¢
T
VEE*) + B u= 0

where u is an unconstrained r-vector,

(b) Let X be a féasible solutlon for A1) and suppose that

{1 - B (BB ) B]Vf(x)

Prove that x ig optiméi for (1).

(¢) Prove [T ,-.BT(BET)’.%]T{I - 85Ty gy - g L BT 88Ty~ 15.

Now define d = [T - BT(BBT)"IB]vf(x).
(4 Prove v£(x)T 4 = q%q.
{e) Show that, if x is not optimal for‘(l), then
vEx)T d > 0. |

(f) lLet x be feasible for (1). Prove that x + 6d is

feasible for any real number 9.

also




6. (@) Let M = {xl,...,xn} be a set of p affinely dependent points in]Rd,

Let Al,...,l be real numbers, not al} zero, such that ¥ kix =0, 1 X = Q.
i=1 i=1 -
Let M o= {x eM: A; >0} and M, = {x eM: A; £0}. Show that conv M1[1conv-Mé # 9,

where conv K denotes the ¢onvex hull of K.

d -
() Let M = {xl,...,xn} be a set of n points inR, where n>d-+ 2,

Show that there exist nonempty subsgets Mi and Mﬁ of M with le)M ﬂ and

(c) Let {c 3ee.,C } be a family of convex sets ip Rd, where n >4 + 2,

Show that if every subfamily of n-1 sets C has 4 nonempty intersectlon then

all n sets Ci have 4 point in common, (Hint~ Use the result proved in (b)).

“zed
(d) Let { 1,...,C } be a famlly of convex sets in R s where n_g d+ 2,

Show that, 1f every subfamily of d + 2 setrs Ci has a nonempty intersection,

then all n sets have a point in common
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Let x° and v©°

be optimal primal and dual solutions to .the linear

program
Maximize cx
Subject to Ax £ b®°

x>0

where A is an mxn matrix and the other dimensions are compatible. If

x is an optimal solution to the same linear Program but with

replaced by b¥, show that

c(x® - x*) > vo(po _ b¥),




Considervthe following‘ linear program:

Max Cx + ps

Su'bject to
AXx + 8 < b
s < u
X8 > 0

where A is mxn and the rest of the . Vectors are dimensioned

‘ accordingly. The variable Si of the vector g represents sales at DPrice

‘Pi Per unit of the ith resource which is avallable in amount b; and

the constant uq represents the upper bound on the galeg of that’

resource.

x—solutlon vector before considering the s variables. - Under what
conditions on the dual variable vi and selhng Pprice Pi will the reviged

simplex solution for the whole Problem make the variable 8{ be positive?




3. Let XI be the set of those x ¢ {0,1} satisfying

1) Tl
n : .
I a,.x.>b, , '
j=2 23] .2
and assume that a11 > 0, asy < 0, b1 > 0 and b2 - Ay > 0.

{a) Use the condition Xyp ® {0,1} to derive a valid disjunctive
cut for XI in which the coefficient of %y vanishes, and which
is violated by at least one x z R satisfying (1).
(Hint: restate (1) as a disjunction between two sets defined by
pairs Qf inequalities, one obtained b& setting Xy = 0, the other
by setting X = 1y then consider the family of cuts implied by

.by the disjunction and choose an appropriate member. )

(b) Strengthen the cut derived under (a) by using the integrality

conditions on-xj, J=2, ..., n.




Let G = (N,A) be a digraph, with N =" {1, ;.., n}. & cycle-decomposition
of G is a partition of the arc set into node-dis joint directed cycles.
Let G¥ = (V,E) be an undirécted bipartite graph that has two nbdes,

il £ V, and i2 = V, for every node i of G, with v, u vV, = v,

Vio Vo =6, [V,] = vy, and an undirected edge (il,j2) « F c V, x ¥,

for every directed arc (i,j) = A of G.

(a) What, if any, is the relationship between cycle decompositions

of G and perfect matchings of g¥2

(b) Give a necessary and sufficient condition for G to have a cycle—

decomposition.

(c) Give an algorithm for finding a maximal (with respect to set
inclusion) induced subgraph of @ that has.a cycle—decomposition.

State the complexity of your algofithm-




A wheel W is a graph with n + I nodes Vo, Vi, eu., v; and 2n edges

defined as follows. The nodes v,, ..., v, induce a cycle and v,

is joined by an edge to each of the nodes v,,

<++y ¥np. (See Fig. 1.)

In the remainder we assume that n > 4,

(a)

(b)

(c)

What is the number of Hamilton cycles in W?

Show that the travelingAsalesman polytbpe on W has dimension n — 1.

{The traveling salesman polytope is the convex hull of the

incidence vectors of the Hamilton cycles.)

The edges of the cycle induced by v,, ..., vV, are called the rim

edges of the wheel. éhow that, for any rim edge j, the constraint

5 Xy £ 1 defines a facet of the traveling salesman polytope.

(d)x:Conclude that the traveling salesman polytope is defined by the

linear system

I(xj ! edge j is incident with node vi) =2 for i = 0, 1,

.. ay

xj < 1 for every rim edge j.

n




method that works well on quadratic problems ang apply it to genera]l
- problems. Newton’s method has such a strategy, but it requires the expensive
recalculation . of the iﬁverse Hessian H™'  at each iteratiop. Q;)asi—Newton
procedures save time by using an approximation D of H—! at each
iteration. One such method is the Davidon~FIetcher—PoweH method, which
begins with a guess D, of the inverse Hessian at the starting point Y. In
step J the search direction isg dj = -—Djvt'(yj), and the new point ig
Yi+1 = ¥; +‘J\jdj, where Aj  minimizes f(yj + Xdj). The new estimate of
H™' is got from a rank 2 update of D;:
‘. Dj+, ¥Dj+ BJEJE - —JLJ_LQD‘Q‘Q'TD'
p;Ta; aTDjaj | |

where pPj = J\jdj and Cij = Vf(yj+,) -.Vf(yj). Let’s apply this method to a
quadratic problem in which f(x) = éTx + (1/z)xTHx, where H g Symmetric
and positive definite, '

a) What is vf(x)?

b) What ig d,?

¢} Show that A, = 1. (gin,. (d/dN) £y + xd,) = d,Tag(y, + Ad,).) |

d) SuppAose that by pure luck we guess the inverse Hessian correctly, so
that D, = g-1, Show that the rank 2 update breserves this guess. That is,
show D, = H™'.  (Hint. Express a, in terﬁs of p,.)

e) Given the assumption of part (d}, how many iterations are requir»ed to

reach the minimum?
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1. Let I =1{5i , i

12 3 -en, ik} where 1 < i1 < 12 <... < ik_g n, and let
k+1 L
W(I) = ¢ W(lt__1 +1, i),
t=1
where io = 1, ik+l = n and w is an arbitrary function satisfying

w(i,j) = 0 if i > j,

(8) Construct a functional equation which would enable you to solve
(P1) minimize W(I) s.t. I c {1,2,...,n}
in O(nz) tiﬁe.
(Hiﬁt: let f(m) = min. W(I) subject to I < {1,2 ,...,m})
()

Construct a functional equation which would enable you to solve.

(P2) minimize W(I) s.t. T c {1,2,...,n}, ||

in O(nzp) time.

(¢) Suppose that in (b), p = 2 and w depends only on j-i. Show that

P2 is solvable in O(n k) time.

(d)

-Show how the following location problem can be formulated as a

special case of P2: there are n points placed at X5 XZ""’xn

on the real axis. We want to find p points Yis yz,.,.,yp S0 as to

n
ninimize ¥ mip {lxi - v. 13
i=1 j=1,...,p
L

J
this is the dlstance .
from xl to its near- Ll

est yi
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Consider the following linear sysgtem:

Ax = b -
(P)
x >0

where A is an mxn matrix and the dimensions of x and b are consistently .

determined. Let S be the set of all solutions to {P); assume S £ é.

A variable xy is said to be a null variable if X3y =0 for all x ¢ S.
(a) For the system |
6x, + 5x, + 3x; + 4%, = B
3x, + 2x, + Xy + 2%, = 4
Xy, .xz, x,,.x4 .2'0
show that x, z;nd x3; are null variables.
(b). Show that if there exists a vector v ¥ 0 auch that vA > 0, vb = ¢ and
(vA)J > 0 (where (VA)j_ is the jth componer'lt of vA), then Xy is a null

variable.

(c) Prove the converse of the statement in (b) by considering the linear

program
Maximize elx
Subject to = Ax = b

x>0

. where el iz the unit vector with 1 in the jith position and 0’s slsewhers.




2. Con_sider the following problem in p variableg:

Maximize ' cx
Subject tqo
Ax < b (1)
x>0 ' (2)
(ex < &) or (Bx < 8,) (3)

"where A ig mxn, and « and g . 8re n ‘component FOW vectors and % and g,
Constants. A vector x will he said to be féasible i it satisfies (1), (2) angd
either one or both of the constrainis in (3).

(a) Use barametric brogramming to desc.ribe & practical solution Procedure.

(b) Describe how you could tell when tihe Problem has a solution. In how many

Ways can it have or not have g solu?.ion?

{c) To what extent could Your method generalize tg more complicated consgtraints

of the form of (3)2




3. An edge cover of (the vertices of) a graph G = (V,B) is a set C € E such that ,
every vertex is incident with some edge in C. There is a close parallel between o
the theory of minimum edge covers and maximum matchings in a graph. L

{a} Give a necessary and sufficient condition for an edge cover to be minimum,
in terms of alternating paths. Prove the validity of your condition.

[Hint: Define analogs of the concepts of exposed node and augmenting path
relative to a matching. Note ihat, unlike in matching, the alternating paths
used may be closed.] .

{(b) Give a linear characterization of the edge covering polytope (the convex hull
of incidence vectiors of edge covers).

[Hint: There is a one to one correspondence between the inequalities of the
systems defining the edge covering polytope and the matching polytiope.]

(c) Let G be an edge-weighted graph. Give an efficient procedure for finding
an edge cover that minimizes the weight of the heaviest edge in the cover.

[Hint: No connection to matching her‘e, but some connection to spanning
trees. Use the obvious fact that a graph has an edge cover if and only if
it has no isolated vertex.]




_Solution

‘Call an alternatirig trail a C-reducing trail if jtg 6Xxiremes edges are in C and itg

endpoints are either distinct and overcovered op identical ang twice
overcovered.

An edge cover C is minimum if and only if there exists no C-—reducing trail. The
"only if" part is immediate;~for the "if" part, if C and ¢ ’are edge covers such
that IC’I < |c » then the symmetric difference. of C and ¢ ecan be shown to
contain g C—reducing trail. .

Ele, izvy
jsl(ff
. Ixy> (Is] + 1)/ 5 <V, {s] odd ang >3
} 2
izx(s)
xy 2> 0, J £ E

I(i) := { j = E | J'is incident with },izvw

{c) Delete edges of G in order of decreasing edge weight, unti] no further edge can
be deleted without isolating g vertex. At thai point the remaining subgraph G’_.
has an edge cover, and any edge cover of G is an edge cover of G that
minimizes the welght of the heaviest arc in the cover. For Suppose G has an
edge’ Cover whose heaviest edge_, Jx, is-of lower weight than the heaviest edge

of G. Then all edges of G’ heavier than jy can be deleted without isolating any
vertex, a contradiction, :




4. Consider the integer program (IP)

n n : i
ZIP = Max E E Cin1j i
i=1 §=1 '
- (1) Ex,j=l for j =1, ..., n
1=1 . -
n .
(2) Xx1j=l for i =1, ..., n.
1= ‘ : '
n n
(3) I Za”xij <b
1i=1 j=l
(4) =xj;=0or1 for i = 1, ..-,nandj:l, eee, m.

Denote by 7{1) the value of the Lagrangian dual obtained by relaxJng contralnt
(i) in a Lagrangian fashion. Let Z_ p be the value of the Binear programming
relaxation. |

(2) Show that Z;, < 2(1) ¢ ZGNa) < 7. = 2(3) = 7(2)(5)

(b) Give an example where z{1)(z2) ¢ Zyp. -




L_et A= (a,j) be a 0,1 matrix with m rows and n columns, Assume that A has‘ mﬁ
dominated row (row i dominates row k if agy > 2y for all j =1, ., n). Denote
by Q. the polyhedron defined by the inequalities Ax < 1, x 2 0, and let P, =
Conv({0,1}n N Q) be the corresponding get packing polytope.

(a) Show that Xy 2 0 defines a faqet of P, for every j'= 1, ..., n.

n
(b) Show that ¥ 8y 3%y < 1 defines a facet of Qa for every i = 1, ..., m.
=1 '
n .
(c) Does ¥ 213%x3 £ 1 always define a facet of -P,?

J—l
| 110 -
[Hint: consider A=110¢01 1 -
. 011 -
() Let 4 = [ A V). Assume tha FA, =, and Py = Q, . Show that Pp = Q,.
2 .

(e) Given 0,1 matrices A, and A, such that PA: = Q"x and.PA2 = QA,’ can you give

other ways of composing A, and A; into a matrix A so that P, = Qa? (No°

proof is required for question (e).)




]
B

6. Consider the problem

min X3 + 2y3 4+ 2,3

s.t. x* +y2 + 72 -¢g

Give a bound on the asjrmptotic convergerice ratio of thse projected gradient
method at the local minimum point (x, 3, z) = (2, 1, 1).
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Suppose the simplex method has performed k pivot steps in the solution

of a linear program so that the current tablean is T(k) with entries -

t(k). Suppose also that there are exactly two incbming pivot columns,

ij
jl and jz, which have negative “reduced costs (indicators), and that

corresponding pivot rows, ilvand iz’ respectively (with il # iz) have

been selected by the ratio rule.

(@ I1f t*7 (0 ang g e
' Y1z t2d4

0, show that at least two more pivots

I~

will be needed to complete the solution.

®) 1f t7) >0 ang ¢
1112 12-,1

[\

0, <show that at least one more pivot

will be needed to compléte the solution. Explain why only one pivot
might be enough.

’ k
Y5> 0 ana
e Y291

{c) If t < 0, show that in order to (possibiy)

reduce the number of pivots, it is better to first perform the first

pivot.




2. A k—goal'programming problem is of the form (for k = 3):

Minimize Ps +Pgsg +pg
171 z 2z 373
Subject to
é(l)x +s - gt -
1 1 8y
2) -
By g s, -l =g
2 z z
Ny s s—’—'s+ =
3~ &y :
Ax <b 0

x,si,s: >0 for i=1,2,3
Here c(i)x is an objective function and g€ is the desired goal value ) f
X i

for that function. Also P is the penalty for not achieving the goal
1

g - Assume the constraints Ax <b, x> 0 have feasible solutions.

(a) Explain the meaning of the optimal solution to the goal programming

problem.

{b) Assume P1 > P2 >> Pa’ that is, goal g1 is infinitely more
important than goal gz, and goal gz is infinitely more important

than goal g,- Show how to solve this problem by first minimizing

s;; then holding s; fixed and minimizing s;' etc.

b




3. Generate all the facet defining inequalities for the vertex packing

polytope defined cn the graph G of Figure 1. What is the facet definipg

inequality of highest (Chvatél) rank that you can get?

| F\'(\-‘)(ne |




q.

- Let S be the set of x € R? satisfying

X ~X_ 2 a Vv X —X_ Za
1 2 iz 2 ‘1

21
b <x =< ¢
1 1 1
b_. <x = ¢
2 2 2
Give a set of lipear inequalities in R® that define the convex hull
of S.

Introduce additional variables and give a set of linear inequalities
in a higher dimensional space that define a polytope whose

projection on R is the convex hull of §.




5; Consider a finite set E and g partition of E into nonempty subsetg E1’
Ez’ e eas Em. To each Ei, aésign two integers ii and u ({i < uj)- let k be a
positive integer.
Consider B = {X c g - £i < ’X n Ei[ < u for i = 1,2,-..7m; IXI
Assume B ¥ @. |
(a) Let X, X’ € B and x € X \ X'. Show that thefe exists x” € X \ X
such that both (X \ {x}) u {x’} and (X \ {x"}).u {x} belong to B.
(b) Show that B is the family of baseg of a matroid.
(c) Describe the circuits of this matroid.
(d) Assume that . each ej € E has a weight wj. Describe an algorifhm for
the following problem.

Problem (P) : Flnd a set X € B having the smallest welght Zow .

(e) Assume R ig the edge set of a connected graph with k + 1 nodes I1s
the following problem NP-hard?
Problem (Q) : Find a minimum weight spanning tree X with- the

additional.condition that X € B.

(f) Remove the condition that El’Ez""’E is a partition. Can problem
. m

Q) be solVed in polynomial'time? What about problem {(P)?




6. Consider the nonlinear program,
min x Hyx

s-t.eTX =1

where H jigo an nxn symmetric matrix and e g vector of p Ohes .

(a) Write first-order hecessary conditione for an optimal point X.
~ Write ap expression for the search direction vector (i.e., the

{d) Suppose we solve with the reduced gradient method., Write an

Simplify ag much as posgsible. Let X be the bagic variable, and
define
X = (% %)

hT
11 1
H =

fon]

h
h
1

.Hint: if x g(y),.

%@,y = v f(x,y) * 98T f(x,y).

1

(e) Let us write the problem in the form

min x Hx + Hp(x)

where ¢ ig an exact penalty function. Define g suitable function L}
and state g lower bound for the bParameter y jif % is the optimal

point.
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Let g(x)‘= cx+d, where c is 3 1xn vector, x is an nxl vector, and d is

a scalar. Given p such functions it is possible to define a plecewise

linear function f(x) as:
f(x) = Minimum (C“)X + d“), C(Z)X + d(zl,...,c(p)x + 'd(P,)).
For such a function, consider the problem

Maximize f(x)

Subject to Ax

N4
@]

X

.where A is an mxn matrix and b is an mx1 vector. Show how to- convert

"this problem into a linear programming problem.

R




ycle of length 8reater thap three
Possesses g chord,

i.e. an edge joining two non

the cycle. Given tyo vertices X,y,

Consecutjve vertices of

denote by d(x,y) the smallest
humber of edges in g pPath frop to y.

(2) Let x and y pe nonad jacent Vertices of 4 chordal 8raph and jet k
be anp integer sSuch tﬁat 1 # k = d(x,y)-1 Show that the set of
Vertices » Such that d{x,z) = and d(z,y) = d(x, y)-k
clique.




Consider a bipartite graph, with bipartition (A, B). Eaéh 1 € A has an
integral supply a;, thle each j € B has an integral demand d;. There
exist edges (i, j) for some pairs (1,3) with i € A and j € B. An edge
allows an arbitrary flow from i to j. The objective is to determine
if there is a feasible flow in this graph (one that meets all supplies

and demands exactly)

(a) Give an algorithm for this problem (possibly by reducing it to an
already studied problem) and. prove its correctness. Your algorithm
need not be the fastest possible, but should be "appropriate” (don’ t
solve a multlcommodlty flow problem when a shortest path problem is

suff1c1ent)

(b) Based on this algorlthm give necessary and sufflclent conditions
for a feasible flow to exist. These conditions should go beyond “If
the algorithnm works, a flow exists; otherwise, not."

(¢) How would your algorithm and conditions change 'if each edge had a

capacity u; ;7




1q. Consider the following two problems:

Set covering:

. 7 min ¥ (cjx; . J € N)
(SC) z (XJ e N;) = 1,ieM
X5 € {0,1}, jeN

Facility location:

min ¥ (cjx; - J £ N)

%

z (Yij I_j € Ni)
-z (yiJ- :1e MJ) + ,MJ,Xj

1, ieM
0, JeN
Yis 20,V i,j4; x; ¢ 0,1}, e nN

(FL)

¥

(2) Show that under 3 certain definition of M;, § e N, (SC) ang (FL)
are equivalent: x ¢ gV is. an optimal solution to (sc) if and only if

there exists y e RN such that (y,x) is an optimal solution to (FL).

(c) Give a different formulation of (FL), say (FL‘), using the same

set of variables, but such that the linear programming relaxation of




Q:=Q, v Q,, where for i = 1,2, P, and Q; are
nonempty pdlyhedfa. For a set S, let conv(S) denote the closed convex
hull of S.

(s}

a.1. conv(P n Q) conv(P) n conv(Q)

a.2. conv(P n Q)

v

conv(P) n conv(Q).

(b)

Give necessary and sufficient conditions for bot

true-simultaneously.

&=y v
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1. Let P = {xeR" .’

are linearly independent.

dimension of P.j




A o <
,\!/ -4 /
\j -7 [l s




22T

2. (a) Develop an efficient (not simplex, ellipsoid or interior point)

algorithm for the linear program

I
Max I C X

J=1
s.t X1 = b,
I-1
X; - Z a;J‘Xj Sb, l=2,3, .,
J=1
X520 j=1,2, » N

where all b;’s and a;;’s are nonnegative (the €3;’s may have arbitrary

signs. )

(b) Apply your algorithm to the problem

Max 4x; — 3x, +.2x3 - Sxg4
X1 = 4
=2x, + X2 =<3
—x,‘— 3x2 + x4 =<1
—3x, T Xz + x, =4

optimal for all nonnegative right hand sides.

(d) Prove B™' = @.




Consider the set partitioning problem

{SP) min{cx : Ayx = 1, xe{0,1}"},

where A is an mxn 0-1 matrix, and let M .= {1,...,m}, N .= {1,...,n}, N,

{jCN : aiJ- = 1}, ieM.

Let i ,keM be such that

Ni n N # g, Ni\N, # o, Ne\N; = g, .

Then there exists g unique 2-partition of N; := N;i-u N into Subsets’
Ni« .and N2, such that the dichotomy

(1) (x; = 0, jeNl,) v (x; = 0, jeNZ,)

?
is a.valid branching rule, and N!, is (inclusioh—) maximal subject to this
condition.

(a) Prove the above statement and find the unique Z2-partition in
question.

(b} Let

C = conv{xeR" - Ax = 1, x = 0, x satisfies (1)},

Introduce 2{(n+1) additional variables to describe C by a system of

roughly 3n+2m linear equations angd inequalities. Z)rb}ac4"35k-, L('g'lexa -
{c)

- -

Use projection to describe C by a systen of linear inequali-

ties in the original variables. How many inequalitieg do

You need?
Which inequalities are facet defining?




4. Consider the problen
. min{cx - xeX},

where X is the solution set of fhe system

(1) 2(x:5 : jeN) =1 ieN
(2) =05 : ieN) = 1 jeN

'(3) Xij + xsi =1 i,jeN
{4)  x;5e10,1} ' i, jeN.

(a) Iﬁterpret the above problem on the complete directeqd graph D with node

set N.

Let X be the solution set of the systenm (1), (2), (3) and

v

(4%) Xi; = 0, i, jeN.

(b) Let (14) and (2‘) be the constraintg obtained frop (1) and (2),
respectively, by replacing "=" Wwith “=<" anpg let X’ be the solution set of (17);
(273, (33, (4). Further, 1et g be the intersection graph of the coefficient

natrix of the system'(l’); (2}, (3). Show that the vertex packing polytope

valid inequalities for conv x- assoclated with the odd holes of G. Do these

inequalities define facetg of conv X2 Can lifting be applied to them?




old stamp Collectiop disappeared. Each hag entered once, stayed for some
time, ang then left. If two were bresent at the Same time, gzt least ope of

them say the other.

following data: Ape Said he say Burt ang Eddie at the Museun. Burt sajq
he saw Abe and Frank. Charlie said he Saw Dennis and Frank, Dennig said
he saw Ape and Frank. Eddie said he gau Burt-and Charlie. Frank Said he

saw Charlije and Eddie.

The detectiveg didn’t knoy what'to make of thesge testimonies; they dig




Solutions

1. w-l.o.g., assume the firgt P components of X are positive ahd the last n-p
Componentsg are'O. Let x = ( 341, Y > 0. Denote by B thé first P columnsg of'A.
Then Ax = By = p.

Suppose the columns'of B are not linearly independent.. Then there exists

W # 0 such that By = . Therefore, Bly + gw) = B For smaij €nough ¢,

Y = b.
Y £ ew > Q. Consequently X’ = ( y;C" } and x* = {'y;CHAJ are both jin p. Since

1 1 .
X = gx’ + gx”, X 1is not 3 vertex of p. :

Suppose x js not a vertey of P, Then x = 3y’ . (1-A)x~ whére X', x“ep,
X" # x“ and 0 <) < g Since x,x'eP, A(x—x’) = Ax-Ax‘ =@, Furthermore, the

last n-p Components of X‘, and hence of X=x’, must be 0. There fore the Columns

of B are linearly dependent .

2. ta) 1r € = 0, set Xa = 0.

Otherwise, set x, = b, + 2 anjx;

Replace Xn in the objective function and remove the -last constraint. Now the

linear pProgram has the same form but one fewer variable. When only one vVariable

is left, set x; =40 He, 50 and plug back to get x5, ..., x,.
. b;ifc, >’¢

(b) Xq =0
X3 =1 +x; ¢ 3x, Updated Cy = 442 Updated Czx = -34¢
X> =3 + 2%,
Xy = 4, Now we get x, = 11, x4 =n38.

(c) The algorithm depends op the S1gns of the terms ip the objective
function which, after_updating, are expressed in terms of the C;’s and aj;’s
only. So the optimal basig does not depend on the b;’s.

(d) x = B7'b. Assume sope element of B, say b;;, is strictly negative,

Then, let b = €5 be the j*h unit vector.  This ‘implies X; < 0, a contradiction




3. {a) Defin_e S; = {jeN,, : Qi3 = ayy =1}; Sz = {jeNgy : aijtaxy = 1}, and
n

let Ni, € 5,, NZ = Ni\Nix.  ‘Then any xe{0,1}" that satisfies ¥ anjX; = 1 for
h=1

h =i k, satisfies the disjunction (1). Hence (1) is a valid branchlng rule for
. any such 2-partition. The one for which Nl is maximal is Nl = s,, N, = s,.
For suppose Nl 2 Si, N n Sz # @.  Then there exists xe{0, 1} such that x; = 1.
for some JjeNl, n S; and x, = 1 for some &:N,k N Ss, and obviously there exists
some (SC) for which this x is feasible; hence the disjunction (1) is not valid.
(b) Let Py 1= {xeR" : Ax = I. x =20, x5 =g, JjeNi )}
Py := {xeRr" - Ax = 1, XZO,'XJ=0 JeNg }

Then C = conv(P; u P,). Further,

conv(P; U Py) 1= {x : x - ! _ - %2 =0
Ax' - 1x] ' =0
! =0, jenl,
A2 - 13 =0
x3 | = 0, jeN
Xo + x5 =1
x', x4 = 0, x*, x2=0 }

(c) The projection of the above system on the subspace of the: x varlables

is the set of inequalities ax = %o for all (c«, ®%o) in the ‘cone W defined by

—a; + ua; 0 '\ch\N}k
-y + VA; = Q JeN\N%,
- ul + ae = 0

- Vvl + g, = Q.

Further, an inequality ax > %o defines a facet of C if and only if («,aq)

is an extreme ray of W. The number of extreme Tays may be exponential in n.

