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Overview of the presentation

1. The temperature market

2. A stochastic model for daily temperature
• Continuous-time AR(p) model
• with seasonal volatility

3. Temperature futures

• HDD, CDD and CAT futures prices
• The Samuelson effect

4. Hedging spatial temperature risk

• Constructing synthetic futures
• Spatio-temporal temperature models
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The temperature market
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The temperature market

• Chicago Mercantile Exchange (CME) organizes trade in
temperature derivatives:

• Futures contracts on monthly and seasonal temperatures
• European call and put options on these futures

• Contracts on 18 US, 6 Canadian, 2 Japanese and 9 European
cities

• Stockholm
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HDD and CDD

• HDD (heating-degree days) over a period [τ1, τ2]∫ τ2

τ1

max (18− T (u), 0) du

• HDD is the accumulated degrees when temperature T (u) is
below 18

• CDD (cooling-degree days) is correspondingly the
accumulated degrees when temperature T (u) is above 18∫ τ2

τ1

max (T (u)− 18, 0) du
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CAT and PRIM

• CAT = cumulative average temperature
• Average temperature here meaning the daily average∫ τ2

τ1

T (u) du

• PRIM = Pacific Rim, the average temperature

1

τ2 − τ1

∫ τ2

τ1

T (u) du
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At the CME...

• Futures written on HDD, CDD, CAT and PRIM as index

• HDD and CDD is the index for US temperature futures
• CAT index for European temperature futures, along with HDD

and CDD
• PRIM only for Japan

• Discrete (daily) measurement of HDD, CDD, CAT and PRIM

• All futures are cash settled

• 1 trade unit=20 Currency (trade unit being HDD, CDD or
CAT)

• Currency equal to USD for US futures and GBP for European

• Call and put options written on the different futures
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A stochastic model for temperature
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A continuous-time AR(p)-process

• Define the Ornstein-Uhlenbeck process X(t) ∈ Rp

dX(t) = AX(t) dt + ep(t)σ(t) dB(t) ,

• ek : k’th unit vector in Rp

• σ(t): temperature “volatility”

• A: p × p-matrix

A =

[
0 I

−αp · · · −α1

]
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• Explicit solution of X(t):

X(s) = exp (A(s − t)) x +

∫ s

t
exp (A(s − u)) epσ(u) dB(u) ,

• Temperature dynamics T (t) defined as

T (t) = Λ(t) + X1(t)

• X1(t) CAR(p) model, Λ(t) seasonality function

• Temperature will be normally distributed at each time
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Why is X1 a CAR(p) process?

• Consider p = 3

• Do an Euler approximation of the X(t)-dynamics with time
step 1

• Substitute iteratively in X1(t)-dynamics
• Use B(t + 1)− B(t) = ε(t)

• Resulting discrete-time dynamics

X1(t + 3) ≈ (3− α1)X1(t + 2) + (2α1 − α2 − 1)X1(t + 1)

+ (α2 − 1 + (α1 + α3))X1(t) + σ(t)ε(t) .
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Stockholm temperature data

• Daily average temperatures from 1 Jan 1961 till 25 May 2006
• 29 February removed in every leap year
• 16,570 recordings

• Last 11 years snapshot with seasonal function
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• Fitting of model goes stepwise:

1. Fit seasonal function Λ(t) with least squares
2. Fit AR(p)-model on deseasonalized temperatures
3. Fit seasonal volatility σ(t) to residuals

• We focus on the last two steps
• Supposing a seasonal function

Λ(t) = a0 + a1 t + a2 cos (2π(t − a3)/365)
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2. Fitting an auto-regressive model

• Remove the effect of Λ(t) from the data

Yi := T (i)− Λ(i) , i = 0, 1, . . .

• Claim that AR(3) is a good model for Yi :

Yi+3 = β1Yi+2 + β2Yi+1 + β3Yi + σiεi ,
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• The partial autocorrelation function for the data suggest
AR(3)

Yi := T (i)− Λ(i) , i = 0, 1, . . .

• Estimates β1 = 0.957, β2 = −0.253, β3 = 0.119 (significant at
1% level)
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3. Seasonal volatility

• Consider the residuals from the AR(3) model

• Close to zero ACF for residuals

• Highly seasonal ACF for squared residuals



The temperature market A stochastic model for temperature Temperature futures Hedging spatial temperature risk Conclusions

• Suppose the volatility is a truncated Fourier series

σ2(t) = c +
4∑

i=1

ci sin(2iπt/365) +
4∑

j=1

dj cos(2jπt/365)

• This is calibrated to the daily variances
• 45 years of daily residuals
• Line up each year next to each other
• Calculate the variance for each day in the year
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• A plot of the daily empirical variance with the fitted squared
volatility function

• High variance in winter, and early summer

• Low variance in spring and late summer/autumn
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• Dividing out the seasonal volatility from the regression
residuals

• ACF for squared residuals non-seasonal
• ACF for residuals unchanged
• Residuals become (close to) normally distributed
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Temperature futures
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Some generalities on temperature futures

• HDD-futures price FHDD(t, τ1, τ2) at time t ≤ τ1

• No trade in settlement period

0 = e−r(τ2−t)EQ

[∫ τ2

τ1

max(c−T (u), 0) du−FHDD(t, τ1, τ2) | Ft

]
.