If we can find u, V s.t. u1 = @ =1, V1 =g = 1, ua; =0, jeNi,, va, = 0

JjeNl ., then ax = 1 is valid with

(¢] for JCN.k Y N
m.aX{uaj»Vaj}» JSN\Nik'UYN?k }




4. (a) 'The problem is the assignment problem without cycles of length 2 apg
'without loops.  0On the complete digraph on n nodes D, X is the incidence vector
of arcs ang €very solution to (1), (2, (3), (4) is a union of dicycles of

length at least 3.

i

Code

can have fractional vertices. aAp example for n = 3 is x;, = X2 = Xq5

N |

Xz =

which is conv X

A set S of vertices of ¢ induces g hole in ¢ if it can be ordered into a
Sequence v,, ... ,v_ g = ’S’ Such that for j = I,....s, v; is adjacent to Vi
and v;,; and to no other vertex in S,  Two arcs (i, j), (k,¢) of D correspond to
adjacent vertices of G if i =k or J=¢ or i =¢ and j = k. Thus - a closed
Sequence of arcsg (i,,j,),.‘.,(iq,jq) of odd length ip D corresponds to an odd
hole in ¢ if and only if for i = I,...,q, i, = iker or j, = Jki or iv = Jue
“and §, = ix+1, and for all ¢ * k+1, i, = i, and Jx # J,, and either i, = Je or

Je = i,. If H is the arc set of p corresponding to an odd hole ip G, the

inequali ty

C€orresponding odd hole inequality for P(G) ig facet defining. If the inequality
does not define 2 facet of conv X, a facet defining inequality can be obtaineqd

from it by lifting.




S.

Assigning a vertex to each of the six philatelists and an edge to each pair

of philatelists who testified to have seen eéch other,

Abe

we obtain the graph G éé f
shown below.

Fronk

But an interval graph is triangu-

and G has a3 4~hole: Abe—Dennis~Frank—Eddie.

This is a céntradiction.
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Linear Programming 1

1. The well known Klee-Minty (KM) example of size n can be stated as:

Maximize Zlﬂ"“j:pj
J=1
i1
Subject to {2210{‘j1:j} +z; < 1001 t=12,.., n)

=1 :

x; 2 0 (j:172)"'7n)'

(a) Write the KM problem for n = 3.
b) Show that the maximuin z-change maximum objective function change) 1votin
. g ge) p g

rule will find the optimal solution in one simplex pivot.

(c) Write the dual problem to the KM problem for n — 3. Find the optima] solution to |
the dual problem by inspection. Show that knowledge of this solution essentially
reduces the KM example to a one-by-one problem '

(d) Indicate why the results mn (b) and (c) hold for the KM problem for any .




Linear Programming 2

min cz A (1)
si. Az =1}
12_0

min cr (2)
s.t A_z =b
x> d

The motivation for this strategy is that the more restricted problem (2) excludes many
extreme points that might have been visited if (1) were solved first. The solution
of (2) may be close to the optimum and therefore allow one to avoid visiting these
extreme points when the bound d is relaxed. Assume for the sake of argument that
this motivation is valid. ' '

condition.

(e) Let & be chosen as above. Show that Agr < Ad. Hint. Does ¢y increase or
decrease? A ’

(f) Assume that (2) is solved and reoptimized with-5 simplex algorithm that js guar-
anteed to terminate, Prove that the algorithm described above terminates with
an optimal solution after finitely many iterations, if an optima] solution exists.




Convex Analysis [10 points] ,

3. Identify which of the following sets are convex and which are not. Explain why.

(a) [2 points] A point z-in JR{12--n}x{1,2,.n) is said to be metric if it obeys the
following conditions. '
1. z;; > 0 for all 1,7 € {1,2,...,n}.
H.zi;=0foralli e {1,2,... 1}
ii. Vi,j € {1,2,...,n), Ty = xj;
iv. Vi, 5 ke {1,2,... ,n} the triangle inequality z;; < z;; + Zx; bolds.
Is the set of all metric points convex?
(b) [4 points] Define a point z in JR{12---m} X{I'Q"_"’“} to be a cycle metric if 1t is metric
and in addition, we have
v. for any pair i, ; _notA adjacent in the cyclic order 1,2,...,n, the value of e
equals the shorter of the two alternative distances (using the z-values as

lengths) between i and 7 obtainéd by using the paths in the cycle numbered
1,2,...,7n in the clockwise and counter-clockwise directions respectively.

Note that a cycle metric is uniquely defined by the positive values assigned to the
n entries 1, 793, ..., 2.
Is the set of a]l cycle metric points convex?

(c) [4 points] Define a point z in JRO2-m)x{1.2em} (o p o o tree metric if it is metric
and in addition,
vi. there is a spanning tree T" on the node set {1,2,... ;7} such that for any pair

2,7, the value of Zij 1s the sum of the z-values of all the edges in the unique
path in 7" between 7 and 7

Is the set of all tree metric points convex?




Integer Programming

4. Consider the set covering problem

min{ez: Az > 1, 7 ¢ {0,137},

where A is m x o, with 22505 =3, and the system Az 2 1is of the form

TG TThe + 255> 1, i=1

N

Describe a lift and project procedure for generating strong éuts~from the disjunctions

.’L‘j](,') = 1 \% .'Ej2(,') =] -V xja(i) = 1. (1)

In particular-

(a) Describe by a linear system in IR*+3

the convex hull of the
polyhedra obtained from the LP relaxa

union of the three
tion by imposing (1);
(b) Show how to project this linear system onto the subspace IR™ of the variables;

(¢) Discuss briefly the properties of the cuts obtained.




5. The precedence-constrained ATSP asks for a minimum-cost tour which satisfies the
following constraints: given the home city, 1, where the tour starts and ends, for a
specified list of ordered pairs [5,7], ¢ # 1 £ §, each city ¢ is visited by the tour before
the corresponding city j. .

(a) Which arcs are unusable in any tour (which variables are forced to G) because of
the precedence constraints? ' :

(b) Define the precedence graph G* as having a node for every city other than 1, and
an arc (z, j) for every pair such that 7 has to precede j. Use G* to give a necessary
and sufficient condition for the problem to be feasible.

(c) Formulate the precedence-constrained ATSP as a 0-1 program in the arc variables
only. Can the inequalities that you are using be strengthened?




Graph Theory
6. Prove or disprove. ‘
(a) Any undirected graph that is the union of two edge-disjonf rfﬂvm;“j Trees vs

biconnected (2-vertex connected).

—
. ‘LQ\N that every node of G s adjacent to at least one node from this subset. We assu we
,h.,é/ﬁ el that every node is adjacent to itself. :

Ve o There exist a pair of node-disjoint dominating sets in any connected undirected

T graph.

(c) Let G be a cubic (3-regular) graph with a proper 3-edge coloring using colors 1,2
N and 3. For any node subset S » let §;(S) denote the number of edges colored ;
e “#  that have €xactly one endpoint in S. For any node subset S, all three numbers
}----—--—"‘“” " by (}S' )>62(S) and 43(5) have the same parity. :
Loy p o3 B, e ~
vi'/j ¢ s NPT /

e . ’ »
E ?/: (\_ﬂ_» L
' : e >
< Y s
yd -'4'. R
, .



P

Networks and Matchings [10 points]

7. (a) Let G=(V,A) bea dileﬁta'i_zmydigggpjl_(DAG) with positive weights w: A — -

IRt on the arcs. Furthermore, let + € V be a node such that there is a directed
path from r to every node v € V. A directed spanning tree of G rooted at r is
defined as an (arc-) minimal subgraph of G in which there is a directed path from
7 to every node v € V. Note that this tree has [V]—1 arcs.and every node in this

. tree has indegree exactly one, except for r which has zero indegree.

(b)

Give a linear time (O(]Al)) algorithm to find a directed spanning tree of G of
minimum total weight. (Partial credit for algorithms with higher running time.)

Let G = (V, E) be a connected undirected graph with positive lengths w : E —
ARt on the edges. Recall that a shortest path tree of T rooted at a node r € V is
a spanning tree 7, of G such that for any node v € V, the path in T, from v to r
1s a shortest length path from v to r in G. '

i. Give an example of a graph and a root node for which the shortest path tree

rooted at this node is not unique. .

1. Design a polynomial-time algorithm to find a shortest path tree of an undi-
rected graph rooted at a given node with the minimum fotal length. (The
total length is the sum of lengths of all edges in the spanning tree).
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Ph.D. Qualifying Exam
Part IT (3 hours):

Answer all 4 questi_oris.




Nonlinear Programming

1. (a) Let A be an n X m matrix with full row rank. The orthogonal projection of a
vector ¢ € JR" onto {z | Az =0} is

d=c— AT(AAT) Ac..

Use first and second-order optimality conditions to show that d is the closest point
to cin {z | Az = 0}. That is, show z = d is the unique solution of

min |lz — c“2
st. " Az =0.
(b) We wish to solve the linear programming problem
min ez
s.it. Az =19
z>0

by solving the problem 4
min ¢z —a) lnz; ' (1)

7

s.it. Az =1b

We are given a starting solution z° > 0 that is feasible in (1). In iteration k of
the algorithm, the current iterate is z*. One step of Newton’s method is applied
to the unconstrained problem,
min ¢z —a )y lnz;)
i

using z* as the starting point, to obtain the point Z. Then the orthogonal pro-
Jection d of Z — z* onto {z | Az = 0} is computed. The next iterate 1s

T =k L g

The parameter « is gradually reduced to zero as the algorithm proceeds.

1. Given that the current iterate is z*, write an expression for Z. It is convenient
tolet D = diag(a¥, ..., z¥), so that z* = De, where e is a vector of ones, and
the gradient! V(¥;Inz;) evaluated at z = z* js D¢,

1. Let d, be the orthogonal projection of —D?c onto {z | Az = 0}, and let d, be
the orthogonal projection of z* onto {z | Az = 0}. Show that the direction
d is a linear combination of d, and d..

Notes: The above method is a projected Newton barrier method for solving an LP. The
directions d., d, are predictor and corrector steps. Note that the corrector is given
less and less weight as the barrier parameter o goes to zero. For appropriate a’s, the
method is identical to Karmarkar’s famous projective scaling method for solving LP’s.

'The gradient V f(z) is (%f(x), R E%f(x)).

10



AXE Jov

Jerry Thompson’s LP1 Solution
1. (a)
Maximize 100z; + Wz, + gz,
Subject fo z <1
20z, + oz, < 100
002+ 20z, + 2, < 10000

Bringing z; into the basis gives » — 10,000 and the reduced costs of z; and z,
become negative, —100, —19 so No improvements are possible. Hence solution is

(b) _
Minimize vr + 100v, + 10, 000w,

subject to vy -+ 20v, + 20003 > 100
vy A+ 20v3 > 10

(¢) For (a) the reduced costs of varjabe J after the pivot are —10"™* and z = 109g~-1.
for (b) the surplus variable for the j-th constraint when v, = Tand v; = ¢, =

14




John Hooker’s LP2 Solution

(a) After the change of variable Yy =z —d, (2) becomes

(b)

(d)
(e)

(f)

“min ¢y +cd : - (2)
st. Ay=b— Ad '
y 2 0.

Let B be the optimal basis, so that the optimal solution is (yp,yy) = (B7(b—
Ad),0). (2) is identical to (1) when d = 0. So the algorithm can be terminated
if B is optimal when d = 0. Because d does not affect the reduced costs, it is
enough for B to be feasible, i.e., '

B > 0.

(zB,zN) = (B, 0) is optimal in (1).
It suffices that B~1(b— Ad') > 0, or

Ad' < B™'b.

The dual simplex method, because the dual solution cgB™! remains feasible in
the dual.

Let y,y' be the solutions of (2) corresponding to d,d’. Because B becomes infeasi-
ble in (2) when d’ replaces d, the corresponding dual solution becomes suboptimal.
The new optimal dueil_'va'lue 1s therefore strictly greater than the previous one,
which implies by strong duality that cy’ > ¢y. Meanwhile the optimal value of (2)
cannot increase because d' < d. So cy’' + Ad' < cy + Ad, which implies Ad’' < Ad.

Because cy strictly increases in each lteration, an optimal basis B that becomes
infeasible in (2) cannot become feasible again. Because there are a finite number
of bases, the algorithm terminates with an optimal solution.

15




Ravi’s Convex Analysis Solution

(a) Is the set of al] metric points convex?

YES. There are 2 couple of obvious ways to show this. The most direct is to
observe that this set js described as the intersection of the finjte set of closed
halfspaces given by (7) through {(tv). The more roundabout way is to verify
convexity directly by showing that all points in the line -between any pair of
metric points are metric. ‘

(b) Is the set of all cycle metric points convex?

NO. Here is an example, where z; and T2 are cycle metrics, but 7 — 5%22 1S not
one. ' ’

(c) Is the set of al] tree metric points convex?

NO. Here is an example of two points z; and z3 both tree metrics but their
midpoint is not.

<~ M

16




Balas’ Linear Programming 1 Solution

4. (a) Let the system Az 21L,z>0,—z> —1, be written as Az > 1. Then the convex
hull is the set of z € JR™ for which there exist vectors (v5,v5) € Rk =1,2,3,

satisfying .
x — Z yk . — 0.
k:l,?,i} _
Ay* — lys > 0 |
y],'c(ik)' - Yo = 0 k=123
2w =1
k=1,2,3

ve > 0, k=1,2,3
(b) The projection cone W is the set of (o, {u*, ug}kzl’z,:-;,ﬁ) € RHH3(m+2nt 1)+l 0o
fying
a — ukaj = 0, ]6{17'7n}—](7’k)
@ — u"EJ-(,-,C) - ug = 0

T+ wf — g > 0, k=1,2,3,

where @; is the j-th column of A.

(c) The extreme rays of W give rise to cuts az 2 P that are facets of the convex hull
of the union of the three polyhedra.

17




Balas’ Linear Programming 2 Solution
9. (a) Unusable arcs:

(1,7) for any j that has predecessor
(z,1) for any ¢ that has 3 successor
(7,7) for any pair [4, 5] such
(¢,7) for any pair [z, 5] for
and k has to precede

that 7 has to Precede j

which there exists k # 1 such that ¢ has to precede %
J- :

z(dt(2)) = 1
o(67(2)) = 1
z€{0,1}4
2(P(5,1)

i:l,...,n

< PG -1 for all paths P(j,7) from
[Z, 7] such that ¢ has to'p
The last set of inequalities can be strengt

‘7:(.7'7 Q) + .’I:(Q, Q) + :C(Q,

J to 7 and all pairs
recede j.
hened to

1) < 1Q] for al] Q@ C N\ {1,4,5}.

18




Ravi’s Graph Theory Solution

6. (a) FALSE. There are several small examples, e.g.,

tly one endpoint in S is even. Thus, for any pair of
distinct colors 7, ; and for any node subset- S, 6;(S) + 8;(5) is even. applying this
to the two pairs (1,2) and (1,3) and arguing about parity shows the result.

(c) This is TRUE. (only if) Given that T(G) is Eulerian, we can infer that G is

19



Ravi’s Networks Solution {10 points]

7. (2) Let G = (v, A) be a directed acyclic graph (DAG) with positive weights w : 4 —,

(b)

IR* on the arcs. Furthermore, let r € V be a node such that there is 2 directed
path from r to every node v € V. A directed spanning tree of G rooted at r 15
defined as an (arc-) minimal subgraph of G in which there is & directed path from
7 to every node v € V. Note that this tree has V-1 arcs and, every node in this
tree has indegree exactly one, except for r which has zero indegree.

Give a linear time (O(A])) algorithm to find & directed spanning tree of (2 of
minimum total weight. (Partial credit for algorithms with higher running time.)

Let G = (V, E) be a connected undirected graph with positive lengths w : £ —,

a spanning tree T, of G such. that for any node v € V| the length of the path in
7, from v to r equals that of a shortest length path from r to m G.

1. Given an example of a graph and a root node for which the shortest path tree
rooted at this node is not unique.

20




John Hooker’s Nonlinear Programming Solution

1.

(b)

To show that the arcs picked form a directed tree rooted at r, it suffices to show
that there is a path from r to every node v. This can be shown “backwards” by
following the trail of Incoming arcs picked starting at v. Since there are no cycles

to v, along the direction of this path from r to v.
Let I, represent the length of a shortest path from r to ». Note that I, = (.

Furthermore, if G, contains an arc (z,y) note that L, =1, +l(zy). In particular,
since all lengths are positive, we have I, > [, ‘

It 1s easy to see G, contains no cycles since this would give a contradiction fo-
lowing the last derived inequality around the cycle. Also G, contains at least one

21
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Assume that the optimal solutions to the two linear programs

Max cx Max dx
(i) subject to Ax = b (ii) subject to Ax = b’
X0 ’ X0 i

have the same basis. Consider the problem

Max {(Ac + Axd)x

1A
o

(iii) subject to Ax

X

Iy
o

where A; + A, = 1 and A1,A2 = 0

If u* and v* are optimal dual solutions to (i) and (ii), show that

Aiu* + A;v* is an optimal dual solution to (iii).




(a) Show that if a2 convex set C in RY jg covered by a finite family
of halfspaces (each may be elther open or closed) then C is

covered by some d + 1 or fewer of these halfspaces.

(b) Consider the following statement:
A set A in R* is contained In the boundary of conv 4 if
and only if B js contained in the boundary of conv B

for each subset p of at most f(d) elements from A.

(i) Let f*(d) be the smallest value of f(d) for which this

statement is always true. What is £*(d)>

(ii) Give examples showing f*(q4) could not be smaller

(iii) Prove that the value of f*(q) you gave in answer to part
(i) is always sufficient to ensﬁre that the statement. ig’

true.




Define K

and

{xelR":szb,Ostl}

it

{x e R": Ax = b}

K° = conv (K n {0,1}"). , ‘ _ , 7

Consider the following procedure:

(a)

(b)

{c)

(d)

(e)

0. Select an index Je {1,...,n)}

1. Multiply A = b with 1 - X5 and x; to obtain the non—
linear system

(1 - x3)(4x -~ b) =0 ‘
_ 5 (1)
x;(Ax - b) = 0.

2. Linearize (1) by substituting y; for x;x_,? i=1,...,n,
i # j, and x; for x3. Call the polytope defined by the
‘resul'ting system M;(K).

3. Project M;(K) onto the X~-space by eliminatirig. ¥i,

i=1,...,n i= Jj. Call the resulting polytope PJ-(K).

Show that K° € P;(K).
Show that Pj(K.) < K. -
Assume that K n {x : x; = 0} = . Show that P;(K) € K n
{x : xJ; = 1}. (Hint: The Anequality x; -~ € = 0 is valid for K
for some £ > 0.)
Let K = {x £ R%: “2X; + X2 <0

2%y + x5 = 2

0 =x; =1, j=1,2}
Describe K°, P,{K) and P,(K).

'For tne polytope K of part (d), show that the Chvatal~Gomory

procedure cannot produce K° in one iteration. What is the

Chvatal rank of the inequality x, =< 07




Give polynomial time algorithms for the following two problens:

(a) In a connected undirected graph G = (V,E) with strictly positive

edge weights find a maximum—weight edge set E’ that contains no

cutset of G.

(b) In a connected acyclic digraph D = (N,A) find a maximum=~

cardinality arc set A’ such that no two members of A’ are con-

tained in the same directed path.




SOLUTION

Because the optimal basis to (i) and (ii) is the same tﬁey both have the

»
Same primal solution x .

is optimal for (i) we have

* *
U 20, uA>c, and u b = cx .

(1)

Because v is optimal for (ii) we have

(2)

Because of the first two properties in (1) and (2) we have

* » - *» K 2 »
Au + Av 20, (Au +2Av)a = AUA+ AvaA 2 AcCc+ Ad.
1 2 1 2 1 2 1 2

Because of the last property in (1) and (2) we have

(Au'+xv’)b=Au'b+Av'b
1 2 ) 1 2
= Aex + Adx
1 2
-»
= (Alq + A d)x

so that Alu‘ + AZV' 1s an optimal dual solution to (iii).




Question 2

a. This is an application of Helly’s Theorem. Recall that Helly’s Theorem states
that a family of n convex sets in R9 has non-empty intersection if each
subfamily of at most d + 1 sets does.

Suppose that the convex set Cin R% is covered by the n halfspaces H; i=
1,...,n. Consider the complementary halfspaces HE i= 1,...,n. Since
the halfspaces cover C, the family of convex sets HENC, i = 1,...,nmust
have empty intersection. By Helly’s Theorem there must be a subfamily
of at most d + 1 sets with empty intersection. We may assume, without
loss of generality then that the family #F N C,i=1,...,d+1 has empty
intersection. But then the halfspaces H;, i =1... ,d+1 cover C.

b. This is an application of Steinitz’s Theorem. Steinitz’s Theorem states that
if a2 point z is in the interjor of conv A for some A C R?, then it is in the
interior of conv T for some T' C A with |T| < 24. :

With Steinitz’s Theorem in hand, the proof is simple. If A C R? is not’
contained in the interior of conv A then there is a point z € 4 in the

Now, to prove Steinitz’s Theorem.

We prove this by induction on d. For d = 1 the theorem is trivial. Assume
Steinitz’s Theorem holds for d < k for some k > 2.

Consider a point z in the interior of conv A for some subset A of R¥. ‘First,
we establish that z is.in the interior of conw T for some finite subset T° of
A. Since z 1s in the interior of conv A, z is in the interior of some simplex

simplex as a convex combination of at most £ + 1 points of 4, thus taking
the k + 1 points of 4 for each of the £ + 1 vertices of the simplex, we get
a set T of at most (k + 1) points in A4 with z in the interior of conv T

Now, choose a minimal subset B of T° with the property that z is in the

interior of conv B. Choose a point b in B. Since B is minimal, z is not

conv B, it follows that H must separate b from conu(B — {6}) and there
must be a point ¥ in B — {6} not in H. '

Now, consider the mapping f of points in B — {4} into the hyperplane o

defined in the following way. For each point p € B — {b} define f(p) to be -
the point at which the line segment conv{p, b} meets the hyperplane H.
Note that each point, P must map into a unique and distinct point in H
for; if p and p’ map into a common point, the three points b, p and p’ are

colinear and, We may assume, that p’ lies between pand b. It is easy to




see that in this case we may remove p’ from B without -changing conv B,
contradicting the minimality of B.

Further, it is €asy to see that r must lje in the (relative)- interior of
conv{f(p) : pec B — {8}} (ie., the interior of the set in the k — 1 di-
mensional affine space H). :

Now, by the inductive hypot.hesis, We may select a subset S of at most
2k—2 points from B so that Z 1 In the interior of conv{f(p):pec B— {6}}.
Further, it is easy to see that z is in the interior of the convex hull of the
at most 2k points Sy {5,8'}. o

This competes the proof.
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(a) Find a minimun weight spanning tree T ip

G.  Then E’ .= E\T containg
DO cutset of G, since €very cutset hag an edge in T. » EY is a maximum
weight edge set with respect to thig Property, since T

is mihimum—weight.

(b) Adg nodes s and t to D, and arcs (s, i

S, L. Assign
lower bounds Z; .

in-arc (i, j), as follows:
e - f1 (1,3) e A- Y
Y70 (i,3) £ a\ar -
Ui; = o (i, j) ¢ A,
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Convex Analysis

Solve one of the following problems.

1. Let K C R™ be a closed, pointed, full-dimensional cone, and let

K ={yeR"yTz <0, Vo ¢ K.
: 2

Let A be an m x n matrix, b an m-vector, and assume that(yTA§ € wnt K™ for some Y.
Prove that the set §$ = £ {z]Az = b} is bounded. Hint. Consider rec §.

2. Let a € R™, and assume a1 > ... > a,. Let € be the n-vector with all cothponents equal to

1. Cousider the set
P = {(zu)|lze R,uc ’R”,ué 0,ze +u > a}.

Prove that (2*,u*) is an extreme point of P if and only if for some k ¢ {1,..,n},

*

2" = ag
y aj —ar forj=1.. 'k (6)
0 forj:k-}-l,...,n ) ‘




IP Question 1

Consider the 3-index assignment problem AP,

min )" ZZ CiikTip
i ;%

s.t.
sziﬂc = 1 1eJ]
ik
ZZI;]'/,; = 1 ] €J
Pk ' :
ZZ.’L‘;J']C = 1] k € K
A g
ik €401}, ieljegke K,
where |J] = Ml = [K| = n, and its generalized version GAP; in which the coefficients

1. Formulate different types of Lagrangean duals for AP; and compare the strength of
the bounds they provide.

2. Do the same thing for GAP;.




1P Question 2

Let P := U;erP;, where
Pi:={z € R": Az = d',z > 0}, e, |T|>2
where A is an m x n matrix and each d, i € T, is an m-vector.

1. Give a linear description of C := ¢l conv P.

2. Show that C C @, where Q is the set of those z € R™ that have an extension (z,) €
Rt = [T}, satisfying

Az -dN = 0
€T
ok =1
_ i€T
$20,/\;20,i€T

3. Show that Q@ =C if for every m x m nonsingular submatrix B of A and every convex -

combination d(}) := Y;er d'); (where Y;cp ); = 1), B~*d(A) > 0 implies B~'d* > 0
for all © € T such that A; > 0. [Hint: if the condition holds, then from any basic
feasible solution to the system in part 2 your should be able to construct a basic
feasible solution to the system in part 1 which describes C.] '




Linear Programming Theory and Algorithms

Consider the linear programming problem,

max ¢!z (1)
sit. Az <b
0<z <m,

which is assumed to be feasible. Define,

Su) = max{cTz]uTAxS b, 0< 2 < m}.

min  S(u)
st u> Q.

a) Prove weak duality for the surrogate dual; ie.,

max{cT:_c]A:z: b, 0<z<m}< min{.S(u)ju > 0}.

b) Prove strong duality for the surrogate dual; j.e.,

max{c’z|Az 6L 0<z<m) = min{.5(u)|u > 0}.
c) The optimal value of the linear Programming problem

(1) could conceivably be found
by solving the surrogate dual.

It suffices to find a loc

al minimum, because S(u) is -a
quasiconvex function. Prove that S(u) is indeed quasico

nvex (j.e.,

Slau + (1 - a)v) < max{S(«), S(v)}
for any u,v > 0 ang any a € [0, 1]).

PRI



Graph Thedry

(a) A signed graph is a (undirected) graph with edge weights +1 or —1. A cycleof a signed
- bipartite graph is quad if the sum of its edge weights is a multiple of 4. A hole is a
chordless cycle.

Show that a signed bipartite graph has a quad cycle if and only if it has a quad hole.
b) A signed bipartite raph in which no cycle is quad is said to be unbalanced. Let G
g g q

be a bipartite graph which can be signed to be unbalanced. Show that the following
algorithm produces such a signing.

Pick a spanning tree T of G and sign its edges .arbitrarily. Sign every edge e not in T
so that the unique cycle of T'U {e} is not quad. ‘

(¢) A wheel (C,z) is defined by a hole C and a node z not in C but having at least three
neighbors in C. A 8-path configuration is defined by three internally disjoint paths P;,
..P2 and P; (i.e. no.common intermediate nodes) connecting two nodes . and v. If Py,
P, and P; are chordless (hence u and v are nonadjacent) and no edge corinects nodes
in distinct paths, the 3-path configuration is said to be induced. If G is bipartite and
u and v belong to the same side of the bipartition, the 3-path configuration is said to

be homogeneous.

Let G be a bipartite graph which can.be signed to be unbalanced. Show that G contains
no induced homogeneous 3-path configuration and no wheel.

(d) Show that a bipartite graph G contains an induced homogeneous 3-path configuration
or a wheel if and only if G contains a homogeneous 3-path configuration. -




Network Flows

Consider a directed network with a cost and a capacity associated with every arc, and a
supply or demand associated with every node. All data are integer.

(a)

(b)

Two minimum cost flow problems P’ and P" are capacity adjacent if P” differs from
P’ only in one arc capacity and by 1 unit. Given an optimal solution of P’, describe
an efficient method for solving P”. Justify your answer.

Let U be the largest arc capacity. Let K = [log, U | and suppose that we represent each
arc capacity as a K-bit binary number, adding leading zeros if necessary to make each
capacity K bits long. Then the minimum cost flow problem Py considers the capacity of
each arc as the k leading bits in its binary representation. Given an optimal solution

the minimum cost flow problem P = P?




G~

o

7 AL

OR qualifying exam: Part IT

Three hours

Answer all questions. You are expected to spread

NLP, DP and Proba, (one hour each).

your time evenly between




Nonlinear Programming
Answer both questions.

1. Consider the linear programming problem, -

min cz . (1)
st. Az =1}
x>0

a) Write the Lagrangian dual of (1), dualizing only the equaﬂty constraints.
b) Show that the Lagrangian dual is equivalent to the linear programming dual.

2. Consider a linear progrzimmjng problem in the following form,

min Tz
st. Az =0
Tz =1
z >0, (2)

where e is a vector of n 1’s. It can be written as a nonlinear problem by the change of
variable z = Y2e, where ¥ — diag(y1,...,9,). The resulting problem is,

min ¢TYZ2e , (3)
st. AYZ%e =g
eTy2e — 1

min cTka (4)
st. AYiy =0
e Yiy =1,

where y* is the current jterate and Ye = diag(yf, .., yk).

a) Show that if the solution of the subproblem is ¥ = y* (ie., the sequential algorithm
has converged), then the current iterate y* satisfies the K-T necessary conditions
for optimality of (3).

b) To ensure that the LP subproblem is bounded at each iteration, one can add a trust
Tegion constraint to (4), resulting in the subproblem below.!

to Karmarkar’s original projective scaling method.




min cTka . (5)

Show that if the solution of the subproblem is ¥ = y*, then y* satisfies the K-T
hecessary conditions for optimality of (3).
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Linear Prggramming 1
1. The well known Klee-Minty (KM) example of size n can be stated as:
Maximize Y 10"7z;
=1

—1 »
Subject to {23 107 7z;} +2; < 100! (t=1,2,...,n)

=1

v
o
()
i
—t
UM
S
~—

Z;

~(a) Write the KM problem for n — 3.

(b) Show that the maximum z-change (maximum objective function change) pivoting
rule will find the optimal solution in one simplex pivot.

(c) Write the dual problem to the KM problem for n = 3. Find the optimal solution to
the dual problem by inspection. Show that knowledge of this solution-essentially
reduces the KM example to a one-by-one problem '

(d) Indicate why the results in (b) and (c) hold for the KM problem for any n.




Linear Programming 2

2. The aim is to solve the linear prog-ramming problem

min cz (1)
s.t. Ar =4}
2>

min cz 2
s.t. Ax =%
z>d

The motivation for this strategy is that the more restricted problem (2) éxcludes many
extreme points that might have been ‘visited if (1) were solved first. The solution

extreme points when the bound d is relaxed. Assume for the sake of argument that
this motivation is valid.

" (2) It may be possible to terminate the algorithm even before g — 0. State a conditijon
that is sufficient for the algorithm to be terminated. Hint. Solve (2) after the
change of variable Y=z —d, and let B.be the optimal basis.

b) Write an ex ression for a value of z that is optimal in 1) at-termination.
p
(c) What type of simplex algorithm would You recommend for reoptimization? Why?

(d) If the termination condition jp part (a) is not satisfied, the algorithm replaces d

condition.

(e) Let d be chosen as above. Show that Ad’ « Aq4 Hint. Does cy increase or .
 decrease? '

(f) Assume that (2) is solved and reoptimized with a simplex algorithm that 1s guar-




Convex Analysis [10 points]

3. Identify which of the following sets are convex and which are not. Explain why.

(2) [2 points] A point z in R{2-m}x{12,..n} 1s said to be metric if it obeys the ™
following conditions. L
1L z;; >0foralli ;¢ {l,?,...,n}.
H. z; =0forallz {1,2,... ,n}.
. Vi,j € {1,2,. .. ), zo= T
w. Vi,5,ke {1,2,... ,n} the triangle inequality Zij < T + z4; holds.

Is the set of all metric points convex?

(b) [4 points] Define a point z in R{L2rmdx{12,em} () o cycle metric if it is metric
and in addition, we have ' '

" v. for any pair 1, J not adjacent in the cyclic order 1,2, ... , 7, the value of z;j
equals the shorter of the two alternative distances (using the z-values as
lengths) between 7 and 7 obtained by using the paths in the cycle numbered
1,2,...,n in the clockwise and counter-clockwise directions respectively.

Note that a cycle metric is uniquely defined by the positive values assigned to the

n entries zq5, x93, . .. > Tnl-

Is the set of all cycle metric points convex?

(¢) [4 points] Define a point z in JR{2-n}x{1,2,n) ¢ a tree metric if it is metric
and in addition, ‘

vi. there is a spanning tree 7" on the node set {1,2,...;7} such that for any pair
2,7, the value of Zij 1s the sum of the z-values of all the edges in the unique
path in T between 7 and 7- '

Is the set of all tree metric points convex?




Integer Pro gramming

4. Consider the set covering problem

min{cz: Az > 1, z ¢ {0,133,

where 4 is m x n with 22;aij =3, and the system Az > 1 is of the form

a0 T Thm taam > 1, i=1,. . m.

Describe a lift and Project procedure for generating strong cuts-from the disjunctions

@ =1V oz =1V g, =1 - (1)

In particular-

" of the z variables; -
(c¢) Discuss briefly the properties of the cuts obtained.




9. The Precedence-constrained AT'SP asks for a minimum-cost tour which satisfies the
following constraints: given the home city, 1, where the tour starts and ends, for a
specified list of ordered pairs [z, 7], 1 # 1 # 7, each city i is visited by the tour before
the corresponding city 5. ' '

(c) Formulate the precedence-constrained ATSP as 2, 0-1 program in the arc variables
only. Can the inequalities that you are using be strengthened?




Graph Theory
6. Prove or disprove.

(a) Any undirecteq

8raph that is the union of tw
biconnected 2-

vertex connected).
(b) Recall that 5 dominating set, o

f an undirected graph G is a subset of nodes such
that every node of G is adjacent to at least one node

from this subget. We assume
that every node is adjacent to itself. o _
There exist a pair of node-disjoint dominating sets in any connected undirected
graph. '

0 edge-disjoint Spanning trees is .

: , let 6:(S) denote the number of edges colored 7
that have exactly one endpoint in S. For

any node subset § ; all three numbers
43(S) have the same parity.




Networks and Matchi'ngs‘[lO points]

7. (a) Let G =(V, A) be a directed acyclic graph (DAG) with positive welights w : A

(b)

IR* on the arcs. Furthermore, let 7 € V be a node such that there is a directed
path from r to every node v € V. A directed spanning iree of G rooted at r is
defined as an (arc-) minimal subgraph of G in which there is 2 directed path from
7 to every node v € V. Note that this tree has [V|—1 arcs and every node in this
tree has indegree exactly one, except for r which has zero indegree.

Give a linear time (O(]A])) algorithm to find a directed spanning tree of G of
minimum tota] weight. (Partial credit for algorithms with higher running time.)

Let G = (V, E) be a connected undirected graph with positive lengths w : E —
IR* on the edges. Recall that a shortest path tree of T rooted at a node r € V is
a spanning tree T, of G such that for any node v € V, the path in T} from v to r
is a shortest length path from v to r in G, :

1. Give an example of a graph and a root node for which the shortest path tree
rooted at this node is not unique. :

1. Design a polynomial-time algorithm to find a shortest path tree of an undi-
rected graph rooted at a given node with the minimum totql length. (The
total length is the sum of lengths of all edges in the spanning tree).




Jerry Thompson’s LP1 Solution
1. (a)
Maximize 100z; + 10z, + z3
Subject to zy < 1
20z; + oz < 100
200z, + 20z, + z3 < 10,000
T1,Z2,23 > 6

Bringing z3 into the basis gives z = 10,000 and the reduced costs of z; and Z2

become negative, —100, —10 so no Improvements are possible. Hence solution is _

1 =22 =0, z3 = 10,000, » = 10,000. If we bring in any other variable on the
first step a lesser change in the objective function occurs.

(b)
Minimize v, + 100v, + 10,0000;

subject to' v, + 20v, + 200vs > 100
vy + 20’03 > 10
vz > 1

Clearly v, = 0, v, =0, v3 =1 satisfies all of »the inequalities and z — 10, 000.

(c) For (a) the reduced costs of variable j after the pivot are —](gn— and z =10071.
for (b) the surplus variable for the j-th constraint when v, = 1 and Uy = vy =
c-- = wUpy; =015 1007,

14
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John Hooker’s LP2 Solution

(a) After the change of variable Y =z —d, (2) becomes

min cy + cd . (2)
st. Ay=b— Ad |
y>0.

Let B be the optimal basis, so that the optimal solution is (yB,yn) = (B~Y(b—

Ad),0). (2) is identical to (1) when d = 0. So the algorithm can be terminated

if B is optimal when d — 0. Because d does not affect the reduced costs, it is
- enough for B to be feasible, i.e.,

B > 0.

(b) (J;B,:EN) = (B™15, 0) is optimal in (1). -
(c) It suffices that B~1(b — Ad’) >0, or

Ad < B 1.

(d) The dual simplex method, because the dual solution cg B~ remains feasible in
the dual. :

(e) Let y,y’ be the solutions of (2) corresponding to d, d’. Because B becomes infeasi-
ble in (2) when &’ replaces d, the corresponding dual solution becomes suboptimal.
The new optimal dual value 18 therefore strictly greater than the previous one,
which implies by strong duality that cy’ > ¢y. Meanwhile the optimal value of (2)
cannot increase because ¢’ < d. So ¢y’ + Ad' < ¢y + Ad, which implies Ad’' < Ad.

15



Ravi’s Convex Analysis Solution

halfspaces given by (7) through (3v). The more roundabout way is to verify
convexity directly by showing that al points in the lipe between any pair of
metric points are metric.

(b) Is the set of all cycle metric points convex?

NO. Here is an example, where z, and T2 are cycle metrics, but 7 — 2322 is not
one.

() Is the set of al] tree metric points convex?
NO. Here is an example of two points 7 and Z2 both tree metrics but their
midpoint is not. ’

< O
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Balas’ Linear Programming 1 Solution

4. (a) Let the system Az > 1, z > 0, ~z > —1, be written as Az > 1. Then the convex
hull is the set of z € R™ for which there exist vectors (v*, v6) € IR+, k=1,2,3

satisfying
T o~ 3 yk = 0

k:1,2,§ .
Ay* — lys > 0

y],'c(ik) - Y6 = 0 k=1,2,3
2 v =1

Yo > 0, k=123

(b) The projection cone W is the set of (a, {uf, Ug}k=1,2’3,,6) € R 3(mtant1)41 oo yo
fying
o — u*a; = 0, je{l,..‘,n}-j(ik)
@ = wGay — uf 0 '

u*1 uf — B > o, kzl,2,3,,

where &; is the j-th column of A.

(c) The extreme rays of W give rise to cuts oz 2 B that are facets of the convex hull
of the union of the three polyhedra.

17



Balas’ Linear Programming;Z Solution
9 (a) Unusable arcs:

(1,7) for any j that hag

(z,1) for any z that has

(j,7) for any pa,ir'[i,j] such that ; has to precede 7

(2,7) for any pair [i, 5] for which there exists % # 1 such that ; has to precede k
and k has to precede j.

For any other arc

a predecessor

2 Successor

(c)
min cx

z(8t(z) =
z(67(3)) = 1

z € {0,1}4
2(P(5,9)) < PG~ 1 for all paths p
[, 7] such that

The last set of Inequalities cap be strengthened to

0 @) +2(0,Q) + (1) < g

(7,7) from J to 7 and al] pairs
¢ has to precede 7.

fOI' aH QC N\ {1)27]}
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Ravi’s Graph Theory Solution

6.

(a) FALSE. There are several small examples, e.g.,

(b)

()

This 1s TRUE.

Note that the union of the edges colored with any two of the three colors is a
collection of disjoint cycles of G. Further, for any node subset S , the number of
edges of a cycle with exactly one endpoint in S is even. Thus, for any pair of
distinct colors i, j and for any node subset S, §;(5) + 6;(5) is even. applying this
to the two pairs (1,2) and (1,3) and arguing about parity shows the result.

This 1s TRUE. (only if) Given that T(G) is Eulerian, we can infer that G is
connected and therefore, so is L(G). Furthermore, L(G) is simply the induced
subgraph of T(G) on the nodes corresponding only to the edges of G. Since
T(G) is Eulerian, the degree of every node in it is even. In going from T'(G) to
L(G), the degree of a node corresponding to an edge in G reduces by exactly two
(corresponding to deleting the nodes representing its two endpoints that appear
in T(G)). Thus, for every such node, the degree continues to stay even. We have
thus shown that L(G) is connected with all nodes having even degree, and hence
1t 1s Eulerian. :

(if) This is the reverse operation from the previous para. To go from L(G) to

-T(G), we add in the nodes corresponding to the vertices of G,.and connect them
to their adjacent edges and nodes. Note that there is a simple bijection between

the node and edge neighbors of any vertex of G, and so the degree of this vertex in

| T(G) is even. We also increase the degree of every node in T(G) that corresponds

to an edge of G by two (connecting it to its two endpoints). This leaves the degree
of such nodes even. Finally, it is easy to see that T'(G) is also connected, showing
that it is Eulerian. '

19




Ravi’s Networks Solution [10 points]

7. (a) Let G = (V,A) be a directed acyclic graph (DAG) with positive weights w: 4 _,
€ arcs th 1

Give a linear time (O(1A)])) algorithm to find 4 directed Spanning tree of ( of
minimum tota) weight. (Partial cred;t for algorithms with higher running time.)

(b) Let G = (V,E) be a connected undirected 8raph with positive lengths w : g

20
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P,

Nonlinear Programming

1. (2) Let A be an n x m matrix with full row rank. The orthogonal projection of a
vector ¢ € JR" onto {z | Az = 0} is

d=c— AT(AAT) 4c.

Use first and second-order optimality conditions to show that d is the closest pomt
tocin {z [ Az = 0}. That 15, show z = d is the unique solution of

min ||z — ¢[]?

s.t. " Az =0.

(b) We wish to solve the linear pProgramming problem
min ¢z
st. Az =1}
z>0

by solving the problem
' min cz—a) In T; - ' (1)

7

s.t. Az =1}

We are given a starting solution z° > @ that is feasible in (1). In iteration k of
the algorithm, the current iterate is z*. Qpe step of Newton’s method is applied
to the unconstrained problem,
min cz —ay lnz;,
)

using z* as the starting point, to obtain the point Z. Then the orthogonal pro-
Jjection d of Z — zF opto {z | Az = 0} is computed. The next iterate is

the gradient? V(Z,Inz;) evaluated at z — o 1s D7le.

i. Let d, be the orthogonal projection of —D?c onto {z | Az = 0}, and let d, be
the orthogonal projection of £ onto {z | Az = 0}. Show that the direction
d is a linear combination of d, and d,. -

Notes: The above method is a projected Newton barrier method for solving an LP. The
directions d,, d, are predictor and corrector steps. Note that the corrector is given
less and less weight as the barrier perameter a goes to zero. For appropriate o’s, the
method is identical to Karmarkar’s famous projective scaling method for solving LP’s.

'The gradient V f(z) is (3% f(=z), ..., 32 f(z)).

10
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1. Consider the following linear program:

Maximize cxz
Subject to '
4 W

z

o~

IV IA

D

where Ais m X n and b, ¢, and z have consistent dimensions. Let e be a 1 X n vector S
each of whose entries is 1. Show that the set X — {z|Az < b, > 0} is a bounded 857
convex set if and only if the linear program obtained from (1) by replacing ¢ by e has

a finite solution. ,
y




Linear Programming

2. Consider the two linear programming problems,
min /max cz Y
s.t. Az > q.’

For simplicity, assume that the feasible set is nonempty and bounded. By strong
duality, '

Theorem 1 7 is the minimum value of (1) if and only if there is a @ > 0 such that
uA = ¢ and ta = 3. -

A similar theorem holds for the maximum.

Consider next a set S of vectors of the form (z,y). The projection of S onto y is
{y | (z,y) € S for some z}. The following is well known. *

Theorem 2 The projection of the polyhedron {(z,y) | Az + By > a} ontoy is
{y | w*By > v'a for all i ¢ I},
where {u’ |1 € I} is the set of extreme rays' of the polyhedral cone {u >0 [ uA = 0}.

The problem (1) can be written,
opt czx ' (2)
. s.t. Az > a. ‘ 4
The solution of (2) is defined to be the projection of {(z,z) | » = cx, Az > a} onto

the scalar variable 2. So the solution is an interval [z1, 25], where 21 1S the minimum
value of (1) and 2, is the maximum value of (1).

(a) Use Theorem 2 to prove Theorem 1.
(b) Consider the generalized’optimization problem,
' ' opt Cz | (3)
st. Az > aq,

where 2z € R* and the feasible set is again assumed to be nonempty and bounded.
The solution of (3) is the projection of {(2,z) | z = Cz, Az > a} onto z.
For w € R* let z,, be the minimum value of

min  wz (4)
st. z2>Cz
Az > q.

Use Theorems 1 and 2 and weak LP duality® to show that the solution of (3) is
{z | wz > 2, for all w € RF}.

lExtreme rays that are positive scalar multiples of each other are considered the same extreme ray. ,
%i.e., if z is feasible in a minimization problem (1) and wu is feasible in its dual, then cz > ya.

3



3. Let Koy mm be the complete 3-partite graph on 3m vertices, with m vertices in every -
part, where m is even.”
1. Determine the size of a
- maximum edge matching A
- maximum vertex packing (stable set)
- minimum vertex covering (of edges)
- minimum edge covering (of vertices)
- minimum vertex coloring
- maximum clique
- minimum clique covering (of vertices)
m Ko . _
ii. What is the number of maximal cliques in Komm?
ii. Is Km,m,m perfect? (Prove your answer..)




4. Consider the Vfollowing problem P:

Given an undirected edge-weighted graph G(w) = (V, E) with edge lengths wij, (4,7) €
E, and an edge set F ¢ £, find a shortest postman tour, i.e. a shortest (in terms of
the edge-lengths) closed walk ‘that traverses every edge at least once, subject to the

i. Describe a polynomial time algorithm for solving P and give its complexity.
ii. Apply the algorithm to the example in figure 1, where the numbers represent
edge lengths, for the cases:
(b1) F=9 _
’(b2) F={(2,5), (3,6), (5, 6)}.

Figure 1




9. For an undirected graph G = (V, E), consider the polytope

Z Zi = 2 forevery S V, §#£0 S
ijEEHES, j¢S o Y (P),
0<z;<1 for every ij €F. .

The polytope (P) is known as the subtour elimination polytope.

(a) Is it possible to solve the linear program min{cz : z € P} in time which is
polynomial in the size of a binary encoding of the vector ¢ and of the graph G?
Explain briefly your answer. ' '

(b) Given G and.c, GTSP denotes the problem of finding a minimum cost cycle which
goes at least once through each node of (7. Show that the inequality Y, p z, > 10
is valid for GTSP for the following graph G-

Figure 2

- Can this inequality be obtained from (P) as a Chvatal-Gomory inequality? Ex-
plain briefly your answer.

(c¢) Can the inequality in (b), be generalized to graphs with 3 st-paths of length k, for
any k > 3? ; :

(d) Define the strength of a valid inequality az > 8 for GTSP as

1 : P
max min{cz : z € P}

c>0 min{c:c:a:GPﬂ{a::axzﬁ}}'
cs#0

Can you guess the strength of the inequalities discussed in (b) and (¢)? No proof
is required for this question. : . :




6. Consider the following integer program

min "3y “CijkTij
T 7k :

Zakxijk = by foralls (1)
k .
2Tk = 1 for all j,k (2)
2% = 1 forallig (3)
j .

Tikg; = 0,1 for al] 1,9, k,
and the five lagrangian relaxations obtained by relaxing

° (1)

* (2)

(1),(2)
 (2), (3)

* (1), (2), 3)
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Consider the following linear program:
Maximize cx
Subject to : (D
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Linear Programming Solution

{ O% Show that % is the minimum value of (1) if and only if there is au>0
\ such that #4 = ¢ and g zZ. '

First ‘suppose Z is the minimum value of (1). The constraint set can

be written, »
—c 1 0
[l

By Theorem 2, the projection of this set onto z is

{zviz > w'afor all 5 ¢ I},

where {(v;, v?) | i ¢ T} is the set of extreme rays of {(v,u) > 0| ud =
vc}. Because there are finitely many extreme rays and Z is the minj-
mum value of (2), (u'/vi)a = 3 for some ¢ € I. So if we set 4 — u'fv;,
%A = c and #a = 3. »

For the converse, suppose % satisfies (2). Then Theorem 2 implies that
any feasible z satisfies z > da. But because 5 — 4a, Z is the minimum
value of (2).

/\\;'5-\)@ Let P be the solution of (3). Show that P — P, Where

P ={z|wz> zy for all w Rk} -

First let 2 € P and show that w3z 2 2y, for any w ¢ RE, Because
Zy is the minimum valye of (4), Theorem ‘1 implies that there are . L
(v,@) > (0, 0) such that %w.= 6, UA = 5C and § = 4. Thus 24 = wC

as well. Because 7 ¢ P, Theorem 2 implies that w3 2 4a. This and
the fact that 2, = 4gq imply that wz 2> Zw, as desired.

For the converse, let Z € P!, Take any 4 > 0 and any ¢ with uA = oC.
By Theorem 2 it suffices to show iz 2> ua. But because 3 € P,
UZ > z;, and Theorem 1 implies that there is 2 u 2> 0 with z; = gg
and 24 = 5C. So {3 2 Z; = 4a > ia, where the last inequality follows
from weak LP duality and the feasibility of (g, #) in the dual of (4).




Solutions

Questio%

‘\1\‘ @ Let S§; = {41, . im}, Sg_ = {J1,.--,5m} and S3 = {kl,...,k,n} be the three
partsi of Kpn -
- A maximum matching is provided by the edge set { (41, ji), oy (Tmy2, Jmy2);
(Cm21, k1), - -, (i, Komyo); (Tom/2415 keny241), - -, (s k) ). Tt cardinality
is 3m /2. |
- Bach 5;,1=1,2,3, is a maximum stable set, and |S;] = m.
- Since Sj is a maximum vertex packing, S, U S5 is a minimum vertex covering

of edges). Its cardinality is 2m.
g

- The maximum matching specified above covers all the vertices, hence it is a
minimum edge covering (of vérticés). Its cardinality is 3m/2.
- ~(51, 52, 53) is & minimum vertex coloring with cardinality 3.

- Each vertex set of the form (¢,7,k), with 1 € S, JES, k€S, isa clique.

Since its size is the same as that of a minimum coloring, nainely 3, it is a
maximum clique.
- The set of triangles {G1, 71, k1), . . ., (tm) Jm, km)} covers all nodes. Since its
cardinality is m, the same as that of a maximum vertex packing, it is a
minimum clique covering (of vertices).
£
J

[ S I
_g\i

% {8 Since each triangle (4,5,k) withi € S}, j € Sy, k € 53, is 2 maximal clique, the
N

number of such cliques is [S1] % |Sa] x |Sa] = m3.

-
e

/\‘\ ‘f ; @ Ko mm is‘}{perfect: the edge set {(iy, 71, (ji,’ig), (22, 72), (g2, k1), (k1,%1)} is an
odd cycle. u/@m) \

Vi

¥



Question L%’

(a) The algorithm, an easy modification of the standard Chinese postman algorithm,

(b)

(b1)

| (b2)

1s as follows.
If all vertices of G have even degree, the solution is the (unique) Euler tour
in G, which can be found by Fleury’s algorithm.

If V* is the set of odd-degree vertices, find shortest paths F;; between all

pairs of vertices 1, j € V*, in the graph G(w) obtained from G(w) by replacing

the edge lengths w;; with W > 2w : (4,7) € E) for all (1,7) e F.

Next‘ﬁnd a minimum-cost perfect matching M in the complete undirected
graph with vertex set V’.k and edge-weights w(P;;) 1= 5 (uye : (k,8) € By). If
w(M) > W, the problem has no solution. Otherwise duplicate the edges of the
shortest paths in G(w) defining the weight of M. An Euler tour in the resulting
(BEulerian) multigraph is the solution.

The compleicity of the procedure is the saﬁe as that of the standard postman
algorith, O(ﬁs).

All vertices have odd degree, V* = V.

Application of the standard Chinese postman algorithm leads to the duplication
of arcs (1,2),(3,4), (5,A 6).

The above described algorithm looks for a minimum-weight perfect matching in
the graph_%é%;/d)sM = {(1,2),(3,6), (4,5)}, or, alternatively, M’ = {(1,6),
(2,5),(3,4)}, with w(M) = w(M') = 8. An optimal solution is obtained by

* duplicating the edges of M or M’
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Nonlinear Programming
2. Consider the m x n, matrix A = [a;, a,, ... Jan)T, e, 'a;’s are column vectors that |
correspond to the rows of A TY

a. (2) Consider the problem
Hgn max ”SL‘ - ai”%:

where a;’s are given points in JR™. This problem arises, for example, when one
tries to choose a, location for a fire station; a;’s denote the coordinates of several
fire-prone buildings, and the objective is to minimize the maximum distance from
the fire station to any of the buildings. This problem can be written as an (n+1)-

dimensional minimization problem as follows:

min  z,,,
s.t.
Tny1 = Hx~‘aiH§, Vi

Show that the feasible region of the above problem is convex.

b. (3) Let ), i = 1,...,m, be such that Ai >0, Vi, and that 2>-i A = 1. Show that
Z = Y; \ia; solves

H}Biﬂz Adlr = a,j3.

¢. (5) Construct the Lagrangian function L(z,A) of the (n + 1)-dimensional mini-
mization problem of part a and the Wolfe dual of the problem given by:

max, ) Lz, \)
s.t.
VL(z,\) = ¢
7 A > 0.

Suppose that you have an algorithm for minimizil_lg a convex quadratic function
subject to linear constraints. Show how one can solve the problem given in part
2 using this algorithm and the Wolfe dual above?

10
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1. A ship enters the channel in the figure below at a point that has coordinates (z,y) =
(0,0). There are buoys at coordinates (2, ;) on one side of the channel, and at coor-
dinates (z,;) on the other side, fori = 1...,m.

(4,4) (5,a5)
(3, CI3) ¢ *

Lo1) (2,09) _ ';
'%)(5:&,) : | > ’

00 . )
(l,ﬂl) (2,.ﬂ2) (3,ﬂ3)

The captain wishes to follow a straight line path between the buoys that maximizes

- the closest distance (measured vertically) at which the ship passes a buoy. If the ship’s
path is represented by the equation y = uz, the desired path is given by the optimal
value of u in the linear programming problem, ' '

max A _
st. A<o—idu,i=1,...,m () (1)
A<iu—-p0,i=1,...,m (s)- '

(Note that A and u are not restricted to be nonnegative.) If slack variables are inserted,
the problem can be written,

max A _

st A4du+t s = q, 1=1,....m
A—iu+t; =, 1=1,...,m
$,t:20,1=1,... m.

@)

It suffices to consider only basi¢ solutions of (2) in which A and u are basic. Thus
exactly two slack variables are nonbasic. ‘

(a) If s; and sk (j # k) are nonbasic, what are the values of » and A in the corre-
sponding basic solution (expressed in terms of the problem data a;, 53;)?

(b) What are the reduced profits of s; and sk in this solution (expressed in terms of
the problem data)?l Hint: Write profit in terms of the nonbasics. '

(c) Use these reduced profits to show that this solution cannot be optimal.

(d) If s; and t; are nonbasic, what are the values of % and A in the corresponding
basic solution (expressed in terms of the problem data)?

(e) What are the reduced profits of s; and g in this solution?

YThe reduced proﬁt In a maximization problem is the counterpart of the reduced cost in a minimization
problem. :




(f) Use these reduced profits to show that this solution is optimal if it is feasible.

(g) Because finding a basic feasible solution solves the problem, it may be more
convenient to solve the dual. Associate dual variables )\;, u; with the constraints
as shown in (1). If Aj, i are basic in the dual, use the reduced profits of s;,# to
deduce the values of Aj, % in this basic solution.

(h) Write expressions for the reduced costs of any nonbasic ); and any nonbasic
in this basic dual solution [Because closed-form e€xpressions are available for the
basic solutions and reduced costs, the simplex method is greatly accelerated. The
starting basic feasible solution is obtained by choosing any basic pair Ajy k]




2. Consider the polytope

P-—_—{xERn:Z€;$j§1fori:1,...,2"}

=1 T

where i, 4 =1, . , 2", are all the n-dimensional vectors with components equal to +1
or —1. .

(a) Describe the vertices of P, say vl . yK. ol

(b) Describe the vertices of'Q = {z e R 271 Vi <1 for k =1,...,K}.

(c) Describe the facets of Pand Q. Are they isomorphic to polytopes that you know?
(d) Describe the edges of P and Q. How many are there?

(e) What are the diameters of P and Q?




...... 3. Consider the mixed 0-1 programming problem

' min{cz +dy : Az + Gy=b, zc {0,1}", y> 0} (P)
: M X p, with p > m, and its linear programming relaxation
0z € {0,1}" is replaced by0<z;<1,j= 1,...,n.
Show that any optimal solution to (LP) in which at least m components of ¥ are basic
Is an optimal solution to (P).

where A is m x n and G is
(LP), in which the conditio

——




. Consider the asymmetric traveling salesman polytope P on a complete digraph G =
(N, A), defined as the convex hull of 0-1 vectors z with components z;;, (4,5) € A,
satisfying the degree equations and the cycle inequalities

2@y (L) €C)<ICI -1, CecC, 2<|Cl<n—2
where C is the set of directed cycles of G.

(2) Find all the sequential liftings of the inequality 15 + 293 +231 < 2 and show that
they are of Chvatal rank 1 by giving their Chvatal derivation.

(b) Show that z;, +T23+x3; < 2 also has a nonsequential lifting, and give the Chvatal
derivation and Chvatal rank of this lifting.




5. (10 points) Let G = (V,E) bea loopless, connected, undirected multigraph with node
set V and edge set E.

tree 7' with respect to G is defined as follows: for every edge e = (z,y) ir the tree 7,
the nodes of T — e are partitioned into two: parts V. and Vy, those containing z and
- Y respectively; Label the edge (z,y) in T by the value of the cut in ¢ defined by the
partition (V,, V), namely, the number of edges in G with one endpoint in V, and the
other endpoint in Vy-

(a) (2 points) Suppose T is a star - a tree with [V| — 1 leaves attached to a single
center vertex. Suppose that every label in its cut labeling with respect to G is an
even number. Prove that @ is Eulerian. '

(b). (3 points) Now. suppose that 7T is a “two-sided broom”: namely, two center nodes
¢ and ¢; are connected by a tree edge, and all the other nodes are attached as
leaves. by edges to one of the two centers. Suppose again that every label in the .
cut labeling of this 7" with respect to G is an even number. Prove that G is
Bulerian. '

(¢) (5 points) Now suppose T is any fixed Spanning tree on the nodes V. And suppose
that every label in the cut labeling of this T with respect to G is an even number.
Prove that G is Eulerian.




6. Let G be a directed graph, u, v two nonadjacent nodes of G and k& a
A directed walk of Jdength & is a sequence z, e, z;, ey, .

such that e; = T;1z; for all 1 = 1,...,k. A directed path is a directed walk without
repetition of nodes. A chord is an arc ;z; where 7 > 14 2.

positive integer,

Can the following problems be solved in polynomial time? Briefly justify your answers.

(a) F ind a shortest chordiess directed path from u to v.
(b) Find a longest directed path from u to v.

- (¢) Find a directed path of length k from u to v.

(d) Find & edge-disjoint directed paths from u to v.

(e) Find whether all the directed trails from u to v have even length.

(f) Find whether there exist k arcs such that all directed paths from « to o go through .

at least one of them.

(g) Find whether there exists a node w # w,v such that all the shortest directed
paths from u to v go through nodé w.

-+» €k, T of nodes and arcs




‘Soluti.ons

1. Solution to Linear Programming question

(a)

If s;, sx. are nonbasic, the corresponding inequalities in (1) are satisfied as equa-
tions. Solving them yields, } .
— &« 1 1 k. i k
U= j—kk — T_,;Sj + kaSk A= \J—Jo‘k ka ;ﬂ?sk -+ 3.__—ij (3)

Jor—ka

* The solution values u = 9—'}:% and A = “5=;~* are obtained by setting s; = s, =

(v)
©
@

()
(f)

(g)

(h)

0in (3). ,
The reduced costs of S5, Sk are their coefficients in the expression for the objective
function A in (3).

Because one of the two reduced costs s positive, this basic solution can never be
optimal.

If s;, 4 are nonbasic, then solution of the corresponding equations yields,
=% 1 oo, 1 Roy=ibe _ k_ .
YT T T aES s A= 2b T FHEST T TRtk (4)

The solution values u = —Jﬁ’i and A = Ej%ﬂ’“ are obtained by setting S; =1 =0
n'(4).
The reduced profits of s, ¢ are their coefficients in the expression for A in (4).,
Because both reduced profits are negative, this basic solution 1s optimal if it is
feasible.
The dual of (1) is,

min 37 o) — 2 i

st A+ Tim=1 (B)

200 = i =0 (u)
/\i)l"’i_>_0) t= 1:"'7m'

The reduced profits of s;, #; are precisely the slacks in the dual constraints A; >0,
x 2> 0. So the solution values are,
— _k - _1
NS e =
The reduced cost of A is the surplus in the correspondmg primal constraint,

by _ (kti)aj—(G—i)8,
— rtt)oy—{7—-1)Be .
M a A\___j+k £ '--_.‘_,_/x

The reduced cost of L 1S sumlarly obtamed. . - ) o !/"

'.vA_-EZ{'—{_ﬂ L’“:Lﬁ%&

e,

————

>

~

waled

o
e




2. Solution to Convex Polytopes Question

(a) The vertices of P are the 2n unit.vectors e; and their negatives —e;.
(b) etfori=1,..., 2"

(c) P has 2" facets each containing n vertices. So each facet is a simplex. Q has 2n

facets each containing 2"~ vertices. Each facet of Q is an (n — 1)-dimensional
hypercube. : =

(d) Each vertex of P is adjacent to all but one vertex, so P has 2n(n ~1) edges. Each
vertex of () is adjacent to n vertices. So @) has n2™! edges.

(e) P has diameter 2 and Q has diameter 7.




3. Solution to first [P question

The system
Az + Gy = b o
z + 2z =1 -
T ¥y o, z >0

components (which is the most it can have), then z and » together have at most 7,
basic components. Bug since every row 6f The form %j T 2; = 1 has to have either T;
Or z; basic and there are 7 such rows, none of the Pairs z;, z; can have both of its

members basic. Hence for j=1,. . . » 7, either z; is basic (with value 1), or 2; 1s basic
(with value 1, hence z; = 0). o -
wd
o
-// i Ta D oy 7




4. Solution to second IP Question

(a) The sequential liftings of z;o + Tog + x3; < 2 are:

(b)

Ti2 + Zaz + z3H + 2143
T2 + Zoz + z3 + 2z39
T2 + ZToz + x31 + 2298

IAIA A
NN BN

The first of the above inequalities can be obtained by adding
- times the outdegree equation for node 1,

times the indegree equation for node 3, ‘

times the 2-cycle inequality Ti2 +z3; < 2, and

Ol LoD Lol Lot

times the 3-cycle inequality z;5 + To3 + z31 < 2, to obtain

2. i 8
Ty2 + Tog + T3y + 22713 + g(z T + sz‘s) < §7

i=4 =4
and then rounding down the coefficients on both sides.
The second and third inequalities can be obtained the same way.

The subtour elimination inequality on the node set {1, 2,3} is a lifting of the cycle
inequality on the same node set, which ¢annot be derived sequentially because any
chord when lifted first gets a coefficient of 2. The Chvatal derivation of the subtour
elimination inequality on {1, 2, 3} consists of adding up % times the above three
sequentially lifted inequalities and % times the 3-cycle inequality z13+x30+79; < 2,
and rounding down the righthand side of the resulting inequality.

Since only rank 0 and rank 1 Chvatal inequalities were used in its derivation, the
subtour elimination inequality on {1, 2,3} has Chvatal rank at most 2. In fact,

- 1t has Chvatal rank 2, as can be seen from the fact that the linear program that

maximizes T1o + T9y + T3 + x31 + X93 + T39 subject to 0 S Zij S 1 for all 'I:,j,
the degree equations, and the cycle inequalities, has value at least 3. Indeed,
any solution to the above constraints that has Ty = % for 7,57 € {1,2,3} has an
objective function value of 3. But then the dual variables associated with this
primal solution provide multipliers for 3 nonnegative linear combination of the
constraints that minimizes the resulting righthand side, and this minimum is > 3:
hence the righthand side of the resulting inequality cannot be rounded to 2. This
proves that the Chvatal rank of our inequality is strictly greater than 1.




9. Solution to Graph Theory question

(b) In this case, we must prove that both ¢1 and ¢, have even degree (since the leaves
have even degree which equals the cut-label of their incident tree edge in 7).

We do this by showing first that ¢; has even degree. Note that the edge (¢2,¢1) has
even label representing the number of edges in the cut defined by the bipartition

on the edges incident on them in 7. Consider any internal node ¢, with neighbors
V1, V2, ..., in the tree 7. We can now contract the k subtrees incident on c,
- (namely, the jth subtree is the partition of 77 — (e, v;) containing v;) to form a
contracted multigraph &’ from G and a corresponding tree 7” from T with its
labels being valid for G’'. Each of the contracted nodes has even degree in G-




6. Solution to Networks question

(a)
b)
()
(d)
(e)
(f)

~—~

(g)

Polynomial algorithm since a shortest path from u to v is always chordless..
NP-hard since the Hamilton path problem can be reduced to this question.
Same answer by taking k = |V/]. |

Polynomial by the max flow algorithm with all edges of capacity 1.
Polynomial since this amounts to checking that G is bipartite.

Polynomial since this amounts to checking whether a min cut has cardinality k
or less. |

Polynomial since this amounts to finding a shortest path from u to v in G and
G\ w, for each w # u,v.
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Linear Pfogramming Problem

Recall that if Dantzig-Wolfe decomposition is applied to a problem of the form

min cz

st. Az =a :
Bz <t . (1),
z2>0

the master problem is

K
min Z(cyk)ak :
k;l
K

s.t. Ak.a =a u
’;( Yo (w) ©

K : .
Doak=1 . (uo)
k=1 ’

o 20, k=1,... K

where y', ..., y¥ are the extreme points so far generated. The next extreme point y¥+1 s an’
optimal basic solution y of the subproblem '

min (c—ud)y
st. By<b (3)
¥y=>0
where (u,ug) is the dual solution of the previous master. It is assumed that (3) is always
bounded and feasible.

{a! To solve a 0-1 problem
‘min ¢z
st. Az =a
z;€{0,1}, j=1,....n
it is useful to solve its linear programming relaxation |

min cx _
st. Axr=a _ (4)
0<z;<1,5=1,....,n
If there are a very large number of variables it may be advantageous to apply Dantzig-Wolfe
decomposition to (4). Formulate the master problem and subproblem and explain why this
approach might be useful. ’

(b; What is the reduced cost of ok +1 When this variable is added to (2)?
(c) Write an expression for yf(“, 7 =1,...,n, in terms of w.

(d) Stow that if (1) is feasible, a can be written as a. convex combination of vectors, each
of which is a sum of a subset of columns of A. '




Question on Integer Programming

ConsiderP:{xER”: Az < b} and Pr={z¢ezn. Abe},whereAisanmxn
matrix and b is an m-column vector. Assume that 4 and have integral entries and that the
constraints Az < b contain the inequalities 0 <z <.

Chvital cuts are defined by |uA Jz < [ub] for any row vector u € BT, where [2A] denotes
the vector obtained from the vector uA by rounding down every component to ap nteger.

(-z)(b-4z) >
zj(b— Az) - >

and linearize it by substituting z; for x;‘-’ and y; for Tix;, 1 # 7. This higher dimensional
polyhedron ic then projected back on the z-space. Let P; denote the resulting polyhedron.

Titzy > ]
Z1+zy < g
0<z; < 1
0<z, < 3.

(b) (3 points) In general, is it true that Pp C Prgp? [Hint: you may appeal to resuylts
from the literature, textbooks, etc).




Question on Advanced Integer Programming

Problem (10 points):
Let B = (by,bs,...,b,) denote the basis of an integer lattice £, i.e., £ is the set of all

integer combinations of the integer column vectors b, . . . »bn. In short,
L={> Xbi: (M,..., M) €2} ={B-AT: A€ z"}.
=1 R

Consider the two basic problems on lattices: (1) The shortest lattice vector problem (SVP)
is to find the smallest length nonzero vector (i.e, nonzero vector with minimum Ly norm) in
: MOWREY o )
L and (2) the closest lattice vector problem (CVP) is given a _Integral vector, z say, to find
"N

a vector in £ that is closest (m Lo-norm) to the given vector z. The goal of this question is

to show that the SVP is no harder than the CVP.

1 (2 points) Suppose s* = B - (A\*)7 is a shortest lattice vector in £. Show that all the

maltipliers A7, A3, ... )}, cannot be even integers.

2. (3 points) Suppose then without loss of generality that the co-efficient A} is odd in the "
solution to SVP(E). Consider the modified lattice £! defined by the modified basis
B! = (2by,b,,...,b,). Show that there is a solution to the CVP on the lattice £! from
the point b; whose distance from b; is at most {|s*|| (i.e., the length of a shortest lattice

vector in the original lattice £). [Hint: Consider the vector B! - (A, 0T

3. (3 points) On the other hand, suppose we are given a solution A’ to the CVP on the

modified lattice £’ from the vector b,. Let ¢ denote the distance of this solution from




by, e, £ = ||BY. )T _ bi]|. Then show that length of a solution to the SVP in the

original lattice £ is at most £. [Hint: Consider the vector B- (AT =1,05, 05, .., AT

4. (2 points) Use the above to design an algorithm for the shortest vector problem in £

using polynomlally many calls to a procedure for computing the cIosest vector given a

lattice and an input vector.




Question on Gra }ok Theor y

A simple directed graph G = (N, A) is assignable if it admits a cycle decomposition,

l.e. a spanning union of Yn\o_d\e,—_dig_q_i_gg d1r_ectedcycles

~ (a) Give a necessary and sufficient condition for G to be assignable.

[Hint: Construct an undirected bipartite graph G* whose edges are in 1-1 corre-

spondence with the arcs of G, .and Interpret the problem on G* ]

(b) Putting nonnegatlve weights on the nodes of G, formulate the problem of ﬁndmg
a maximum Welght assignable subgraph in G as a linear program. Prove the

vahdyty of your formulathn.




Question on Networks and Matchings

Problem (10 points):
Let (5,5) be a min s — ¢ cut.in a capacitated undirected graph ¢ — (V, E) (assume
all capacities in this question are nonnegative). We now add to G a new node, z, with

capacitated edges (2,2) i e V to obtair a new graph ¢

and S C .S or » € 8 and § c S,

2. (2 points) Use this property to find a new min cut by solving 2 small problems instead
of a big one. Is the computational effort reduced? Can you use the property to find a

max flow in 7 by solving two small problems?
3. (1 pont) Use the above to construct an algorithm for computing min cute.

4. (2 points) Is the assumption that the graph is undirected essential? If it is, state where

1t has been used. Else, state a possible simplification whep the graphs considered are

directed but acyclic.

R s
SRS




Question on Convex BI)/L&&(QL

(a) Consider the polyhedron

P:z{xGR":Ax.Sb},

where A is m x n-and b is m x 1, and its polars defined as

P = {yGR":xySlforalleP}
P = (yeR" :zy>1forallz c P}
P = {(y,y) € R : zy > y° for all = € P}.

(ai) Show that

P =y e R Y = uA for some u > 0 such thet -b <1}

(«2} Find corresponding expressions for P9~ and P* and prove their validity.

(b} Given the polyhedra Fio={zx e R": Az < b}, i € @, where each A% i T XN

aud each & is m; x 1, let Pp := conv (U

hull.

icQF3), where conv denotes tze con ey

(b1) Show that

L gu'
Ppt={ye R".Yy=uia’

(b2) Find corresponding expressions for PY~ and Pj.

(b3) Show thkat

¥ ), % X

1€Q fOLsome—uiEOSuch—ehatuibijl
N
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Linear Programming Solution

(2) The master problem is (2) and the subproblem is

min (¢ — uA)y
St y<e ' 5)
y=>0

W, the master problem has size
blems than the original probler,

(b) The reduced Cost of ay,; is (c— uA)yK“;-l ..
(c) The subproblem solution is obviously _ -

1 if ¢ < ’lLAj
Y= .
0 otherwise

(d) Because each y* is a 0.

1 vector, (2) implies

where 37, o = | and oy > and J, {1,...,n}.










Question on Advanced Integer P'rogramming

Problem (10 points):
Let B = (b1,b,,...,b,) denote the basis of an integer lattice £, i.e., £ is the set of all

integer combinations of the integer column vectors bi,..., b, In shoft,
L= Abi: (M, ) € 27 ={B-XT:\ e 27}
: i=1 '

Coumsider the two basic problems on lattices: (1) The shortest lattice vector problem (SVP)

is to find the smallest length nonzero vector (i-e, nonzero vector with minimum Ly norm)

L and (2) the closest lattice vector problem (CVP) is given an integral vector, x say, to find

a vector in L that is closest (in Ly-norm) to the given vector z. The goal of this question is

to show that the SVP is no harder than the CVP.

1. (2 points) Suppose s* = B - (X*)T is a shortest lattice vector in £. Show that all the

multipliers A, A3, ... A% cannot be even integers.

2." (3 points) Suppose then without loss of generality that the co-efficient /\; is odd in the
- solution to SVP(L). Consider the modified lattice L' defined by the modified basis
Bl = (2by,b,, ... , ). Show that there is a solution to the CVP on the lattice £! from
the point b; whose distance from b, is at moét [ls*]| (i.e., the length of a shortest lattice

vector in the original lattice £). [Hint: Consider the vector B! - (A, 0T

3. (3 points) On the other hand, suppose we are given a solution X' to the CVP on the

- modified lattice £’ from the vector b;. Let £ denote the distance of this solution from




b1, ie, ¢ = [|BY. \T _ bi]|. Then show that length of a solution to the SVP in the

original lattice £ is at most 2. [Hint: Consider the vector B - (2AL = 1,75, 0, ..., M)E]

4. (2 points) Use the above to. design an algorithm for the shortest vector problem in £
using polynomially many calls to a procedure for computing the closest vector given a

lattice and an input vector.

Solutions

1. Suppose for a contradiction this is the case, then B- (31)T = s /2 is a shorter nonzero

vector in L.

2. The difference vector of the proposed solution and b, is
(B (3%, a0)T) — b, T @)+ TN b~ b = B (0T = 5. We
note that this is a legitimate candidate solution to the CVP since A} is odd and hence
A‘.

-’2— 1s an integer.

3. The proposed vector B - (2\] — 1, A2, A3, .., AT lies in the original lattice £ since
all multipliers are integer since the \'s are integers. ‘This vector can be expanded as
follows.

B (22 = L, 25, 0T = (20 — 1), + Loz Aibi = A (2b1) + T, Ak, — b, —
B! - (\)T —b,. Thus the length of this vector is £. This is & feasible solution to the
SVP in £ since 227 — 1 is nonzero for any mteger Al. Thus the shortest lvector in £

has length at most ¢.

4. Fori=1,... n, compute the length of the solution to the CVP on B from the vector

- b;, and determine the minimum, say ¢ = k with solution A(k) of multipliers for the




>

lattice £*. Return the vector B - (A(B)1, .-, 20(K)x — 1,..., A(k)n)T as the shortest

lattice vector in L. Correctness follows from the above answers. A 2R




Answer to Questidn o Graph Tf(go ry
(a) For all SCN , denote by G(S) the subgraph of G induced by S, and define |
D(S):={j eN:(:,3) € A for some i € S}
Then G is assignable if and only.if

IS\T(S)| < |T(S)\ 5] for all S N

Proof. Let G* := (V*, E*), where V* = V; U V, with Vil = Vel = [N, inV, = 0:;

for every © € N there is a vertex f(Z) € Vi and a vertex 9(%) € Va; and

B = {(f),90)): (.5) € A},

Then G admites a cycle decomposition if and only iﬂ{G*.}f‘la,s a perfect matcﬁing;g From

the Konig-Hall theorem, this is the case if and only if V1| = ]Vgl (which is trﬁe here)

and |.X| < |[N(X)| for all X C Vi, where N(X) = {j eV - (¢,7) € E for some % € X}
But X' C V) satisfies this condition if and only if $ = {1 € N+ S(Z) € X} satisfies
[S\T(S) < I°(S)\ 8]

(b) The problem can be stated as

maxZ(wiyi :1€ N)
such that
Sy €T@) ~y = 0 ien
Yz i€l -y = 0 jenN
Ti; 2 0,(4,5) €A 0<y <1, ie N
This formulation is valid because the coefficient matrix of the constraint set is easily

seen to be totally unimodular, and thus the basic solutions are integer. Further, since

the y; are 0-1, so are the Zi;.



Question on Networks and Matchings for Qualifying exams - J anuary 2000

Author: Rafi Hassin (hassin@math.tau.ac.il)

Problem (10 points):
Let (S,5) be 2 min s — ¢ cut in a capacitated undirected graph G = (V,E) (assume
all capacities in this question are nonnegative). We now add to G a new node; z, with

capacitated edges (z,2) ¢ € V to obtain a new. graph G'.

1. (5 points) Prove that there exists a new min s — ¢ cut, (87, 5"), such that either z € S

and SC S orze S and S C 5.

2. (2 points) Use this property to find a new min cut by solving 2 émall~ problems instead
of a big one. Is the computational effort reduced? Can you use the property to find a

max flow in G’ by solving two small problems?
3. (1 point) Use the above to construct an algorithm for Computiﬁg min cuts.

4. (2 points) Is the assumption that the graph is undirected essential? If it is, state where
it has been used. Else, state a possible simplification when the graphs considered are

directed but acyclic.

Solutions

1. The question is based on a paper by Donald M. Topkis where theA proofs use theory of

minimizing sub-additive functions over a lattice. The proofs here are different:

Suppose z € S” and S\ S’ # . The incentive to add S \ S’ to " in G’ is greater than

1t was in G since we also save edges between z and S \ 5" and edges between S\ S’ and

3 : l



SNy, By minimality of S in ¢ 1t follows that this change doesn’t add to the capacity
of (S, 5.

Alternative proof: Iet f be a maximum ﬁow in G. Use the residual- capacities and

compute in G’ a maximum s — z flow in the graph induced by SU{z}. Denote it (and

its value) ¢g. There is an s — z cut saturateci by the flow f + g- Similarly, compute a

maximum z — ¢ flow A using thevresidual capacities in the graph induced. by SU {z}.

Suppose g < A, then 9+ fis an s — t maximum flow iﬁ G’ saturating a cut (8,5

such that S ¢ §' and z € S'. The other case obtains when g > h.

- A min cut can be obtained by finding min cuts once in the graph obtained by contract-
ing SU {2} into a single node s', and then In the graph obtained 'by‘contra,cting Su{z}
into a node . Suppose we use an édgorithm that requires cn3 elementary steps for a

graph with n nodes. Then instead of ¢(n+1)3 for &’ we will have c(k+1)3+c(n—k+ 1)3.

Alterngtively, use the second proof to compute the flows g and A. This wil] also give

the max flow in '
. Add é node at a time.

- Everything applies to digraphs as well. If the final graph is acyelic, we can add nodes
accdrding to the topological order induced by it, and then only one subproblem needs

to be solved at each step.




Answer to Question  pp Convex %Iyl\e:dlr&

(al) We have to show that for a given y, the inequality

yr <1
Is a.consequence of the system

Az <)
if and only if

Yy =ul

for some u > 0 such that ub < 1. But this follows from the nonhomogeneous version

. of the Farkas lemma

(a2)

(b1)

An analogous reasoning shows that yz > 1 is a consequence of the system —Az > —p

if and only if
. y =u(-4)

for some u > 0 such that u(—b) > 1, and YT > yo is a consequence of — Az > —bif

and only if
y=u(—A4), yo>u(-b)

for some u > 0. Therefore
T={yeR":y= u(—A) for some > 0 such that u(—b) > 1}
and -

P" = {(y,y0) € R™*': y = u(—A), yo > u(—b) for some u > 0}.

The inequality yz < 1 is satisfied by all z € P, if and only if it is satisfied by all z € P,
for each i € Q. From the answer to (a1), this means that yx < 1forall z € Pp if and
only if

y=uA’, i ¢ Q,
for some v > 0 such that iy <l,ie Q

2




(b2) From the answer to (a2), the corresponding expressions are.

Py

I

{y€ R™:y = ui(— AY), i€ Q, for some v >Osuchthatu( b*

)>1 ZEQ}
PI*) _ {(y,yo)eﬂn—f—l.

y = u'(—AY), Yo > u*(—b) for some v >O 1€ Q}

(b3) P} is the set of all (¥, %) € IR™! such that YZ = Yo Is a valid inequality. for Pp. But

‘rhe set of all valid inequalities for Pp defines the convex hull of Pp,.
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Nonlinear Programming Question

Let A€ R™™ and be R™, b # 0 be given.

Consider the problem

Az = b ) (P)
z > 0 '

(Here || - || denotes the Euclidean norm, i.e., ||| = VaTz)

(a) Write down the Lagrangian function and Lagrangian dua} problem. -
(b) Prove that for any given ¢ € R"
. - 0 if J <1
—zTe) = =
A0kl = 27¢) { —~o0 if e[ > 1
{c) Show that the Lagrangian dual problem in (a) can be written 2;

max Ty
ATy +wi <1 (D)
w > 0.

(d) Surpose T is an optimal soluticn of {P). Using the XK conditions, shew that there exist
Y, 2 0 feasible for (D) and such that o775 = |z (ie. strong cuality holds).
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Answer all six questions.

1. (Linear Progra,mmiﬁg)
.Consider the family of linear functions fi(z) = @'z + b; for ; = 1,...,m. Let the
bottleneck LP be the problem of minimizing max;{ f;(z)} over all z 2 0for z € R
Let C be the convex hull of the points q‘,. ..,a™. Show that the bottleneck LP is
bounded (has a finite optimal value) if and only if C intersects the nonnegative orthant
of k™. :

2. {Convex polytopes)
Recall the following:

e A d-polytope is a simplez if it"is the convex. hull of d + 1 affinely independent
points.

* A polytope is stmplicial if each of its facets is a simplex.

e A d-polytope is simple if each of its vertices is contained in exactly d facets.

Extend the notions of simplicial and simple as follows: A d-polytope is k-simplicial
(k <d—1) if each of its k-faces is a simplex. A d-polytope is k-simple (k<d-1)if
each of its (d — k — 1)-faces is contained in exactly k + 1 facets.

(2) (2pts) Lét P bea a’—polyfope, and without loss of generality assume 0 e int(P).
Prove that P is k-simple if and only if P2 is k-simplicial.

(b) (1pt) Prove that every d-polytope (d > 2) is O-simple, 1-simple, O-simplicial, and
l-simplicial. :

(c) (1pt) Prove that if a polytope is k-simple (k-simplicial) then it is also h-simple
(h-simplicial) for A <k

(d) (1pt) Let P be » polytope and F be a face of pP. Show that if both P/F and F
are simplexes then so is P. : : _ .

(e} (3pts) Assume d > 3. Prove that if a d-polytope P is both ki-simple and ko-
simplicial with ki+ky>d1 then P is a simplex.

(f) (2pts) Give an example (with d > 3) to show that the previous statement is not
true (in general) if the condition ki +ky>d+1is weakened to k, + £, >d.

3. (Graph Theéory)
Identify a class of regular, perfect graphs for which the number of maximal cliques
grows exponentially with the number of vertices. What is the smallest number ny of
vertices for which a graph in the class has more maximal cliques than edges?

Is the instance for which ny is attained the unique graph (up to isomorphism) with
this property?




4. (Networks and Matchings)
Consider the foHowing problem: , '
Given an arc-weighted connected digraph G = (N, A), find » minimum-weight closed
walk in G that traverses Every arc at least once. '

(2) Describe ap algorithm for solving (P), ang give its complexity.

(b) Consider oW a modification (£'), in which £ arcs of G, where | S k<Al s
independent of [V, are undirected. Cap you modify yoyr algorithm to solve (P)?
What happens to jtg complexity?

9. (Integer Programming)
Derive ag many facets of the 0-1 Programming polytope

P = conv{z ¢ {0,1}7 - 6z, + 5z, + 3z3 + 27, + 225 -+ 274 +x7 > 15)

as you can. Justify your Procedure.

6. (Advanced Integer Programming)

Compare the standard (Dantzig, Johnson, Fulkerson) formulation of the traveling sajes.
man problem with the Miller, Tucker, Zemlin formulati_on, which replaces the subtour

elimination constraints
w58 <Is|~1, s 1] > 2 (1)
with the constraints

'LLZ‘*'LL]'“FTLIZ']‘STZ‘I for all Z, ]EN\{I} (2)

Project the constraints (2) onto the z-space to find oyt which formulation yields a
tighter Lp relaxation. :
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» (Linear Programming - John Hooker)
The bottleneck Ip can be reformulated,

min 2

S.t. z—aingi,z':l,.‘.,m (1)
>0 i

The dual of (1) is _ ,
» max Zb,-uz- »
s.t. Zui =1
~Zaiu,— S 0
u>0

Problem (1) is bounded if and only if the dual problem is feasible. ‘But the dual s
feasibile if and only if some convex combination ¥7; aiy; is nonnegative. This is true if
and only if the convex hull of a1, . .. , @™ intersects the nonnegative orthant.

o Y(Convex polytopes — Javier Pena)

(a) Recall that the map F i F° defines a one to one correspondence between the
k-faces of P and the (d — k — 1)-faces of P2 sych that

The equivalence readily follows: F belongs to exactly d facets if and only if
contains exactly d vertices, i.e., if and only if F° is 5 simplex.

(b) A point is a 0-simplex and a segment is a 1-simplex. Hence all vertices and edges
of any polytope are simplices. Thus any polytope is O-simplicial and 1-simplicial.
In addition, for any polytope P, P2 g O-simplicial and I-simplicial, thus by part

- (a) Pis O-simple and 1-simple. ' '

(c) Suppose P is k-simplicial. Any h-face of P is contained is a k-face of P. Since ,
all faces of a simplex are simplices and P is k-simplicial then any h-face is also i
a simplex, i.e., P is h-simplicial. The statement for k-simple follows from (2) by
going through the polar as in (b).

(d) Ifboth F and P/ F are simplexes then both lattices L(F) and L(P/FY) are boolean
and hence so is L(P). Thus P must be a simplex.




(e) By part (c), we can assume ki+ky =d+1 and ki > ky. Let F be 4 (k2 — 1)-face
of P. Fisa simplex because p 1S ky-simplicial.

opposite of L(F°). Since po 1s k1-simplicial (part (a)), F° is a simplex and thus |
$01s P/F. From part (d) we conclude that P is a simplex.

(f) The cyclic polytope C(n, d) is (d — 1)-simplicial and I-simple, but it Is not iso- -
morphic to a simplex for n > 4 + 1.

e (Graph Theory — Balas)

edges is ®/2)(VI/E) (V) k) — 1).
The smallest number of vertices for which G (k) has more maximal cliques than edges
1s ng = 12, attained for £ — 2,3 and 4. Indeed, for V]=12, G(2) has 2° = 64 maxima]
cliques and 60 edges, G(3) has 31 — 81 maximal cliques and 54 edges, and G(4) has
4* = 64 maximal cliques and 48 edges. _

* (Networks and Matchings — Balas)

1. The algorithm duplicates arcs a5 needed to obtain deg™(v) = deg+(v) forall vy ¢
N, then finds a directed Euler toyr in the resulting directed Eulerian multidigraph.

demands equal to deg™(v) — deg¥(v), v ¢ V, and find a minimum cost mnteger
feasible flow z in G~. Then z;; is the number of copies of are (,7) that have to
be added to G in order to obtain the desired multigraph.

2. For each undirected arc, both directiong have to be considered Separately; i.e. the
complexity of the procedure becomes €xponential in k.

By complementing all the variables one obtains g knapsack nequality, and using known
lifting procedures one obtains a number of lifted cover Inequalities. A known necessary
and sufficient condition tells which ones are facets. ‘ ‘ '

* (Advanced Integer Programming - Balas)

The extreme rays of the projection cone are the incidence vectors of directed cycles,
and so the projection of (2) onto the Z-space yields

-1
2. 25 <2 Cl forall ¢ ¢ c, (')
Gigec s '



where C is the collection of directed cy

cles not, involving node 1. Clearly,
(2') are dominated by (1).

the inequalities
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Answer all four questions.
1. (Nonlinear programming)
The goal of this question is to use the KK'T conditions to solve (recursively) the problem .

(P) min f(x) = Z;}:I(cjzj -+ Kj/zj)
st 0<zy <z, <--- <,

where ¢; and K are positive for each 7- It is easy to see that (P) has an optimal
solution. (You do not need to prove this.)

a) (2pts) Let (UP) be the “unconstrained” problem of minimizing f(z) subject only
. g ]
- to each z; being positive. Find the optimal solution ¥ of (UP).
(b) (2pt) Write down the KKT. conditions for (P). ’
(c) (1pt) Suppose that zf > 2¥, for j = 2,...,n. What is the optimal solution of
(P)? o
(d) (3pts) Now suppose that z¥ < z7 , for some j =2, . _. , 7. Prove that any optimal
solution z* of (P) satisfies z;=x}_,.

(e) (2pts) Now describe a method to solve (P) recursively.

2. (Stochastic processes) _
There follows two definitions of a stochastic process {Z,:n> 0}.

(@) {Z, : m > 0} defined on the positive integers: At any time 7 the process moves
an amount X, where X, are a family of iid integral random variables that are i1
also independent of Z, with E[X] <0 and 0% < . If the process would drop =
equal to or below 0 for any n, it is “bounced” back a strictly positive iid random .

" distance B, onto the positive integers, immediately. (Assume B, is non-lattice, - :
_ independent of and X,, and Zn, and E[B?] < 00). So the process never is less
than or equal to zero. .
For example, if Z, = 4 and X, = —4, then the process would be brought to 0.
In this case it is bounced out (B, = 26 say), so that Z,,, = 26. Similarly, if
Zn =4 and X, = —6, then the process would be brought to —2. In this case it is
bounced out (B, = 26 say), so that Z,,, = 26. i
i. Prove that Z, converges Lo a stationary distribution, Z, as n—soo. _

1. Give an expression for P(Z = k), for any positive mteger k, in terms of time
‘averages. ' : :

ii. If the long run average probability that Z, = k is @, the long run probability
that X, < —Z, is 3, and the probability that B, = k& is ¥, what is the
probability that the (stationary) process was bounced last period, given that
1t is equal to k this period?
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1. (Nonlinear prografnming ~ Javier Péna)

(a) f(z) is convex and (1 on R}, so the minimum is attained where its gradient
vanishes, i.e., where :

o) _ . K
Oz; 4 :z:]?

That is, at the point zY defined componentwise as

:E;/: VE;/cj for j = 1,...,n.

(b) We shall include only the constraints Ti-1' Sz for § =2, . n as the nonnega- m
tivity constraint must be satisfied strictly. Rewrite these constraints as 3

9(z) = (z4 T2 X223, oL, Ty — $n)T <0.

The KKT conditions for (P) are Vf(z) + Vg(z)u =0, uTg(z) = 0, which corre-

spond to
K,
€ — = =y
z2 ’
and i
J ' - s
cj — 22 T Wl T U, wa (T~ z5) =0 forj=2_. . n

I

(c). In such case z¥ is feasible for (P) and consequently it is an optimal solutiop to
(P)-



(d) Proceed by contradiction: Because z* is feasible, 7 > x;_,. If z; > z;_; then by
part (c) u;_; =0, and also

Cs _Kf~1_* — ot
7—1 (:1:;—_1)2 - uj-—-2 uj—l) P
and .
¢ — (5552 =ul_, —u
¢
(Define uy = 0.)
Since u}_; =0,
K;_y . N K
CGa— T = U, > 0= (z5-1)" > =,
( 1) c]—l
and % ‘
c; — 7 =—ul <0= (z%_,)2 < =L
v] (.’II;)2 7 — ( _77—1) — C]_

But :1:;] < xg-j_.l = I—C(L < 51;1‘ Therefore,
- 2

Cj—

c o K K
(37]'—1)2_2 —'L‘ > _‘J“ = (%‘)2
j—1 G .

which contradicts z} > =z} _,.

(e) Proceed inductively as follows: Solve the unconstrained problem. If z¥ > z¥
for j= 2 ;7 then we are done. Otherwise, choose some j = 2,...,n such t_hat
:z: < IL‘] 1- Get the solution by solving the smaller problem

( 7) min f(xl)"-)l‘j—l')xj*l-ly“-)zn)
s.t. O<.731...12]'_1 S.’II]'+1S"'S.'IIn,

where

_f—($17“'7$j—11:rj+17‘~'-):CTL) = zz;i?(clxl +K‘l/"r1)
+ (C] 1+ C]')IL'J'_.I ~+ (Kj—l + Kj)/xj—l
+ i (et + K/ z;)

2. (Stochastic Processes — Alan Scheller-Wolf)

(a) i. As Z, can easily be shown to be a Markov chain on the integers, proving the
existence of a stationary distribution can be achieved by showing the existence
of some state s, which is positive recurrent. Given the characteristics of
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Question 1: linear programming

Given an m X n matrix A € IR™*™, Let

.v(A) ‘= min ( ma;fm(Ax)i) ,

2>0,eTr=1 \ i=1,..

where e, = [1 1 ... l]T Is the vector of all one’s in IR™. In other words,

n

v(A) minimizes the largest entry of Az over all 7 such that z > 0, Zj=1 zj; =
1.

(a) (3 points) Using only A and suitable constant vectors in IR", IR™, write
a linear program whose optimal value is v(A). You must succinctly
Justify that the optimal value of your linear program is indeed attained
and equals v(A). '

(b) (2 points) Write down the dual of your linear program in (a).

(c) (3 points) Prove that

o(A) =0 (A7) = mmax (i (4720,

¥>0,ef y=1

where e, = [1 1 ... 1]T is the vector of all one’s in IR™.

(d) (2 points) Prove von Neumann’s Minimaz Theorem:

min ( max (yfo)> = max (I min l(yTAx)).

z>0,eTz=1 y>0,eT y=1 y>0,eT y=1 >0,eTx=




Question 92- graph theory

Let G = (V, E) be an undirected gfaph.

1.

Describe a method for finding a cutset (S, V\S) in G such that min{w, :
ee (S, V\9}is maximized over g cutsets of G and outlige g proof

Describe a method for finding a cutget (S,V\S) in G such that

max{w, : e € £ \ (S, 7\ S)} is minimized over all cutsets of ¢ and

outline a proof of Its correctness.




Question 3: networks and matchings

Let G = (V, E) be an undirected graph and for 5 = 1,2, let K; be the

vertex set of a clique in G. Describe an algorithm for finding a maximum
clique in G(K, U K), the subgraph of G induced by K, U K,.
[Hint: look at G




Question 4- integer programming

_Let F; be the set of vectors z € R™ gych t-hatﬁ ?Ef__omponents of z are % :
and the Temaining n — j components are equal to Oor IT For example in R?
the set £} containg the four vectors (3,0), (3,1), (0, 2, (1, ).

(2) Given JE€AL,... n— 1}, consider Ay m € 2™ gy € 7 such that
T < mp for every z ¢ F (strict in_equality). Show that 7z < o for
every ¢ ¢ Fii1. Hint: Let v e Fii1 and consider the following two
cases: .

(al) (2 points) First prove the result when 7y is ap integer.

(a2) (3 points) Assume now that 7V & Z. Without loss of generality,
assume that ¢, = 2 and 71 £ 0 and Jet vl v? ¢ F; be equal to ¢

(b) For any n > 1, let
P=leer: o<z«
2 jes T+ ngy(l ~Z;) > 2 forall g C{1,2,. ., 0},
(b1) (2 points) Show tha;t\Pﬂ_Z"/é 0 andﬁﬁ,\ L ‘};\Z
, rank of P is at Jeast

s

- (b2) (3 points).m Dediice from (a) that the CME’
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Question 5: advanced integer programming

Let M = (S,7) be a matroid. Define 7* — {JCS:r(5~ J) = r(S)}.
Then M* = (S, 7*) is a matroid (you are not asked to prove this). .
(2) (5 points) Show (M*)* =M.

(b) (5 points) Show that the
basis of 5. Begin with J = §.
and such that ¢, is minimum,

following algorithm finds a maximum-weight ~
While J ¢ Z, find e € J with r(J—{e}) = 7(S)
and replace J by J — {ey.




Question 6: convex polyhedra_'

Consider g polyhedron P -— {z € IR* : A4 > b} #0. The dominant of P
is defined as p+ .— {y € IR Y 2 z for some z P}

1. Show that Pt = P+IR}. What is the dimension of P+ if (a) dimP = n,
(b) dimP =5, _ 17 '

2. Express P+ ip terms of only.

[Hint: replace “for some z € p»

in the definition of P+
defining P, anq Project onto the

by the system
y-space.]




Question 7: convex analysis

Let £, Y be Euclidean spaces, f : E — (—oo0, +00] be a convex 'function-,
and A: E'—Y be a linear map.
For any given y € Y consider the problem

(P) inf{f(2) :z ¢ B, Az = ).
(a) (2 points) Show that the Fenchel Vdual of (P) is
(D) sup{(y,¢) — f(A*¢): g ¥}.
(b) (2 points) Define the value function v - Y — [—c0, +00] as

v(y) = inf{f(z):z € E, Az = y}.

Prove that v is convex.

(c) (3 points) Suppose 7 € ¥ is such that both (P) and (D) attain their
optimal values at Z € E and ® € Y respectively. Furthermore, assume
that these optimal values are the same. '

Prove that
¢ € du(y).

(d) (3 points) Suppose § € Y, Z € E, and ¢ € Y are such that the
conditions in (c) hold. Prove that .

A*$ € Bf(3).
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Question on nonlinear programming

(2) (2 points) Let 4 € IR™*™_p ¢ IR™, ¢ € IR® be given. Assume the sets
{z: Az =b,2> 0}, {(y,s) : ATy+s=¢,5> 0}

are nonempty.

Relying on the existence of the pﬁmal—dual central path for linear pro-
grams, prove that at least one of these two sets must be unbounded (that
is, it contains vectors of arbitrarily large norm).

‘.'Questions (b) through (d) below refer to the following situation: Suppose
A€ R™™ b€ IR™ are such that the system

Ar=bz>0 ,
does not have a solution. In the statements below Il - || denotes the Euclid@
2-porm, that is, |ju)| = VuTu.
(b) (3 points) Consider the problerﬁ
(®) min{lldz 8] : 2 > 0}

{The solution to this is, In some sense, the “closest” we can satisfy the
system of constraints.) :

Show that (P) can be cast as a conic optimization problem using the cone
R} x K for a suitable second-order cone K. Your formulation can only
use A, b and constant vectors. ‘

(c) (2 points) Write down the dual of your conic program in (b). Does strong
duality hold? Justify your answer.

v(.d) (3 points) Let
| o= min{[[ Az~ b]| : 7 > 0}
and
B = min{lly]l : ATy <0, b7y =1}

Prove that a8 = 1. You may assume that both minima defining o and g .
are attained.




SOLUTONS  QUAL 2 00 PART T

L

Solution to question on linear programming

(a) Consider the following linear program

min ¢

st. Az —te,, <0
elr =1
z2>0.

This linear program is clearly feasible: pick z as any unitary vector and
¢ sufliciently large. It is also bounded because {Az : z > 0, Tz = 1}
is the image under a linear map of a bounded set, and hence bounded.
- At the optimal solution necessarily
t=max;—) _ m(Az);. Consequently the. minimum yields v(A4).

(b) The dual is

max T
st. ATy +re, <0 ;
T, . ' :
—ev=1 :
v<0.

(c) Like in (2), we can rewrite v*(AT) as

max 7

st. ATy —7e, >0
e;l,:yz 1
y >0,

which is (replacing v by —y) precisely the dual problem in (b) Strong
duality then implies that v(A) = v*(47T). '

(d) Given any z € IR™, notice that
r :
Az) = Az);.
iy A9 = e, (Aa):

Likewise, given any y € IR™, we have

min (yTAz) = Ilnin (ATy);.
1 =4

20,eT =
" Therefore,
minxzo,e'f;z:l (maxyZO,egy=l(yTAI)) = minzZO,le:l (ma‘xizl,u- ,m(A‘T)'L)
= v(A4) ) .
— o(47)

T IMBXy50,eT 41 (miﬂj=1,,..,n(ATy)j)
maxyZO,eZly:l (mmzzO,eZI;l(yTAI)) -




Answer to Queéstion 2_ ( GQCL/\—£ TK&C’?/O‘»/

1. Find a minimum—weig.ht Spanning tree 7" in By Kruskal’s or Prim’s greedy algorithm,

and let (z,;7,) be a maximum-weight edge of T". Since T is minimum-weight (z

is a minimum-weight edge of the cutset (S*,V'\ S*) defined by the pair T, (i, 5.)).
Since every cutset intersects 7" in at least one edge and (i., J«) is a ma)dmum—weight
edge of T, (i, 3.) maximizes the minimum edge-weight of cutset among all cutsets

of G.

2. Find a maximum-weight spannjng tree 7" in G, and let [S,T] be the bipartition of V
induced by 7. Then the cutset (S, T) minimizes the maximum.edge—weight among all
edges not in the cutset. For suppose (k,€) is the heaviest edge not in (S,T), and let C

be the cycle formed by adding (£, £) to T*, then
- Wij > wyye foréll(i,j)EC',




Answer to Question 3 ( N ejir’m/zo MJ /\/} ‘Jlr/gzv\mg,o )

W.lo.g., assume K] < Kyl A maximum clique must contain K; N K, plus the vertex
set of a maximum clique in G(Kju K3), where K/ = K3\ K, and K = Ky, \ K;. Now a
maximum clique in GKIUKY) is a maximum stable set in G(K] U K3), which is bipartite.
The following algorithm finds-such 3 set:

1. Find a maximum matching M in G(KjUKY). If M covers all vertices in ki 1> stop: K2,

Is a maximum stable set. Otherwise '

2. Starting from the vertices of K! covered by M, label all vertices reachable via alter-
nating paths. If L is the set of labeled vertices, then (K \D)u (K 1N L) is a maximum

stable set. A
Let X" be the maximum stable set in G(K 1 UKY) found by the algorithm. Then the

vertex set (K} N K3) U K" induces a maximum clique in G(K1 U K).




Solution to question on integer programming

(21) Any vector v € Fj 41 is the convex combination of two vectors vl 02 ¢ F;
Since 7v! < my and 7u? < 7, it follows that #vy < To- Now v integral
implies 7y < . ' )

(22) Assume now 7 ¢ Z. Then v = k + % for some k € Z and there exists

function which takes the value 'k + 1 when T = v and a value < k or
> k+ 1 when z = v, there exists € [v,v'] such that 75! s integer.
Similarly, there exists 52 € [v,v?] such that 732 is integer. Since wv! < g
and 7v® < 7o, every z € [v',v%] satisfies 72 < my. This implies 75! < 1,
and 79? < 7. Thus every z € [5',5?] satisfies 7z < 7. In particular
v < 7. s Co-

(b1) Consider any 0,1 vector zand let J = {5 : z; = 0}. Then 2 iesTi+
2 i1 —2;)=0. So gpr.
Consider any z ¢ F;. Since z has one component equal to %, the quantity
2ojerTi+ 2_ies(1 —x;) is greater than or equal to 3 for every J.

(b2) Every Chvital cut for P can be written in the form 7T < 79, where

P € Z™ m € Z and wx < 7 for every z € P. Since Fy C P, it

follows from (a) that F5 is contained in the t'—GHyétal closure of P. By

induction, (a) implies that F, is contained in the (n—1)*t Chvétal closure

= of P. Since F, #0@and PNnZn = 0, at least one more iteration of the
Chvaétal procedure is needed.




AAJCM@-”[ T/wté//\ ?/LO?/\.&I/W\%

Let M = (S,T) be a matroid. Define 7* = {J C § - ™(S—J)= r(S)}. Then
M*=(S5,7*) is a matroid (you are not asked to prove this). '

(a) (5 points) Show (M) = M.

Claim 0.1 Let s, be the rank function of M. -The rank function of M* is
T™(A) = |4} + (S —A4)— r(S). :

Proof: Let J C A be maximal among sets in Z* contained in A. Thus
(4) =r(J) = I]- Proof is by induction on |4 — J|. ¥ A € T*, then
T(5—4) = 7(S) so that m™(4) = 4] = |AI+r(S—A)-r(S). Now suppose
Statement holds for all A’ such that JA' — J'| < k for J* maximal among
independent sets in 4’ and that |4 — J|=k. Then r(§—4) < (S—J).
and there must be an e ¢ A~ J such that (S~A%{e}) = r(S§—A)+1.
By induction, r* (4 — {e}) =|A—{e}]+ (S~ A+ {e})~ 7(S) = |J], since
J € A—{e} and is maximal among independent sets in 4 - {e}. Thus we
have that M =]A4]-1 +r(S—A4)+1— r(S) = Al +7(S ~A)-r(S). m

)y = {gcs: (S —1) =r(5)}
= {ICS: 15—11+r(1)—r(S)=lSl+r(@)—r(S)}
= UCS: =S|~ |s-1 =1
= Z

The matroid M+ is called‘ the dual matroid of M.

(b) (5 points) Show that the following algorithm finds a maximum-weight, basig
of S. Begin with J — §. While J ¢ Z, find e € with r(J — {e}) = r{(S)
and such that ¢, is minimum, and replace J by J — {e}.

Claim 0.2 4 i5 o basis of M if and onlyifS— A isaq basis of M.
Proof:

A abasis ¢« r(A4) = 7(8) and (A —{e}) <7(S), Vec 4
& S—Aer and S—A+edT* Vec 4
S~ Ais a basis of M*

Claim 0.3 4 4 mazrimum (minimum,) weight basis of M if and only if
S~ A4 is ¢ minimum (mazimum) weight basis of M*.

1




Proof: Follows from Claim 2 and fact that ¢(S) = (S — A)+ c(A) for all
ACS. N

If apply the greedy algorithm to M* with weights w, = ¢(5) — ¢, then
greedy finds a maximum w-weight basis of M*, which is a mininmm ¢
weight basis of M™*. The greedy algorithm applied to M* is precisely the
algorithm stated in (b).




Answer to Question &

l.I€P+:>3I

(Cm«‘/*\x R gﬁﬂe”&”t)

€ P with 2 2% hence ¢ — '+ (2~ 1) Where 7 _ s 20, e E
J:€P+IR" Converselv r€P+R =>3Jrep. 1T =g +a for € R e J2'e p '//"";
with 7 > .7 he d1me11310n of P+ is in both cases. 7
2. Pt - {y € R . Y=2 >0 A7 > 2 b} Let 4 be m x p, The prOJectlon cone js
W< u,v ER"*”"u+vA~O %v) > 0} hence
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Solution to question on convex analysis

(a) Rewrite (P) as
(P) inf{f(z)+ 9(Az):z e E}

where g(u) = d{y}(«) the indicator function of the set {y}.
The Fenchel dual problem is, by definition,

(D) sup{g™(¢) - f*(4"¢) : p € Y.
‘But
9°(¢) = sup{(v,4) — g(v) : v€ Y} = (v, 9)-
Thus we can rewrite (D) as '
(D) sup{(y,¢) - f*(4°¢): g e 1.
(b) Let 1,50 € ¥ and A € (0,1) be given. We want to show
| v(y1 + (1 - Nya) < Xoys) + (1 — Av(yz)-
Indeed, for any z,,z, such that Az; = y;, Az = 4, we have
AQzr + (1= N)zg) = Ay; + (1~ Ny,
and so
v(A1 + (1 - Ny2) < fAzy + (1 — A22) S Af(1) + (1~ A) f(zy).

(The last inequality because f is convex.)

Since this holds for any i, T2 such that Az, = Y1, AT2 = y3, we can take
inf in the right hand side and conclude that

w0+ (1= Ng2) < Aofgr) 4 (1 — No(ys).
(c) We need to show that for any y € Y the following inequality holds
, (69— 7) < vly) — v(z). ‘
Indeed, weak duality implies that for any y €Y

sup{(y, ) ~ f*(A*¢) : g € ¥}
(y, @) — F*(A") Ny
(09~ 0)+ (5, 9) - £*(4°§)
6,y — 7) + v(@). ’

()

miiviv

Thus
v(Y).— v(@) > (¢,y — 7)

as we wanted.




(d) We must have 4z = g ang
(#.9) ~ 7(4°3) = f(@).
Thus
F@)+ f(4*g) = (g, ) =(¢,4z) = (z, A*g)
But by the Fenchel Young inequality

@+ 1) > (2, a03)

with equality if ang only if A*

€ df (Z). Since the equality indeed holds,
we must have

A*$ € éf(:z).
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Solution to question on nonlinear programming

(a) By the existence theorem for the central path, we know that for all p>0
the following nonlinear system of equations has a solution (z(1), y(w), s( ).

Az =b

ATy +s=¢
Tisi=pu,1=1,... n
z,.s> 0.

Since we can choose # > 0 arbitrarily large, at least one of the sets
{z(e) : >0} or {(y(w),s(w)): >0}
must be unbounded (otherwise the condition Z;8; = pu could not hold).

Since these sets are contained in , _
{z: Az =b,2> 0} and {(v,s): ATy +5=0¢,5> 0}

respectively, it follows that at least one of the latter two must be un-
bounded.

(b) Introducing new variables Z,t, we can rewrite (P) as

min ¢ ,
(P) s.t. IA:::ZOz.—b
lzll <t
That is,
T
min [0 0 1] z
t

(P) st [4 -1 0] azc =b
oy

T
z| € R} x K.
t

where K is the second-order cone in IR™

(c) The dual of the last problem is

max bTy
[AT s 0
s.t. —Ity+ jw] =10
(D) 0 T 1
s
w} € IR} x K.
-




Strong duality holds because the Slater condition holds for (P): take z > @,
Z=AZ—b, and > ||z]|. Thus :

[4 -1

ShENE &)
/

with

€ int(IR™ x K),

QU ST T

(d) We can rewrite the dual as

max b7y
D) st ATy <o
Iyl < 1.

Let p* and d* be the optimal values of (P) and D) respectively. By strong
duality p* = g*_ ’ )
Furthermore, observe that d* = [13 and p* = ¢, so

1
a= —, le,af =1.
Jéj




Questions for the Qualifier of January 2004

Wednesday, Jan 7 2004

ACO Students - 4 hours: You must answer Questions 1.2.3. and one of -1!5,6 or 7.
OM Students - 2 hours for this part: You must answer Questions 1 and 2 only. -
OR Students - 4 hours: You rﬁust answer Questions 1.2.3. and one of4.-5 or 6.

All questions are open-notes open-book.

Please begin each question on a new page. \\Tite only on one side of every page. Alwaxys
remember to put your identification number (NOT your name) in the top right-hand
corner of every page vou turn in.




1. (Linear Programming) | ' _ .

You wish to dig a pit to extract minerals from the ground. You can excavate at n
different levels. At each level j vou will remove a cvlinder of earth with diameter
7;, where 0 < 7; < 1. No cylinder can have a larger diameter than those above it
(z1 2 22 > -+ > z,,). The net value of excavating level j is v;7,. where possibly
i)j < 0. The objective to decide how much to dig at each level so as to maximize net

value.

The problem can be written as a linear progra.mming problem

n
max Zvj:cj
=1
subject to T+ T 50, y=1.... .n-1 (A;)

(a) State a simple linear-time algorithm that finds an optimal solution. Don’t prove
optimality at this point. but note that there is always an optimal mtegral solution.

(b) State the dual problem, using the dual variables A; and p;.

(c) (This is the main question.) State an optimal dua) solution and show that it js
feasible. Hint: Let j=01forj=2 .. .n

(d) Use weak duality to show that vour linear-time algorithm obtains an optimal

solution.

p N . - Y
Y )\ % i {4{;_ 4 4
e / - 7o - Lr . «'/ :/ - ’75.«"' i —
i = - ~
X Sy y
~om // n 7




2. (Integer Programming)

Let P denote the polvtope-of R? obtained as the convex hull of the points (0.0.0).
(2.0.0). (0.2.0) and (% 3.h) with h > 0. Consider the mixed Integer linear program

‘max y
(11:12:1/) €P
Ty€2.79€ Z2.y€R

and let P, denote the convex hull of its feasible solutions. namely P, = conv{P n
{(IhI?:y) € 2% x R}}

(a) What is the dimension of P,;?
(b) Describe P, by a system of linear inequalities.

(¢) Consider the disjunction Ty S O0orz; > 1. What are the extreme points of
etz 22 8) 5 < ONU PO {(1,20,9) s 2y > 1))

(d) For (7o 71, 75) € Z3, consider the disjunction =z, + T2T2 S W OF W1y + w1y >
o + 1. Show that the point (3.3, L) belongs to P, = conv{(P N {(z),1,.y): T, +
T2 < o)) U (PN {(z),22.9) : mzy + 72T2 2 7o+ 1})}. The split closure of P,
denoted by P!, is the intersection of the polytopes P, over all » — (7o.m.72) € 23,
Show that P? contains the points (0,0,0), (2,0,0). (0,2, 0)and (1.1 4y

(e) For any integer k > 2. let Pk denote the split closure of P*~1. Show that p*
contains the point (3.3.1) for some ¢t > 0. Conclude that P* £ p,.

(f) More generally, for any mixed integeriinear Program. one can define the k' o)e.
mentary closure P* and the convex hull P; of the feasible solutions.

For a pure integer linear Program, is it true that there exists a finite k such that

-

P* = p;? Support your answer by citing a theorem or by giving a counter example.

For a mixed 0,1 linear program, is it true that there exists a finite k such that Pt — P?
Support your answer by citing a theorem or by giving a counter example.




3. (Advanced Integer Programming)

Consider a 0-1 program

max{cr: Az < b,z € {0.1}"}

where part of the constraint set is of the formegzr=1i=1,... g with Uk,Qi =
N=1{1,...,n}. and Q,-OQ]- =0Qforalli je N.

- We wish to generate lift-and-project cuts from disjunctions of the form

Az < b Az <b
(eQuI = 1 ) V. (eQnI = 1 ), ' (l)

for some i € {1,... 19}; where Q UQi = Q, Q;; N Qi = 0.
|92

(a) Formulate the cut generating linear program. with the standard objective of cut-
ting off the LP optimum % by a maximum amount. Use a normalization that

guarantees a finite optimum.

(b) What is the connection between cuts obtainable from a disjunction (1). and basic
solutions of the cut generating linear program? Define a disjunctive rank in terms
of the farriil}' 6f'disjunct.ions of type (1). In terms of vour definition. what is the
disjunctive rank of P, the LP polyvhedron associated with the above problem?




3. (Convex Polvtopes)

Let z € {o. 11y € {o, 1}?, and let S be the set of pairs 7.y satisfving the following
~condition: ‘

=1 for at Jeast ] component of y.*
of S.




0. (Advanced Linear Programming)

In vour solution-to any question ¥ou may use anv of the previous questions even if vou
did not solve them.

Consider the primal-dual pair of linear programs

min cTx max bTy
~(P) Ar = (D) ATy+s=¢

z2>0. s >0,

where 4 € R™"_p ¢ R™ c e R".

(a) (2pts) Use LP duality to show that T. (¥.5) are optimal solutions to (P) and (D)
respectively if and only if (Z,7,3) solves

ATy +s=¢
Ax =0
XSe=0
.5 2> 0.

where X' = Diag(z). S = Diag(s). and e = [] . ]]T.

(b) (3pts) Assume A is full row-rank. {r: Az =b.7 > 0} # 0. and {(y. s): ATy+s =
¢.5>0} #0. Let y > 0 be fixed. Prove that r(u) and (9(1), s(¢)) minimize and
maximize respectively

‘min Tr- 4 2 In(zy) max b7y + © o5 In(s;) 8
(P,) . Ar=%b - (D,) ATy+s=c¢ -
>0 ' s>0

if and only if (r(,u)l,y(u), s{u1)) solves

ATy+s=¢
Az =b
XSe = pe
z,s>0.

(c) (2pts) Assume A, b, c are such that the conditions in (b) hold. Let T and (7,3)
be optimal solutions to (P) and (D) respectively, and z(p) and (y(g).s(u)) be
optimal solutions to (P,) and (D,.) respectively. Prove that

2(1)"3 + s(u)TF = np.

~J



(d) (3ptsj Assume Ab.e are such that the conditions in (b) huld. Furthermore.
assume that both (P) and (D) have unique non-degenerate optimal solutions.
For 4 > 0 let Bu)c {1.... .n} be the set of indices of the m largest components
of 7(yr). Prove that there exists § > 0 such that iy <é then B(41) is the optimal
basis of (P). (D).




Questions for the Qualifier of January 2004

Thursday, Jan 8 2004

ACO Students - 3 hours: You must answer Questions 1,2 and 6.

OM Students - 4 hours: You must answer Questions 1,2,3 and 5.

OR Students - 5 hours: You must answer Questions 1,2,3,4 and 5.

¢ All questions except 3 are open-notes open-book. For Question 3, you may only use
material from a 3 inch by 5 inch notecard filled both sides. ’

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand

corner of every page you turn in.




1. {Graph Theory)

(a) State the Pérfect Craph Theorem and the Strong Perfect Graph Theorem, and
show that the latter implies the former.

(b) An interval graph G is the intersection graph of some family F of intervals on the
real line, i.e. G has a vertex for every interval in F, and an edge for every pair of
intervals whose intersection is nonempty. Use the Strong Perfect Graph Theorem

to prove that interval graphs are perfect.




2. (Networks & Matchings) In a maximum flow problem ip a directed network G, call
(2.7) the most important (least Important) arc of G if deleting (1, j) from G results n
the ]arg’est (the smallest) decrease in the maximum flow.

Prove or disprove (by counterexample) each of the following statements: - -

(a) A most Important arc is one with a maximum Capacity u,;.

(b) A most important arc is one with a maximum arc flow z;;.

{c) A most important arc is one with a maximum flow Zi; among the arcs of some -

minimum cut. o~ T T

(e) A network may have several most important arcs.”",. . > 1

(f) Any arc (1,7) with Zi; = 0 in some maximum flow is a least important arc. i e,

(g) A least important arc is an arc (i,7) with a minimum value of Zi; In @ maximum
8 i T e e, NP v o ’.ﬁ o ».:. - -

flow. -0 .. R =T '
(h) No arc of 2 minimum cut can be a Jeast important arc. : R Ty




6. (Discrete Mathematics)
Let n < N be positive integers. We sav that S {N] = [n] separates a set A C [N] if
the restriction of f to A is an injection (i.e. f separates A if [f(A4)] = [AD.

(a) Use the probabilistic method to show that if

log (%)

t> log n* — log (n* — K(2)

then there exists a collection of functions Sis---y fo : [N] = [n] such that for all
A € (¥) there exists i € {1,...1} such that f; separates A.

(b) Let k,n be fixed constants. Use the Lovasz Local Lemma to prbve that for N
sufficiently large there exists '

log (%)

§< log n* —log (n* — k!(}))

and a collection of functions gi, ..., g, : [N] = [n] such that for all A € (%) there
exists ¢ € {1,...s} such that g; separates A.




ANSWER~Part 1 Question 1 (Linear Programming)

I. To find an optima] solution, compute the partial sums S, = Zle v; and pick a k that
maximizes Si. Let zj=1forj=1, .. kand z;=0forj=k+1,... n

2. The dual is

n
min . E My
=1

subject to  —\; 4 p; > 9, "~ (a)
Aicl = Ar + g > v, t=2,...,n—1 (b)
Anet + pn > vy ‘ (c)
A>0, i=1,... n—1 (d)
pi>0, i=1,.. ,n (e)

3. Let the optimal primal solution be as given above. An optimal dual solution is

Vigr + - -+ + v, fori=1,... &k
A = .
—(Vk1 + - ;) fore=k+1,... n—1
Aty fori=1
1o | fori=2 ... n

We check feasibility for each dual constraint:

(a) This becomes (U2 4 )+ (vi +-- -+ ) > vy, which is satisfied.

(b) for £ = 2,... k. This becomes (v; + - - + V) — (Vi1 + -« - +vx) > v;, which is

satisfied.

(b)fori=k+1,... n—1. This becomes

(Ve + - vy + (v + ) >y

which ‘is satisfied.
(c) This becomes —(vggy -+ Un—1) > Un, OF Ugyy + -+ v, < 0. This is satisfied,
since otherwise the algorithm would not have set Ty =--- =z, = 0.

- (d) fori =1,... k. This becomes Vitr + -+ v > 0, which is satisfied because

otherwise the algorithm would have set zx = 0.

(d) fori =k + I,...,n. This becomes Ukt -+ v; < 0. This is satisfied, since

otherwise the algorithm would not, have set 234) = --- =z, = 0.
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(e) This becomes v; + -+ + v, > 0, which is satisfied since otherwise the algorithm ST
would have set z, = 0.

4. Since the above dual feasible solution has the same value vy 4 - -

obtained by the algorithm, both are optimal by weak duality.

-+ v as the solution

20



ANSWER-Part 1 Question 2 (Integer Programming)

(a) Dimension of P, = 2.
(b)xlzo,x2>0 T+ 2, <2, y=0.
(©) (0,0,0), (0,2,0), (2,0,0), (1, 1, 2)
{d) No disjunction of the form proposed is v1olated by all 3 following points. at me
time: (1, 1), (3. 1), 2, 5). Therefore P, always conta ns ; leas ‘
(1,33, 41, ), (5 5). Thus at least one of the
3 points and the pomts (0 0,0), (0,2,0), (2,0, O)
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ANSWER-Part 1 Question 3 (Advanced Integer Programming)

(a) The cut generating linear program is

min oI — f8

a + uA — ugeg, > 0

«a + vA — wyeg, > 0
B — ub + g = 0 (CGLP)

Jo] — v 4+ =0

ue + ug + ve 4+ g = 1

U, v > 0

(b) Any valid cut obtainable from the disjunction (1) either corresponds to a basic
~ solution of (CGLP) or is dominated by such a cut.

‘The disjunctive rank of P in terms of the family of disjunctions of type (1) can

be defined as the number of iterations needed to generate conv(P N{0,1}") re-

curswely, by obtaining at each step of the recursion all cuts from a disjunction

(1) corresponding to basic solutions of (CGLP). In terms of this definition, the
k

disjunctive rank of P is 3 log, | Q4.
=1
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ANSWER-Part 1 Question 5 (Convex Polytopes)

The condition _
.'L'1+$2+.'13322 = y4+y521

can be restated, setting y, = 1 — ;. § = 1,...,3, as
.
Yi+%+mu2>22 Vo oy 4y >

The convex hull of S is given by

% —y| ~yi = 0
Y ~Ys ~Y3 =0
~y +  z} >0
-+ 2 > 0
Vitysty; ~ 22 > 0
—y? + 2 > 0
2+ R >0
ity - 2 > 0
zy + oz =1
y; >0, y: >0, J=1,...,5 2} >0, z > 0
Projecting this system onto the subspace of (7, .. . ,¥s) yields
Yot % oy + 2y 2y > 9
Y1+ oy oY+ oy > 1
n + ¥+ oy o+ ys 2 1
Y2+ ys + oy o+ oy > 1
or, after substituting z;=1—y; fori=1,23
Ty + Ty + x4 T 2y — 2ys < 1
Zy + z T Y - ys <1
T Ts = w4 — ys < 1
T2+ Tz — oy, — oy < 1
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ANSWER-Part 1 Question 6 (Advanced Linear Programming)

(a) By LP programming duality, we know that Z and (7, 5) are optimal solutions to (P)
and (D) respectively if and only if they are both feasible and their optimal values are
the same. In other words, if and only if

ATy +s=¢
' Az =1b
CT.’L‘:bTy - (1)

z,s > 0.

But if the first two conditions hold, then ¢T% — by = (ATy + 5)Tz — (Ax)Ty =zTs.

Hence we can replace the third equation in (1) by 2Ts = 0. But for z,s > 0 we have

zTs =0 < z;5;=0,7=1,... ,n< XSe =0. Therefore (1) is equivalent to

ATy +s5s=¢
Az =b
XSe=0
z,5 > 0.

(b) By the KKT conditions z(u) > 0 solves (P,) if and only if Az(p) = b and there exists ;
7{u) such that 1

c—uX(u) e = ATj(u).

Similarly, (y(u), s(u)) with s(z) > 0 solves (D,) if and only if ATy(/.L) + s{u) = ¢ and .
there exists Z(u) such that 7y

e - ™

~ Hence it follows that Z(u) also solves (P,). But, because ¢z — p o In(z;) is strictly ¢
convex, the solution z(u) is unique. - Therefore #(u) = z(u) = uS(u)~'e, and conse- .
quently ATg(u) = AT y(p ) Since A is full row- rank, we must also have g(u) = y(u). 2

- Therefore the KKT conditions for both (P,) and (D,) are z(u), s(u) > 0, Az(p) =
b, ATy(u) + s(u) = ¢, and z(u) = pS(u)"e. These can be rewritten as

ATy +s=c¢
Az =b
XSe = pue
z,s > 0.
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(c) By (a) and (b) we have

2(1)75+s()TE = (W) T(c - ATy) (o= ATy(u) Tz
= (1) e~ bTY + cTF — bTy(y)
= x(u)T(ATy(u) + (1) — (Az(u)Ty(u)
= x(u)

(d) Let B be the optimal basis of (P), (D)
solutions to (P)
€ > 0 be such that all components of
follows that

and (D) are not degenerate, we must have

and let N = {1,... n}\ B. Since the optimal
Tp > 0 and 55 > 0. Let

B and Sy are bounded below by €. From (c) it

o(w); < L < e,
35 €
and
sy < <™ e
’ j 6
Since X (u)S(u)e = He, we also have
8(/"‘)] Z —7j € N)
and
€ .
o(p); > 7€ B_-
Thus for 4 < €2/n? we have’
€ .
and
€
z(p); > -, j € B.

Therefore, as long as u < € /n?,

whose indices are in B. In other words,

2, the largest m components of z(u) are precisely those -

B(y) = B for p< € [n?.
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- ANSWER-Part, 2Question 1 (Graph Theory)

(a)

Given an undirected graph G = (V, FE), denote
o G = (V, E), the complement graph of G
e G = collection of induced subgraphs of G

o(G) = the size of a maximum stable set in G

6(G) = the size of a minimum clique cover of G

w(G) = the size of a maximum clique in G

7(G) = the size of a minimum coloring of G.

Definition. G is y-perfect if v(G") = w(G') for all G’ € G.
G is a-perfect if a(G') = 0(G’) for all G € G

Perfect Graph Theorem. .
e G is a-perfect if and only if it is y-perfect.
Equivalently: G is perfect if and only if G is perfect.

Strong Perfect‘Graph Theorem.

e G is perfect if and only if it has no odd holes and no odd antiholes.

Equivalently: G is perfect. if and only if neither G nor G have odd holes.

Interval graphs have no holes (even or odd). Indeed, if the intervals are [i;, 3], . . . ,
[im, Jm], @ hole of length k& would imply that lie, Jel, [Zex1, Jey1] intersect for £ =
1,.:.,k—1and [¢, ji] intersects [il,jl]_,’ without intersecting [iz, 72|, - . - , [tk—2, Jx—2]
which is imbossible. We claim that this implies that interval graphs have no odd
antiholes either, hence according to the Strong Perfect Graph Theorem they are
perfect.

Proof of the claim. Every odd antihole on n nodes (n odd), with the missing
edges being (1,14 (n—1)/2), (2, 2+(n—-1)/2),...,{n,n+(n~1)/2) (with addition

~ taken modulo n), has a 4-hole, namely: (1,2,1+ (n—1)/2,3+ (n—1)/2). Indeed,

none of the 4 edges (1,2),(2,1+ (n —1)/2),(1 + (n — 1)/2,3 + (n — 1)/2) and
(34 (n—1)/2,1) are listed as iniésing; on the other hand, both (1,1 + (n—1)/2)
and (2,3 + (n — 1)/2) are missing (the latter is the same as B+ (n—-1)/2,3+
(n—1)/2+(n-1)/2) = 3+ (n - 1)2,2) (modulo n).
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ANSWER-Part 2 Question 2 (

(2) False.
(b) False.
(c) False.
(d) False.
(e) True.
() True.
(g) False.
(h) False.

Networks & Matchings)
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ANSWER-Part 2 Question 6 (Discrete Mathematics)

1. Let f,..., fi be functions chosen uniformly and independently at random from the
collection of all n™¥ functions from N ton. For A4 € ([’Z]) let £4 be the event that no

function in the collection fi,.. ., f, separates A. We have

Pr(€a) = (1 - lfﬁ)->t ,;mu,ﬁ_ A=Y

nk
)L

If this quantity is less than 1 (which is equivalent to the condition on ¢t stated in

Applying the union bound we have

Prl U &< S Pr(EA):(]Z) (1*

4¢(') ae(%h)

k)
nk

the problem) then there exists a. collection of functions fy,..., f; such that for every
Ae ([2’]) there exists a function in the collection that separates A.

2. Let g1,...,gs be functions chosen uniformly and indépendently at random from the

collection of all n?V functions from N to n. (Note that in this probability space
91(1),-..,g1(NV) are chosen uniformly and independently at random from [n].) For
A € ([2’]) let £4 be the event that no function in the collection g, ..., g, separates
A. We define a dependency graph on this collection of events by setting £4 ~ Ep iff
AN B #{. Note that the event £4 is mutually independent of the collection of events
{€p : E4 # Ep} since these events are determined by the values of t‘he‘functions on

[N]\ A. The degree in this dependency graph is

= (0)- (")

Applying the Lovasz Local Lemma we have

() (- - wfya)

4e()

So,

| 2o (() - (%)
log n¥ — log (n* — k1(}))

= Pr U EA < 1
ae(t)

Since (IZ ) ~ (N r k) as N goes to infinity, we have the desired result.
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Questions for the Qualiﬁer of January 2006
fWedné_sday January 11, 2006

e ACO Students - 3 hours: You must answer Questions 1, 2, and 3. .
-« OM Students -4 hours: You must answer Questions 1, 2, 4, and 5.
« OR Students - 5 hours: Yoy must answer Questions 1, 2, 3, 4, and 5.

e All questions are open-notes, open-book.

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT

your name) in the top right-hand
corzer of every page you turn in. ' '




1. (Linear Programming)

Let A be an m x n matrix and b € Rm.

A (a) Using duality, give a necessary and sufficient condition for the system Az = b to [}

have a solution z € R» with z > 0. Justify your answer.

(b) Let Y, .., Y, be given nonzero vectors in R™. Using duality, give a, set of neces-
sary and sufficient conditions on the v; such that there exist numbers ), . .. ) Ar,
all strictly positive, with \jv; +-- - + AnUn = 0. Justify your answer.

(c) Give the simplest geometrical interpretation (in term of hyperplane(s) and/or

vector(s)) of the set of conditions you found in b).




2. (Integer Programming)
The pigeonhole principle states that the problem
(P)  Place (n + 1) pigeons into n holes so that no two pigeons share g hole

has no solution.

{(a) Formulate (P) as an integer programming problem with two kinds of constraints:

(al) those expressing the condition that every pigeon must get into a hole;

pProgram with constraints (al) and (a2) is feasible.

(b) Give a procedure for using (22) to generate a hierarchy of cutting plane families
with binary coefficients such that

(b1) the cﬁtting planes at level 1 of the hierarchy have three coefficients equal to
.1 and dominate (make. redundant) the Inequalities (a2);

(b2) the cutting planes at level & — 2 of the hierarchy have k& coefficients equal to
1 and dominate all cutting planes at level 4 <  — 2;

(b3) the cutting planes at level n — 1 (the top level), together with the constraint

(al), constitute an infeasible system.




3. (Advanced Integer Programming)

Let P be the problem of finding a maximum-weight simple directed cycle in a complete

digraph with arc-weights of arbitrary sign.

(a) Give two Integer programming formulations of P, the first one using arc and node
variables, the second one using-only arc variables. Prove the correctness of your
formulations. - |
Hint: In both formulations, n order to eliminate multiple cycles, you have to come
up with a family of inequalities satisfied by every simple cycle, but containing for
any union U of simple dicycles at least one member violated by U .

(b) Derive the second formulation as a projection of the first one on the space of the

* arc variables.

(c) Show the connection of the first formulation to the asymmetric TSP. Do you see
a way to derive valid Inequalities for P from valid mequalities for the asymmetric




Questions for the Qualifier of January 2006

Thursday January 12, 2006

ACO Students - 4 hours: You must answer Questions 1; 2, 6 and one of 3, 4, or 5.

OM Students - 2 hours: You must answer Questions 1, and 2.

OR Students - 4 hours: You must answer Questions 1, 2, 3 and one of 4 or 5.

All questions are open—note's; open-book.

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand

corner of every page you turn in.




N

1. (Graph Theory)

Let G be a connected simple graph with n vertices (no loops or multiple edges). The
tree graph of G is the graph whose vertices are the spanning trees 73, ..., T, of G with-
7; and T} joined if and only if they have exactly n — 2 edges in common.

(a) Consider the case where & has exactly n edges that induce a cycle, ie. every

vertex of G has degree 2. Describe the tree graph of G.

(b) Consider the case where G = K,, the complete graph on n vertices. What is the

number of vertices of the tree graph of G?
(c) Show that the tree graph of any connected simple graph is connected.

(d) Is the tree graph of a connected simgle graph al'v\}ays 2-connected?




2. (Networks & Matchings)
Consider a function J defined for all sequences of numbers such that

(i) f(xh e ,ik,xkﬂ) :,f(f(xl)-

.- )x/\‘.)) xk+1)

(1) f(z,... 1Tk, Ty ) > f(:v'l,...,xk).

Consider a network J — (V, A) with arc weights w,, for all ¢ € A Lets,tev.

mstov eV to be f(wal,...,wak) where q;, . .
P. The goal is to find a path

Define the value of 5 path P fro

-, Q4 18

the sequence of arcs in the path from s to ¢ with smallest

value.

(a) Design a, Dijkstra—like_algorit.hm to find a path from S to t with smallest value.

(b) Prove the correctness of your algorithm.

Le. the number of function evaluationg?




/ 4. (Convex Polytopes)

>

The Capacitated Vehicle Routing Problem is the problem of serving customers with
capacitated trucks from a central depot. Let {1,2,... ,n} be the set of customers with
respective demands d; > 1 forj — I...,n. Letp = 2 be the number of trucks available,

each truck having capacity K > 1. The index 0 1s used for indexing the depot.

Lét G be the complete graph with vertex set V= {0, 1, 2,...,n}, each edge ¢ having
& cost ¢c.. A route in G is an ordered set {v, ... U} of 7 > 1 distinct vertices of
V —{0}. The cost of a route is the cost of traveling from the depot to vy, plus the
cost of traveling the route itself, plus the cost of going back to the depot, i.e. the cost
of the edge (0, v1), plus the sum of the cost of the edges (vi,v344) for & = 1,...,r—1"
plus the cost of the edge (v,,0). A feasible solution of the capacitated vehicle routing
problem on G is a collection of exactly p routes fofnﬁhg a partition of V — {0} and

of the Capacitated Vehicle Routing Problem?

(STSP) min » ez, (1)
ecE
subject to
(6(v)) =2 for vevy (2
20N> 2 for 3<Is)< V2 (3)
0<2. <1 for ecE (4)
T, integer for e € F (5)

Hint: There 45 q change in a_H lines except (1) and (5).

For the remainder of the problem, let Q(n) be the linear programming relaxation of
the formulation you found in point (a) when used for the case n > 3,p = 2, K=n~1"

and with dizlforizl,.,.,n.

(b) What is the dimension of Q(n)?







5. (Advanced Linear Programming) -
Consider the primal-dual pair of linear programs

min ¢l

max 6Ty : | 71
(P) Az =b ' (D) Aty +s=¢
z 20, §>0,

where 4 € R™™ p e R™, ce R™.

(2) (2pts) Use LP duality to show that T, (¥,3) are optimal solutions to

(P) and (D)
respectively if and only if (Z,7,3) solves

ATy 4 s=¢
Az =b
XSe=0
z,s >0,

where X = Diag(z), S = Diag(s), and e = [1 ... l]T.

(b) (4pts) Assume A is full row-rank, {z: Az =b,z > 0} # 0, and {(y,s) : ATy 45 =
¢,s >0} #0. Assume v ¢ R" such that v > 0 is given.

(1) (2pté) Prove that there exists 1 unique solution to the System of equations

ATy +s=¢
Az =b (
XSe=uy (1)
z,s>0. ‘

(ii) (2pts) Prove that for Some appropriate convex fun
pending on v) the point (z,,, y,,

(Y, Sy} are the solutions to

ction f: R%, - R (de-
Sy) Is a solution to (1) if and only if z, and

min- cTi + f(z) max b?“y - f(s)
(PU) A$ = b . and ’ (Dv) ) ATy +s=c 5
z>0 >0

respectively.

(c) (4pts) Suppose you have a point (z°
b, ATy? + 0 — .

, 4%, 5% such that 2% 5% > 0 and Az° —

Use part (b) to propose a suitable modification of a feasible interior-
following algorithm whose starting point is (°, y?,59)

mmate solutions to (1) for values of v that converge t

point path
and that generates approx-
0 0. Specifically, define:



(i) (2pts) an appropriate “modified central path”
(i1) (1pt) an appropriate “modified neighborhood of the central path”

(iii) (1pt) the steps that-should constitute each main iteration of the algorithm.




6. (Discrete Mathematics)

(a) Recall that Grnp is the random graph on n vertices where each edge appears ,
- independently with probability p. Let &£ be the event that G, , contains a (not =3
--.necessarily induced) copy of the cycle on 4 vertices. .

(i) Prove that if lim,_,., np = 0 then lim, o Pr(€) = 0.

(i) Prove that if lim,,_,, %p = 0 then lim,_,o, Pr(&£) = 1.

(b) Prove thé,t every graph G with e edges and maximum degree A — A(G) has a

; matching of size at least e/(24).




| ANSWER—Pa_rt 1 Question 1 (Linear Programming)

(2) The dual of (P): min{07z [Az = b, > 0} is (D): max{yTb |yTA4 < 0}. Observe that
(D) is always feasible. Hence, (P) is feasible if and only if (D) is bounded. Since the
linear system in (D) is homogeneous, (D) is bounded if and only if {y | yTA4 < 0,976 >

0} has no solution.

(b) Let A be the matrix whose columns are the vectors Y-+, Ua. The dual of (P):
max{t [AX = 0,i-A <0Vi=1,. .. , N} is (D): min{0 [uTA—oTT = 0,v71 =14 > 0}.
‘Observe that (P) is always feasible and has a solution with ¢ > ¢ if and only if (D) is
infeasible. This is equivalent to say that 4T A4 >0,uTA # 0 has no solution.

(¢) The above condition is satisfied if and only if there is no hyperplane H = {z €
R™ | uTz = 0} such that all vectors in {v;,...,u,} lie on the same side of H with at

least one vector not lying in H itself.
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ANSWER-Part 1 Question 2 (Integer Programming)

(2)

(b)

day=1 Vi=1,...,n+1" (1)
j=1 ‘
xij+xkj_<_1 Vi,kzl,...,n‘;Ll;Vj:1,...,71 ) (2)

The variables form a matrix X = (zi;) with (n+1) rows and n columns. Constraints
(1) imply-that z,; = 1 for exactly one j in each row i, a total of n + 1 variables. On
the other hand, constraints (2) imply that z;; = 1 for exactly one J in each column 7,

a total of n variables, a contradiction.
On the other hand, z,; = }1 for all 4, 7 is a feasible solution to the linear system (1),
(2)_' ’
For every triple ¢, k, £ of row indices and for J=1,...,n, we have from (2):

Tij + X5 < 1

1131'_7' +$gj S 1

Trj + Zej <1
Multiplying by 0.5 each of these inequalities, adding them up an roundihg down the
resulting inequality yields: z;; + Tej+Ze; < 1forall j =1,..: n This family of cuts
form the first level of the hierarchy. At level k — 2, we have the inequalities

Ti5 + Tipg + ... + Zi 5 + Oﬂiik“j <1

T3y +$i2]’ + ... +O$—;kj +xik+1j <1

IA

0Zij + Zoj + .+ Ty + 75,5 < 1

Multiplying each inequality by %, adding them and rounding down yields z; ; + x4, +
"'+$ikj+$ik+1j.5 L. | |
Finaﬂy, at level n — 1 (top level), the obtained inequalities are:

n+1

injglforjzl,...,n

1=1

and, together with (1) they form an infeasible system.
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'ANSWER~Part 1 Question 3 (Advanced Integer Programming)

(a) First formulation:

méx . i Zn:wijxij | (1)

i=1 j=1
st x(lz] N) =y Vie N 2)
z(Ng) =y VieN (3)
z(S,8) —y(S — {k}) +y < 1 VSC‘N,/{ES,ZEN—S (4)
Zi5, Y5 € {0,1} Vi,je N (5)

Second formulation:

max i i ’LUijfEij (6)

5.t. l.'):l(if z\lf) <1 VieN ' (7)
2(N,3) — 2(3, N) = 0 Vie N (8)
x(k,'N)H(e,N)—x_(S,ng)g1 VSCNkeSteN-5 (9

z; € {0, 1)  Yijen (10)

Constraints (7), (8) correspond to (2), (3): Both sets of constraints are satisfied by
dicycles and union of dicycles. Constraints (4) and (9) are satisfied by every dicycle;
but if U is a union containing disjoint dicycles Cy, Cy, then the inequality of (4) or (9)
corresponding to S = {nodes of C1}, any k € S and ¢ a node of Cs is violated by U.

(b) Add (2) to 1; < 1 to obtain (7). Substitute y into (4) to obtain (9).

(c) When we set Y = 1 for all 7, the first formulation is & formulation for the ATSP
where the constraints (4) are subtour elimination constraints. It suggests that any
valid inequality for the ATSP can be lifted into a valid inequality for P. .
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ANSWER—Part 2 Question 1 (Graph Theory)
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ANSWER-Part 2 Question 2 (Netwérks & Matchings)
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(2)

(b)

'ANSWER—Part 2 Question 4 (Convex Polytopes)

min D ecE CeTe _ : (1)
subject to
2p fv=0
#(6(v)) = { 2 otherwise for veV (2)
2(3(S)) > 2[4 for 0£SCV-{0} (3
0<az, < { 2 ife mc_ldent to 0 for e F (@)
1 otherwise
z. integer - for ee F (5)

Equalities (2) are all linearly independent: This is clear for the n equalities with right

- hand side 2, since each mnvolves an edge incident to 0 that is not present in the others.

(o)

The last equality is not linearly dependent with these, as it prevents a, single cycle on
vV — {0}. ' '
For each inequality (3), either IS] = 1or [S| = n and it is implied by (2),or1<|S]<n
and there exists a feasible integer solution satisfying it strictly.

For each inequality (4), there exists a feasible integer solution satisfying it strictly.

It follows that the equality space of Q(n) is defined by the n + 1 equalities (2). The

dimension of Q(n) is thus (’%1)_2 _ (n+1)= n2—2n—2_

"The upper bound is the dimension of @(n) computed above. Suppose that one other
equality az = b with a £ 0 is linearly independent from the equalities (2) at that
the integer hull is contained in az = b. Using multiples of the equalities (2), one can
assume that a. = 0 for all e incident to 0, that a, > 0 for all e € E and that at least

one edge € not adjacent to 0 has agz = 0.

Since the integer hull is contained in ax = b, all feasible solutions satisfy it. Consider a
solution Z using edge €. Observe that T induces two paths P, P, in G — {0}. Let eq, ey
be two edgés such that Py U P, U {e;, e;} is a cycle. Observe that (PAUP, —e)Ueg
corresponds to a feasible solution 7 after adding four edges adjacent to 0. Since
aZ = aT’, we have Ge = G, = 0. A similar argument shows that all edges in P, U P,

have a, = 0, implying o = 0.and thus a¢ = 0, a contradiction.




‘(b>

ATy 4 s =

' Az =} v

:l::_bTy (1)
z,s > (.

cT

‘But if the first two conditions hold, then 'z — pTy = (ATy + 5)T —'(Aa:)Ty =zTs.

Hence we can replace the third equation in (1) by zTg — 0. But for z, ¢ > 0 we have

2Ts =0 Zjs; =0,7=1,.. NS XSe = Therefore (1) is equivalent to

ATy s = ¢
Az =}
XSe=0
z,5>0.

Do parts (i) and (ii) together- consider the function -
flz) = ~Zvj logz;..
=1

This function is strictly éonvex on R}, because V2 Hz)=vx-2y 9 forall z € R% ..
By the KKT conditions, z, > ¢ solves (P,) if and only if Az, = and there exists Yo

such that

c=VXle= 4Ty

Similé.riy, (¥, 8u) with Sy > 0 solves (D,) if and only if ATy, Sv = ¢ and there exists

v =[]

Hence it follows that z, also solves (P,). But, because cTx+ f(z)is strictly convex, the
solution z, is unique. Therefore Z, =1, = VS:le, and consequently ATy, = ATy,

Zy such that

" Since Ais full row~rank, we must also have Uy =y, Therefore the KKT conditions for

both (P,) and (D,) are z,, s, > 0, Az, = b, ATy, 4 v =6 and z, = VS-le Thege

can be rewritten as

ATy +s=¢
Az =
XSe=y (2)
z,8> 0.
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(¢) (i) Takev®-= X OSOeV and define the modified Centr_a1 b%ith as
(00,900 50 (o0, w0 300 sobves (2) for v = ys®, for 5 0y,

(ii) Define the modified neighborhood of the central path as .
| N(8) := {(=, Y,5): ATy 5= ¢, Az = b, z,5 > (, | XSe — w(z, )0 < Ou(z,s)},

- where
eTXS(V0)-1¢
[.L(I, S) = \—n\

(iii) Given (z,y, s) € N(6) put p+ = ou(z, s) for some appropriate o € (0,1) and

solve
ATAYy + As =g
CTAAz =0
SOz + SAz =ty — X Se
then set

24"




ANSWER-Part 2 Question 6_'(Discrete Mathematics)

(2) Let the random variable Y be the number of copies of C, in'G,,. We have
4
ElY] = % pt )
(1) Since Pr(y >1) < E[Y], we have np — 0 implies Pr(&) = Pr(y #0) — 0.
- (ii) Now ElY] goes to infinity. To establish that Y > 0 with high probability we use

([;LI) that form a copy of Cy (i.e. potential copies of Cy in our random graph). For
each A € A Jet Y4 be the indicator random variable that is 1 if all the edges in A
appear in G, , and is zero otherwise. Noting that Yy and Yy are independent if

Aand B have no edges in common, we have

Varly]= 3 EYaYs] - E[V,)E[vs] + 2 BV - (E[Ya])?

ABEAALB A€A .
' fn—2 n—3
D Gy [ (S
AcA : AcA :
nSp7 nSps nip : :
< .
-2 + 2 + 8 :
By an application of Chebyshev's inequality we have v
. Var[y]
Pr(Y =0) < pr Y- ElY]|> Ely S ome— 1
(= 0) < Pr(y - By > By, G
Since np tends to infinity as n tends to infinity, we have that Lim,,_, Pr(y =

Pr(x > E[X]) is flon-zero, the desired bipartite subgraph H exists.
Now, let X be g minimum vertex cover of H. We have

§s§ﬁmwswm:Adm

veEX
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Questions for the Qualifier of J anuary 2007

Wednesday January 10, 2007

ACO Students - 4 hours: You must answer Questions 1, 2, 3 and 4.
OM Students - 2 hours: You must answer Questions 1, and 2.
All questions are open-notes; open-book.

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand

corner of every page you turn in. -




1. (Graph Theory)

Given a data set V consisting of n points and an index of dissimilarity w;; > 0 for

every pairz,7 € N, i # j, we want to partition N into two nonempty subsets, N, and

N3, so as to maximize the dissimilarity between the two subsets. Solve thls problem

for the following two objectives:

(a) maximize the minimum dissimilarity between any two points i, j
with ¢ € Ny and 7 € N,
(b) minimize the maximum dissimilarity between any two points 7, j

with either {7, 7} C N; or {i,7} C N,.

Justify your procedures by proving their correctness.




2. (Networks & Matchings)
Let G = (V,E) be an undirected nonbipartite graph.
Basic feasible solutions to the system

z>0
z(6(i)) <1, VievV

are called fractional matchings of f -matchings. You are asked to look at conditions
under which G has a maximum J-matching that is integer. Consider the following:

An odd cycle with vertex set S is called separable if (¢ has a maximum matching that

“separates” S is the sense that M N 3(S) =10.

Is there any connection between the properties (i) G has a maximum f-matching that

is integer, and (ii) G has no separable odd cycle?

Does (i) imply (ii)? Does (i1) »irhply (1)? Why?




3. {Convex Polytopes) "”

Consider the polyhedra

P o= {z€eR": Az < b} _‘
P = {yGRn;y:uA for some u > 0, ub 5'1} )
(a) What is the relationship between P, and P,? : S

(b) What property of A and b is needed for P, to be the antiblocker of P,?
(c) Let 0 =P, C K .= {zeR*:0< z < 1}. The outer polar of P, with respect to
the coordinate system centered at Je (where e = (1,...,1)), is

P)(in) = {y e R*: (z—3e)(y—3e) < 1in vze P}

The outer polar K %(3n) of K is defined in the same way. Show that
(cl) A C K CK°3n) C PO(in)
(c2) P, Nbd(PY(3n)) = P, NvertK




.

4. (Discrete Mathematics)

(2) Generalized Tic-Tac-Toe.

The game 1s played on a hypergraph H = (V,E). Two players alternate claiming
points of V', player one going first. Once claimed, a point cannot be claimed by
another plaver. The first player to claim all the points of some A € E wins the
game. If neither player achieves this the game ends in », draw.

In the following example of [5]% tic-tac-toe (the winning sets are the horizontal,
vertical and diagonal lines), the second player to move has a draw force pairing

strategy to prevent the first player from winning.  Namely, at each round, if

point.
1 6 10 7 7
11 3. 3 2 12
96 x5 ¢
11 2 4 4 19
88 10 5 1.

Suppose H = (V, E) is k-uniform (every A € E has [A] = k) and d-regular (every
T € V is contained in exactly d mémbers of E). Show that if k > 2d then the

- second player has a draw force pairing strategy.

®)

Let G =(V,F) be a graph. We consider two random experiments.

Let H be a subgraph of G chosen at random by independently picking each edges
€ € ' to be an edge of H with probability 1/2. Let p be the probability that H

. 1s connected and spanning. -

Let f: E — {Red, Blue} be a 2-coloring of the edge set of E chosen uniformly

at random; that is, suppose that for each e € E we independently set Pr(f(e) =

- Red) = Pr(f(e) = Blue) = 1/2. Let Gg be the subgraph of G given by the Blue

edges (formally, Gp = (Vi{ee€ E: f(e) = Blue})), and let Gg be the subgraph -
given by the Red edges. We define q to be the probability that Gr and Gg are

both connected and spanning.

Prove or disprove: ¢ < 2.




Questions for the Qualifier of January 2007

Thursday J anuary 11, 200’7

ACO Student_s - 3 hours: You must answer Questions 1,2, and 3.
-OM Students - 3 hours: You must answer Questions 1, 2, 4.
All questions are open-notes, open-book.

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand

corner of every page you turn in.




1. (Linear Programming)

The goal of this question is to prove the following result:

Assume P C R™ is a non-empty polyhedron, and a,b € R™, o, 8 € R are glven Then

the following two statements are equivalent:

Statement A:

For all x € P we have aTz < o or bTz < .

Statement B: 7
There exists A € [0, 1] such that for allz € P we have (Aa+(1-2)b)Tz < /\a+-(1—/\)ﬂ.

(a) (2pts) Prove that Statement B implies Statement A.

(b) (lpﬁ) Assume P N {a:E R™ : a¥z > o} = . Prove that under this condition
Statement A implies Statement B.

(c) (2pts) Assume PN {:c € R™: oz > o} # 0. Prove that if Statement A holds,
then the following statement holds as well:
Statement C: For allz € PN {z € R*:aTz > o} we have bz < .

(d) (2pts) Let A € R™*" ¢ € R™ be such that Q :== {z € R*: Az < ¢} # . Prove
that the following two statements are equivalent: '
Statement D: For all z € Q we have b7z < S.
Statement E: There ezists y > 0 such that ATy =bandcTy<f.

(e) (3pts) Assume PN {z € R™:a%z > a} #§. Use (c) and (d) to prove that under

thlS condition. Statement A implies Statement B.




2. (Integer Programming)

Consider a MIP with constraints Az >b,z>0, z; € {0,1}, j c N, C N, and let ‘

Tk = Qo — Zaijj ‘ (1)

jeJ
be a row of the simplex tableau associated with nonbasic set J.

(a) Derive the simple disjunctive cut from z, <0 v Zr 2 1 applied to (1). Can this _'
always be done? If not, why? In what sense is this an intersection cut?

(b} Show how to strengthen this cut by using the integrality of zj; 7 € JAN;. Why
is this strengthening valid? What is the relationship of the resulting cut to the

mixed integer Gomory cut from source row (1)?

(c) What is the deepest lift-and-project cut from z, < 0 Vv z > 1, relative to a
basic solution Z to the LP relaxation? defive the cut generating linear program
(CGLP),. How does the cut obtained by solving (CGLP); compare with the cuts
of (a) and (b)? ) ' ’




3. (Advanced Integer Programming) -

Given a set of n. items available for processing on a machine one at a time without ..
repetition, and a setup cost of ¢; = 0 for processing item J right after item % for all e
2,7, select at least p items, where p is a given integer satisfying 1 < P < n, and order

them into a processing sequence of minimum total setup cost.

(a) Formulate the problem as an integer program

(al) in variables corresponding to items and variables corresponding to pairs of

items

(a2) in variables corresponding to pairs of items only.
Show that formulation (a2) is a projection of formulation (al1)

(b) Outline a procedure for generating facets of the polytope associated with both

formulations from facets of the asymmetric traveling salesman polytope -

(c) Hlustrate the procedure on facets of the ATS polytope corresponding to odd CAT

inequalities involvingr 4 or 5 nodes.




ANSWER-Part 1 Question 1 (Graph Theory)

(a) The problem can be stated as

()

max min 'lUij
(Nl ,Nz)EP iENI,jGNz

where P is the set, of all partitions (N1, Ny) of N into two nonempty subsets.
Solution: ' '
e Find a minimum-weight spanning tree T* in the graph G' = (N, E) with edge
weights w,, e ¢

 If ey = arg min max wk, the solution is the cutset of G induced by €p and 7T°*.
ecl*

1™, the cutset defined by e and T maximizes the minimum weight of any edge with

This problem can he stated as

min  max Max  w;;, max W5 o
(N1, Na)ep {i7}em {i.j}eN,

where P is as in (a).

“Solution:

Find a maximum-weight Spanning tree T in G Then the bipartition (N1, Ny) of N
induced by 7° (where all the edges of T join vertices In Vi to those in Ny) is the solution.

Proof. Let

%, J+) = arg max. Max w;;, max w,:
(*7 *) g {{i,j}GNl l]’{i,j}GNg 7.]}

for the constructed partition (/V;, Ny). Let C* be the cycle created by adding (%4, 7.)

" to F. Then w.. 2> w;_ ;. for all (¢4,7) € C*, since T is maximum-weight.

t]
Since by choice {i, 7.} € Ny or {4, 7.} € Ny, the path joining 4, to 7, in T has an even
number of edges; hence is an odd-length cycle. But then every bipartition (V/, N2)
of N must have at least one edge of C* either in G[M] or in G[N,], hence it cannot be
better than (v, Ny). ' '
' O




ANSWER-Part 1 Question 2 (Networks & Matchings)
(1) implies (ii). . '
Proof. We prove the counterpositive. Let M be s maximum matching that separates an

odd cycle C with vertex set S. Then removing the [151/2] edges of M contained in C' and
assigning a value of 5 to all |S] edges of C yields an f-matching of value [M[+3. a

(i) implies (i).
Proof. Again we prove the counterpositive. Suppose % is a maximum Jf-matching of value
strictly larger than a maximum matching. We will then show that G has a separable odd
cycle.- Assume wlog that 4 has fractional components for & minimum number of odd cycles
) q
C; with vertex sets Sut=1,... ¢ and let S — U S;. The edges e corresponding to Z,.= 1

define a maximum matching M’ in G[V\S]. For ;_:1 1,...,q, let M;bea maximum matching
in C;. Then M = M’y Ciu...y Cy is a‘matching that separates C;, i =1,... q.

It remains to be shown that M is maximum. Suppose not; then there exists an M-
augmenting path P. Wlog we may assume that P contains no edge of any C; (otherwise
M; can be changed so that the first vertex of S, that P meets is exposed, hence P sﬁops).'
Also, since M is maximum in G(V'\'S), P has at least one end in S. But then augmenting
along P produces a matching M* with |M*| = | M [+1. From M* one can then construct an
f-matching of vé,lue at ieast'equal_ to that of £ and with fractional components for at least

one less odd cycle, contrary to the assumption on Z. ' ]
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ANSWER-Part 1 Question 3 (Convex Polytop-éé)

(a)

(b)

(c1)

ItP #0, Py is the polar P of p,.

Proof. Let Py £ () and y € P5. Then there exists u > () such that u4 = Yy, ub < 1.
Multiplying y = 44 by z yields yz = y A, Sub< 1l ie ye PR O

If P C R% and in the definition of P we require y € R?, then P, is the antiblocker of
P : .

P C K by assumption. Let z* ¢ K, ile 0<g < I; then z* ¢ Ko(in) if and only if

+ 1
max{(z" ~ je)(z - le)} < an.

- The maximum of the left hand side is attained for

(c2)

énd

~ 1 j€N+;={jgN:x;>%}
zZ; = : ‘
7 0 JTEN ={jeN gz <]}
EE ) = Y- D i %)

=

b [ pot

n.
Hence K C K(in).
Finally, k¥ °(in) PP(3n) follows from P C K and the inclusion—reversing property

of polarity. -

Let z € P N bd(PD(1n)). Then z € K ang zy = jn for some y € P C K. But then

T =y and [z;] = |y, =1 fori=1,..  n ie Z € vert K.

14




“1if and only if

in G. Let m be the number of edges
from X' to N(X"). We have [X'[k = m 5-“(2d)[N(XQ[.
point in X has degree k and since H is d-regular each ‘pv?jjnt n v has degree 2d.) Since

and define N(X") to be the set of neighbors of X"

(Since H is k uniform, each

k > 2d this implies X' < [N{X")]. .
In the first experiment each subset of E ig equally likely to be the edge set of H. Let
F C 2% be the collection of edge sets that give connected, Spanning subgraphs. We
have
_ 7
P=gEr

{e: fle) = Red}, {e: f(e) = Blue} e ¥ &
{e: f(e) =Red} € Fn {(X:Xer)

Therefore, - o
Fn{X:xe FH
7= IE] ‘

15



Note that F is upwardly closed (ie. a Gilter)

while
(ie. an ideal). Therefore, Kleitman’s Lemm

{X:xXer }is downwardly closed
a implies
PUF X x ¢ FHLA X x e FY =72

Dividing by 2281 gives g < p?

16



ANSWER-Part 2 Question 1 (Linear Programming)

(a) (2pts) Prove that Statement B implies Statement A.

(b)

Let z € P be given. Then
(Aa+ (1 - )0)Tz < Ao+ (1-Xp,

le.,
MaTz — a) + (1 -z -p) <o.

Since A € [0, 1] we have min{u, v} < u+ (1 — A)v for all u,v € R. Thus
‘min{a"z — o, bTz — B} < Ma"z —a) + (I-X0"z - <o.

Therefore, we have oT SaordTy < B. Since this holds for any z € P we conclude
that Statement A holds.

(1pt) Assume PN{z € R*: qTy > a} = 0. Prove that under this condition Statement
A implies Statement B. ’

(2pts) Assume P N {zreR": aTz > .a} # 0. Prove that if Statement A holds, then
the following statement holds as well:

Statement C: Forallz ¢ PN {z €R™: 0Tz > o} we have b7 <B.

- We shall prove the counterpositive, that is, we shall show that if Statement C does

- (d)

not hold, then Statement A does not hold either Assume that there is some T €
PN{z eR":aTz > o} such that 5% > 8. Take 2 EPN{zeR": aTr > a}. Then
for A > 0 Suﬁiciently small we have A% + (1-XNZePn{zecR:qTz > o} and
b (A2+(1-N)T) > B. Thus we have a point AZ+(1-2)T € P with aT(AE+(1-0)7) > a
and bT(AZ + (1 — A\)Z) > 4. Hence Statement A does not hold.

(2pts) Let A € R™" ¢ c R™ he such that Q := {z € R" . Az <c} # 0. Prove that
the following two statements are equivalent:

Statement D: For all z € Q we have b7z < 3.

Statement E: There erists Y 2 0 such that ATy = b and Ty < .

17




First, assume Statement E holds. Then for all z € Q we have 6Tz = T Ay <yTc<p.
The first inequality holds because Az <.cand y > 0. Thus Statement D holds.

On'the other hand, assume Statement D holds. Then the optimal value of the following

linear program is at most Jok

max bYz
such that Az <

In particular, this problem is feasible and bounded. Thus by strong duality, the dual

min ¢y
such that ATy =1
‘ y>0

is feasible and has optimal value less than or equal to 8. Hence there exists y > 0 such

that
Aty =5, Ty <p.

(3pts) Assume Pn{z e R*:qTz > a} # 0. Use (c) to prove that under this condition

‘Statement A implies Statement B.

Assume P = {z : Az < &) for some A R™"™ &€ R™. Assume Statement A holds.
Then by part (c) it follows that. Statement C holds, which is the same as Statement D

in part (d) for A = [ AT , €= _COJ Observe that for this choice of A, ¢ we have
{z: Az < ¢} =PNn{zeRr:q Tz > a) 2PN{zxeR":q Te > a) £0, Therefore;

by part (d) it follows that there exist y,t > 0 such that

ATy—ta:b and ETy—tdgﬂ.

Thus for i =ty > 0and A = £ € [0, 1] we have

T+

ATG = Xa+ (1 - \)b and eng Aa+ (1 - 2)8.
Thus Statement E in part (d) holds for A = Ac=¢ Observe that for this choice
of A,c we have {z : Az S =POPn{zeR": Tz > a} # 0. Hence by the

equivalence between Statement D and Statement E in part (d), it follows that for all
z € P we have (\a A =0)Tz > o+ (1~ A)B, which is precisely Statement B.

18




ANSWER-Part 2 Question 2 (Integer Pfograinming) |

(a) The simple disjunctive cut fromz, <0 v zr > 1 applied to (1) is oz > 1, with

a; = max{ =% —afio},j € J

This is an intersection cut from the convex set S :— {zeR*: 0 < zx < 1} because
the cut-hyperplane is defined by the n intersection_points of the extreme rays of the
LP cone with the boundary of §. '

(b) The cut oz > 1 can be strengthened by replacing its coefficients «; with

min {ELJ [EkJJ’A%azkﬂ 7€ .]1 =JnN Nl
a; =
ry  ~—ay; C s
max{ak;,l =3 AW

This strengthened cut is the same as the mixed integer Gomory cut from source row

(1).

(c) The lift and project cut from z; < 0 V oz > 11s obtalned by describing the convex
. - Az > > b
hull C of the disjunctive set | 0 <z < 1} > 0 < z < 1 as
zr < 0 > 1
C={z:z-y - z <0
Ay~ by = 0 -
~Yk = 0
Az — bzyg > 0
Ze — z > 0
Yo + oz =1
Yo, %0 > 0}
and projecting C onto the z-space, using the projection cone
W= {(a,p, 1.1,,1130,1),210) : :
a — uA +  uge, 0
a - VA — we, = 0 (1)
-8B + ub > 0
) + vb + oy > 0
V u,ug, v, > 0}.

19




Introducing a normalization, for instance

'ue+u0+ve+v0=1,

(2)

the deepest lift-and-project cut is z2 > B, where @, 3 are components of an optimal

solution to
- T
mnZzZ o —

subject to (2), (3).

20



ANSWER-Part 2 Question 3 (Advanced Integer Programming')'
~ Add a'node 0 with ¢y; = cjo = 0 for all 5. ' )

(a1) Vafiables: 2. — { L if (z,7) is a pair of the sequence
DTy = .

0 else
‘ _. 0 if item 7 is selected
i = 1 else
N:={O,1,.'..,n}
mincz
x(i,N)+yi = 1 teEN
Y = 0
y(N) < n—p v (1)
(5, 8) +y(S\ {k}) ~y, < 5] -1 for all S C N,
andke€ S, e N\S
fL'ij & {O, 1})yj < {O, 1},V’L,j
(22) Variables: z;; as above |
min cx. _
z(i, N) < 1 1€ N — {0}
‘x(N,z')—x(i,N_) = 0 1€N
z(0,N) = 1
( @)
z(N,N) > p
z(k, N) +z(, N) — z(S,N\ S) < 1 SCN2<|S[<p—1,

keSteN\S
xij € {O, 1},VZ,]

Proposition The polytope P, defined bjl the constraints (2) with z;; € {0,1} replaced
by z;; > 0 is the projection on the z-space of the polytope P, defined by the constraints
of (1), with z;; € {0,1}, y;; € {0, 1} replaced by Zi; 20,0 <y; <1forallij.

PrOof Substituting for each i € N the expression for y; obtained from the first set of
equations of (1) into the corresponding equation of the second set, we obtain the n
homogeneous equations of (2). Substituting the same expressions for y;, 7 € N, into
y(N) < n — p, we obtain the mequality z(N, N) > p. Finally, substituting the same

21
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‘expressions for Y, 1€ N, into

the last set of Inequalities of-( 1),
of inequalities of (2). '

we obtain the last set

]
(b) Setting v, - 0,2€ N, in (1) yields the ATS polytope: ,
Let az < Qg be a facet defi

ning Inequality
lifting coefficients B; for y;,

© € N, such that
for P;. Eh'minating the v,

from the first set of equatio;

(¢) The odd CAT '1'1’1equaﬁty for the ATS polytope

M +$13 + I3y + 24, T Iy3 <2
can be lifted to

T2 + Ty5 + 74, T Tt T34y <2

which is facet defining for P Substituting Ys =1 —2(3, N) yields

T12 + Z13 + 245 — z(3, N\ {2,4}) <1
which is facet deﬁning for P,.




Questions for the qualiﬁ‘er of January 2008

- Monday January 7, 2008

* 'ACO Students - 4 hours: You must answer Questions 1, 2, 3 and 4.
» All questions are open-notes, open-book.

* Please begin each question on a new page. Write only on one side of every page. Always

" remember to put your identification number (NOT your-name) in the top right-hand

corner of every page you turn in.




1. ( Graph Theory)

Let G = (V, E) be a simple graph and let yp € V. Cohside_r the following operations
starting with G = (V, E) and yielding graph G(vo) = (V", E"):

1. Let Nlvg] = {vy, ..., Up} be the neighbors of v, in G.

2. Let G' = (V', E’) be the graph obtained from G by deleting the vertices in v, U
Nlve]. | '

3. Let V" .= U{w; [1<i<j<pand (vi,v;) € E}.

4. Let " = E'y {(vij, vee) | 1 # K or (vi,ve) € E} U {(vy,v) | v € V' with (v;,v) €
E or (v;,v) € E}

(2) Construct the graph G(vo) for the graph G below.

(b) Let a(G) be the size a maximum stable.set in G and a(G(vg)) be the size a

maximum stable set in G(vy). Prove that ®(G) — 1 = a(G(w)).

(c) Does this transformation yield a good algorithm for computing the stability num-

ber of a graph? Explain.




2. (Networks & Matchings)

For a graph G = (V,E)and S C V, let O(G—S) denote the number of 0dd components
of G- 8.

(a) Prove or disprove: Let (G — (V,E) be a tree. Then G has a perfect matching if

and only if, for all S C V with [S] <1, we have O(G ~ S) < |9].

(b) Prove or disprove: Let G = (V, E) be a connected graph with no cycle of length

four or more. Then G has a perfect matching if and only if, for all S C V with
[S| < 1, we have O(G — S) <|S]. '




3. (Advanced Linear Programming)

Consider an equality-constrained linear programming problem

min{c’z | Az = b,z > 0},

where A is an m x n matrix. Path-following methods solve the problem by iteratively
solving the primal-dual system F (z,A,s) = 0, (z,5) > 0 with a modified Newton
method, where :
: CJATA+s—¢
F(z, A\ s) = Az — b
XSe

If (z, ), s) is the current iterate, the next iterate is (z,X,8) + a(Az, AN, As),'where
(Az, AN, As) solves o ' :

Az 0 ,
J(z, A\ 8) | AN = 0 i ' (1)
As| | —XSe+oue.

. The goal is to reduce 4 to zero.

We wish to modify the path-following method to solve an mequality-constrained prob-
lem min{c"z|Az > b,z > 0} by searching (z, A, s, t)-space. Here t is a vector of
surplus variables in the constraints, which become Az — ¢ = b.

(a) The primai—dua] system is now F'(z, A, s, t) - 0,(z, A, 5,2) > 0. Whatis F(z, A, 5,)?
(b) The system (1) is now

Az | 0

A 0 .
J(z,A,5,0) As |~ ~XSe+ opue (2)

At —ATe+ e '

where p = (27s + ATt)/(m + n). Note that there are two centering parameters
o,7. What is J(z, ), s, t)?

(c) Show that AzTAs + AXTA: = 0.

(d) Derive an expression (solely in terms of p, o, T, m, n, and «) for the amount by
which p is reduced after taking the modified Newton step.

3



4. (Discrete 'Matherhatics)

Let (f) ={Ycux- Y] = k} denote the get of all k-subsets of X .

(a) Prove the following clajm Le

_ t X be an Infinite set and k
Letc: () 5 Nbes coloring

of ()2() such that

[{ellawh) vexy )<

for every z ¢ X, (1)

Ihﬂawryek\uu/su@,

(c) Let Rk, k, k) be the 3-color Ramsey number, that 1s, the smallest integer.n such .
that every coloring of ({1’5""}) with 3 colors yields a k-set v c{1,... ,2} with

ve that R(k, k, k) > 3%/ for a1 sufficiently large f.

for every z ¢ x2

(}2’) monochromatic. Prg
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answer Questions 1,2, 4, and 5.

" Please begin each question on & new page. Write only on one.side of every page. Always

umber (NOT your name) in the top right-hand




1. (Linear Programming)’

Consider the linear program

max{cz: Ar < b, 0 <z < u} . (LP)

where the m x n matrix A, the m-vector b and the T-Vectors ¢, u, are given, with ¢ > (

and A of full row rank, and such that (LP) has an optimal solution.

(a) Show that any basic feasible solution to LP in which all components of the slack

vector s := b — Az are basic, satisfies the condition
z{u—z) =0 (1)
(b) Consider the following heuristic for finding a “good” solution that satisfies (1):

0. Start with an optimal solution z* and the associated simplex tableau.

1. Choose a nonbasic slack variable s; whose reduced cost Is closest to 0. If there

is none, stop: the current solution satisfies (1).

‘2. Introduce s; into the basis through a pivot that maintains primal feastbility.
Return to 1.

Is this procedure guaranteed to find a solution satisfying (1)? What difficulties

do you expect to encounter? Any ideas for overcoming them?




2. (Integer ProgTa111ming) ‘
. Give a procedure fdr restating an arbitrary 0-1 program (of unknown feasibihty) as

one in the same variables but with g constraint set having only coefficients equal to 0,

1 or -1 on the lefthand side.

First prove that such equivalent formulations always exist, then show how to find
one. Evidently, you are expected to prove that the formulation your procedure finds is
equivalent to the original. ‘Is your formulation unique? If not, what distinguishes the

formulation your procedure finds from those found by other procedures?

Finally, illustrate your procedure on the following instance:

2x1—x2~5x3+6x4:1

—X; + 3.’E2 -+ 41‘3 — 2:124 = 2




3. (Advanced Integer Programming)

Consider the Asymmetric Traveling Salesman Problem (ATSP) where in addition every
tour must satisfy some constraints of the form ¢ < 7, meaning that given a fixed “home”
city 1, in any feasible tour city 7 must be visited before city j. Let B := {(i, j)e A:
© < j}. Note that the relation < is transitive, i.e., if (3,k) € B and (k, ]) € B, then
(,7) € B. For any set S ¢ V \ {1}, let

1(S)=={ie V\{1}: (4) € B for some J €S}

and -
a(S) = {5 € V\{1}: (4,7) € B for some i € S}

denote the predecessors and'successors, respectively, of S. Thus n(V \ {1}) is the set
of all predecessor nodes and a(V'\ {1}) is the set of all successor nodes of G.

Formulate the above described problem P on, the compléte digraph G = (V, A) as an
integer program, by starting. with a formulation of the standard ATSP and adding

additional constraints derived from the following considerations:

1. Certain arcs cannot be part of any feasible tour. Identify the set F of these
forbidden arcs, i.e. show that no arc of I, but every arc of A\ F, can be contained

in a feasible tour.

2. Derive a set of valid inequalities from the condition that if (i,7) € B, then no
~ elementary path P(j,4) from j to i can form a segment of a feasible tour (i.e., can
be contained in its entirety in a feasible tour). Show that appending all the “path
inequalities” to the standard formulation of the ATSP yields a valid formulation
of P.

3. Show that a more concise formulation results from replacing the path inequalities
for a given pair 7,4 by the stfonger Inequalities that put an upper bound for any
set Q € V\{1, 47}, on the total number of arcs in (7, QU(Q,Qu(Q, 1) that can
belong to a feasible tour. What is the upper bound? Why are these Inequalities
valid? In what sense are they stronger than the path inequalities for the same
pair 7,17

4. The cutset inequalities z(S,8) > 1 for the ATSP can be strengthened for P in




several ways. Which of the following inequalities is valid for P and why?

'x(S\w.(S),E) > 1
z(S, S\ 7(8)) > 1

2(S\7(5),5\n(s)) > L

10



ANSWER~Pa,rt 1 Question 1 (Gfaph Theory) -

(a) The resulting graph G(v) is

(49

(b) We first prove that d(G’) — 1 < a(G(w)). Let S be a maximum stable set in G. If
S = 5N (v U Nlw]) has cardinality < 1, then as S -— S — S is stable in G,
we are done. Otherwise, §' = {viy, .., v} contains at least two nodes from N [vo].
-Assuming that 4y < ... < 4, the & — 1 nodes W = {vi4,, ... » Uiy, } are stable in G
and (S — S")UW is a stable set in G"” with cardinality a(G) — 1.

We now prove that o(G)—1 > a(G(v)). Let S” be a maximum stable set in G”. If S

. -does not contain a vertex Vij,. then S” Uy is stable in G and we are done. Otherwise,
the vertices v;; in S” must all share the same first index, by step 4, say {vij, - .. » Vij, }-
Then S” U {v;,vjl, .-+, U5} is stable in G.

(¢) No, this does not give a good algorithm, as the number of vertices may explode. A
reduction of 1 in the size of the stable set might require a, graph with a number of

vertices that is squared.

13



ANSWER-Part 1 Question 2 (Networks & Matchings)

It is clear that if O(G — S5) >'|S] for some S C V thh IS] < 1, then G has no perfect
mat_éhing, as implied by Tutte’s condition. Tt remains to prove the converse.

Assume that O(G - §') < [S'] for all &' C V with [ < 1. This‘implies in particular
that |V] is even. Assume for a contradiction that G does not have s, perfect matching. By
Tutte’s condition, there exists S C V with O(G - S) > |S|. Consider the smallest such S
and note that we have | | > 2. :

(a) Let vy be any vertex of V. Direct all -edges in the tree away from vy to obtain an
arborescence rooted at vp. Let s € S such that no descendant of s in the arborescence
isin S. The components of G — s are either downstream components (i.e. components
containing only descendants of s) or the upstream component (i.e. the component
containing vp).

Let U := S —s. Since O(G-s) =1 either one of the downstream components is odd or
the upstream component is odd. In the former case we have O(G-U) = O(S)-1 > |U]|,
-since the union of all downstream components together with s is an even component
merged with a unique component contained in the upstream .compo_nent. In the latter
case, we have O(G—-U ) 2 O(S)—1 > U] since the union of all downstream components
' tdgether with s is an odd compohent merged with a unique component contained in
the upstream component. In both cases, we get O(G —U) > |U], a contradiction with

the minimality of |S].

(b) We can assume without loss of generality that G has no parallel edges and no loops.
Then any cycle in G has length 3. Observe that two distinct cycles in G can share
a single vertex at most; since otherwise .G would have a cycle of length 4 or more.

- Remove exactly one edge from each cycle in G to obtain ‘a tree G’. Let vp be any
vertex of G’ and direct the edges of G’ away from Vo to get an arborescence rooted at
vo. Direct the edges of G— G’ so that thé resulting orientation of G is without directed
cycles. - '

Note that any node w € V has at most two entering arcs (v1,w) and (v2,w) in the
oriented G. Indéed, w has at most one entering arc (v;,w) from G’ and any other
entéring arc (v, w) must be part of a cycle C of length 3 in G. If C does not contain
(vi,w), then it must use two arcs (w,v3) and (v, v3) of G', a contradiction since vs

- would have two entering arcs in G”.

14




If w has two entering arcs (v;, w) and (v2,w) in the oriented G, then (v;,») € E. It

follows that for any s C V, G — s has at most one upstream component. The proof of
point (a) above applies. V

15



AN SWER-Part 1 Question 3 (Advanced Linear Programming)
" |

ATx+s—¢
Az —t—b
F(z,\ s,t) = XS -
ATe
(b) The system (2) becomes
0 AT I 0 Az 0
A0 0 —I||axa]| . 0 O
S 0 X 0 As | | —XSe+opel| -
0 T 0 A At ~ATe+ pe

(c) Multiplying the first row of (1) by Az, we have R
AzTATAN + AzTAs =0

But the second row of (1) implies AzT AT = At”, and from the above we have AzTAs+
AXTAL=0. ’

(d) The reduction in u is

(z + alAz)7 (s + al\s) + (A + aAN)T( + al\t)
B n+m '
275+ ATt + axTAs + asTAz + adTAt + atT AN )
n+m
zTAs + sTAz + ATAt + T AN
n+m

where the first equation is due to (c) and the second to the definition of 4. Now; addlng

e’ times the third row of (1) to €T times the fourth row, we get

eTSAz + eTTA)\ +eT X As + eTAAL =
~e" X Se — eTATe + opeTe + Tuele

or

sTAZ +tTAN+ 2T As + M\TAL = —2T5 — ATt + p(no + mr) :
= —(m+n)u+ p(no + mr) : ey b
=(n(o - 1) +m(r—1))u '

Substituting this into (2), the reduction in L is
n(l—o)+m(l-rT)
n+m

ap

If 0 = 7, the reduction is (1 - o)ap as in the standard algorithm.

16



ANSWER-Part 1 Question 4 (Discrete Mathematics)

(a) Choose an arbitrary z; € X and let Yo = X. Having a vertex z; € X and an infinite

(b)

set Yi 1 3 z;, we inductively define Ziy1 and Y; as follows. The pairs connecting z;
to Y ==Y, ) \ {z:} are colored in finitely many colors, so one of the colors appears
infinitely offen. . Let ¥; C ¥’ pe the corresponding (infinite) set of neighbors and let

T;y1 be an arbitrary vertex of Y;.

Since each set Y} is Infinite, this process does not terminate, producing an infinite

-sequence of nested sets ¥, D Y D ... and vertices ;€Y 1 \Y, fori e N. Also, for

any positive integers i < j, we have Zj € Y;_1-C Y; and the color of {z;, z;} does not
depend on j (as long as 7 > 7). Let ¢(z;) be this common color. Let X' = {z),2,,. .. |3

The function ¢’ assumes at most k different values. Indeed, if z;,, . .. ' Tip,, get different
c-values, then for any J > max(iy, . .. yTk+1); the pairs {zi,z;}, for 1 < h <k 1,
get pairwise different c-colors. Thus z; sees more than k colors under the coloring c,

contradicting our assumption.

Since ¢’ : X’ — N assumes only k possible values and X 1s infinite, there is an infinite
set ¥ C {z1,2,,...} such that ¢ assumes the same value, say 1, on all elements of Y.
Then for any T, z; € Y with 1 < J we have c({z;,z;}) = c(z;) = 1. Thus, Y is the

required set.

No, the statement is false. A simple counterexample is given by the féllowing coloring:
let X = N and let the color of {i,7} with i < 5 be 1.

Let k belarge, t = [3¥2] and T = {1,...,¢}. Consider a random coloring of (), where
each pair of elements of T" chooses its color uniformly at random, independently of all
other choices. Then the expected number of k-sets vV C T with ()2’) monochromatic is

1+k/2
<Iz>.31‘(§) < kg2, 3T < th3R2 < .

Hence, there is a coloring without any such set, which shows that R(k, &, k) > t, as

required.

17




ANSWER-Part 2 Question 1 (Linéar Programming)
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ANSWER-Part 2 Question 2 (Integer Programming)
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. ANSWERfPart 2 Question 3 (Advanced Integer Programming)-
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Questions for the Qualifier of January 2009

" Part I - Monday January 5, 2009

e ACO Students — 4 hours: You must answer all questions 1, 2, 3, and one question
out-of 4 and 5 (you get to choose).

e All questions are open-notes, open-book.

* Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand

corner of every page you turn in.




1. Graph Theory - :

Consider a graph G = (V, E) with |V| = n that has k: dlSJOlIlt chordless cycles {holes) ‘of
length 4 and no other chordless cycles of length > 4. For fixed" k give a O(n?) procedure for

finding a maximum clique in G and identifying the k 4-holes.

~ [Hint: Think of how you would proceed in the absence of 4-holes ]

L 2/




2. Networks and Matching

Let G = (V,E) be an undirected connected graph with a clique X such that every odd-
cycle of G contains a vertex of K , and K is minimal with respect to this property. Give a
polynomial time algorithm to find a maximum stable set in G.

(Hint: How would you proceed if [K| =17
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3. Discrete Mathematics

chain of length s +1; to

1. Suppose G C 2 has the property that it does not contain a

be precise, there do not exist A1, Az, ..., Agyy € G such that

A C Ay C--- C Agps.

N~lAegial=a
AR =

2. Let d be a positive integer and consider the following random graph model, known as
d-out. Our vertex set is [n]. Each vertex v chooses ei_li_é_t—vl,vfz, ..., U4 of neighbors
uniformly at random from [n] with replacement. The edge set consists of all pairs of
the form {v,v;} where v € [n] and i = 1,...,d. Note that loops, which correspond to
v; = v for some %, and multiple edges, which can arise if a vertex appears twice in a
list vy,...,vq or if £ = 3; and Y = z;, can appear in the graph. The number of graphs
in the probability space is n%, and each graph in the probability space has minimum | -
degree at least d and average degree 2d.

Show that

Let the random variable X give the number of triangles in d-out where d = d(n) tends
to infinity as n tends to infinity but d = o (nl/m). (Formally, let a triangle be defined
by a set of 3 edges. So there could be several triangles that share the same set of 3

vertices.) Show that
lim Pr(X =0) = 0.




4. Advanced Linear Programming .

Assume A € R™" and consider the “matrix game” problem

min max yT Az.
TEAL yEOA M

()

Here A, A,, denote the standard simplexes in R® and R™ respectively. In-other words,

Ay :={z€Rk:z20,zl+---+zk=1} for k = n,m.

(a) (2pts) Prove that (1) can be recast as the primal-dual linear programming pair

min ¢ max 7

z,t y.T
Az + te, >0 ~ATy 4+ 1e, <0 (2)
elr =1 ery =1
z2>0 y>0

where e, and e,, are the vectors of all ones in R® and R™

(b) (1pt) Use (a) to show the “min-max/max-min” theorem:

respectively.

min max yT Az = max min yTAz.

TEA, yEA,, YELA, z€EA,

{c) (3pts) Assume 20 A, _;tj0 € A, are strictly positive, i.e.,

all of their components are

greater than zero. Assume also that £°,7% € R are such that both e, > Az and

7%, < ATyO. _
Put s := t0%,, — Az0 and 20 — ATy0 — 7le,. /
Prove that for some suitable weights u € R?
(¥°,7°, 5% are the solutions to

m

i .
mtin t— E ujlogz; — E v; log z;
z,t,z

i=1 i=1

~Az +te, —2=0
efz =1
>0

z>0
and

YT,

ATy +re, +5=0
eny =1
y>0
>0
respectively.

4+ v € R, the points (29,19, 2%) and

1 m
max T+ Zuj logs; + Zvi log y;
j=1 =1




(d) (4pts) Use (c) to propose a modification of a feasible interior-point path following
algorithm that starts from the pair of points (z°, 1%, 2%), (3°, 7°, s°) and generates a se-
quence pair of points that converge to solutions to the primal-dual linear programming
pair (2).

More precisely, proceed as follows:

(1) (2pts) Define an appropriate “modified central pai:h”. ‘
(i) (1pt) Define an appropriate “modified neighborhood of the central path”.

(iii) (1pt) Define the steps that should constitute each main iteration of the algorithm.




5. Convex Polyhedra

Let P:={z € R": Az < b} + 0 and define
Po:z{yeR":xygl,V:EEP}, P#* .= {yeR™: zy > 1,Vz € P}.

(i) Prove or disprove:

e

S i )
j/ (a) P°={yER’?:yzuAforsomeu20suchtha.tub§1}

T (b)y PP={yeR": Y = uA for some u > 0 such that ub >1}

v (c) P#* = {y € R™: y = uA for some < 0 such that ub > 1}.

(i1) For the nonconvex set P -— U P, where P, := {zeR™: Az > b} #0,i € Q, prove or
. E€Q = E
\/ disprove:

e

(d) P ={y e R":y = widi for some u’ > 0, 7 € Q, such that 4ib’ >1}.




Questions for th'e Qualifier of January 2009

Part II ~ Tuesday January 6, 2009

ACO Students — 3 hours: You must answer questions 1, 2, and 3.
OM Students — 4 hours: You must answer questions 1, 2, 4, 5, and 6.
All questions are open-notes, 'open—book‘

Please begin each question on a new page. Write only on one side of every page. Always
remember to put your identification number (NOT your name) in the top right-hand
corner of every page you turn in.




1. Linear Programming

Consider a simple blending problem in which the objective is to formulate a minimum-cost
mixture of which each ingredient i comprises a fraction z; that is p; or greater. The problem

can be written
min E C;;
i

a1 N W

Z; 2771'; 1= 17"'17L
We suppose 0 < ¢; < ¢z < --- < ¢, €ach p; > 0, and 3 ;p; < 1.
(a) The problemn can be solved on inspection. ‘'What is the unique optimal solution?

(b) What is the unique optimal dual solution? Prove that it and your solution in (a) are
optimal.

(c) How much can a given p; be increased without changing the optimal dual solution?

(d) Suppose that the simplex method is applied to (1) and starts with basic solution z; = p;
fori=1,...,n—1,andz, =1-3, <n Pi- Derive the reduced costs.of all the nonbasic
variables in this starting solution, including surplus variables.  Show that the optimal
solution is obtained in one simplex step, usmg Dantzig’s pivoting rule (i.e., pivot on
the most negative 1educed cost)




2. Integer Programming

Let S={(z,y) €ZxR: y
’ y

P 2
,L+§
0

Vv

(a) Show that y > Z(z+1) is a valid inequality for .S.
- (b) Show that y > 2(z + 1) is a facet of conv S.

(c) Describe conv S by a systemn of linear inequalities. Describe the recession-cone of conv S
by a system of linear inequalities. '

(d) Let ay,...,a, € Z and S = {(z1,. 2, y) €Z" xR : y >24 ;aiwi,“ y > 0}.

Isy > %(21 @;z; + 1) a valid inequality for S? Justify your answer.

(¢) Assume that ged (a1,...,a,) = 1.

Can you describe conv .S by a system of three linear inequalities? Justify your answer.




3. Advanced Integer Programming

Consider

T = i-+zje}\, a’s;
S 5; >0 foralleN

SN ALS

Herez and o’, je N , are given vectors in R™.

Supposc T & Z™.

Let C' be any bounded closed convex set in R™

. _ N
(a) Let o; > 0 be the largest value such that 7 + a;a’ belongs to C. Show that Z < >1
, P

is a valid inequality for S.

( Ty = % +
| 5 =}
(b) In the remaining questions, let S
S5 > 0 i=1,...
z €72

Show that s, + s, + S3 + 84 2 1 1s a valid inequal

C as described in (a). Is the set C
interior?
(c) Are the inequalities
' 281

-and 283 + 284

valid for S? Justify your answer.

(d) Is the inequality s, + S9 + 83+ 84

u‘ 4 & !
i
3
{ 2 S o
P | *
o
]
4 M . fom
[ —_— e
S g
e v
H
!

+ 282

v

such that Z € int C and Z™ Nint C = 0.

JEN

ity for S by exhibiting a convex set
a maximal convex set with no point of Z2 in its

> 1 a facet of conv S? Justify your answer.




4. Dynamic Programming

At the beginning of year 0, Julie Ripe has an initial wealth of Wy > 0 dollars. During year ¢,
Julie chooses to consume C, dollars and invests the rest of her wealth in an index fund.
Each dollar invested in the index fund yields R dollars at the beginning of the next year.
Assumne R is lognormal with log R ~ N (0.1,0.0225). '
Julie’s level of consumption in year <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>