• Constant interest rate r , and settlement at the end of index
period, τ2

• Q is a risk-neutral probability
• Not unique since market is incomplete
• Temperature (and HDD) is not tradeable

• c is equal to 65◦F or 18◦C
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• Adaptedness of FHDD(t, τ1, τ2) yields

FHDD(t, τ1, τ2) = EQ

[∫ τ2

τ1

max(c − T (u), 0) du | Ft

]
• Analogously, the CDD and CAT futures prices are

FCDD(t, τ1, τ2) = EQ

[∫ τ2

τ1

max(T (u)− c , 0) du | Ft

]
FCAT(t, τ1, τ2) = EQ

[∫ τ2

τ1

T (u) du | Ft

]
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A class of risk neutral probabilities

• Parametric sub-class of risk-neutral probabilities Qθ

• Defined by Girsanov transformation of B(t)

dBθ(t) = dB(t)− θ(t) dt

• θ(t) deterministic market price of risk

• Dynamics of X(t) under Qθ:

dX(t) = (AX(t) + epσ(t)θ(t)) dt + epσ(t) dBθ(t) .

• Feasible dynamics for explicit calculations
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CDD futures

• CDD-futures price

FCDD(t, τ1, τ2) =

∫ τ2

τ1

v(t, s)Ψ

(
m(t, s, e′1 exp(A(s − t))X(t))

v(t, s)

)
ds

where

m(t, s, x) = Λ(s)− c +

∫ s

t
σ(u)θ(u)e′1 exp(A(s − u))ep du + x

v2(t, s) =

∫ s

t
σ2(u)

(
e′1 exp(A(s − u))ep

)2
du

• Ψ(x) = xΦ(x) + Φ′(x), Φ being the cumulative standard
normal distribution function.
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• The futures price is dependent on X(t)

• In discrete-time, the futures price is a function of the lagged
temperatures T (t),T (t − 1), . . . ,T (t − p)

• Time-dynamics of the CDD-futures price

dFCDD(t, τ1, τ2) = σ(t)

∫ τ2

τ1

e′1 exp(A(s − t))ep

× Φ

(
m(t, s, e′1 exp(A(s − t))X(t)

v(t, s)

)
ds dBθ(t)
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CAT futures

• CAT-futures price

FCAT(t, τ1, τ2) =

∫ τ2

τ1

Λ(u) du + a(t, τ1, τ2)X(t)

+

∫ τ1

t
θ(u)σ(u)a(t, τ1, τ2)ep du

+

∫ τ2

τ1

θ(u)σ(u)e′1A
−1 (exp (A(τ2 − u))− Ip) ep du

with Ip being the p × p identity matrix and

a(t, τ1, τ2) = e′1A
−1 (exp (A(τ2 − t))− exp (A(τ1 − t)))
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• Time-dynamics of FCAT

dFCAT(t, τ1, τ2) = ΣCAT(t, τ1, τ2) dBθ(t)

where

ΣCAT(t, τ1, τ2) = σ(t)e′1A
−1 (exp (A(τ2 − t))− exp (A(τ1 − t))) ep

• ΣCAT is the CAT volatility term structure
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• Seasonal volatility, with maturity effect

• Plot of the volatility term structure as a function of t up till
delivery

• Monthly contracts
• Parameters taken from Stockholm for CAR(3)
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• The Samuelson effect
• The volatility is decreasing with time to delivery
• Typical in mean-reverting markets

• AR(3) has memory
• Implies a modification of this effect
• Plot shows volatility of CAT with monthly vs. weekly

measurement period
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Hedging spatial temperature risk
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The spatial hedging problem

• Temperature futures used to remove temperature risk
• Exchange varying temperature (index) by a fixed temperature

(index)

• Temperature futures available only in specific locations (cities)

• An investor may want a temperature futures at a certain
location not offered in the market

• ..or a futures on the average temperature over an area

• Q: How to design an optimal futures based on the traded ones
in the market?

• Requires a spatial model for temperature
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A spatial-temporal temperature model

• Motivation from a study of Lithuanian temperatures

• Data series for more than 40 years available in 16 stations
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• Analysis of CAR(1) (OU)-process for each location

• Empirical findings:

1. Seasonality function similar for the different locations
2. Speed of mean-reversion α reasonably stable over locations
3. Seasonal volatility similar over locations
4. Clear spatial correlation structure in residuals
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Spatial-temporal dynamics

dT (t, x) = dΛ(t, x)−α(x) (T (t, x)− Λ(t, x)) dt+σ(t, x) dW (t, x)

• W (t, ·) is an L2(D)-valued Wiener process
• Continuous spatial covariance function q(x , y)

• Strictly positive definite
• symmetric

• Define operator Q on L2(D) with integral kernel q

• Expansion for W in terms of the eigenvalues and vectors of Q

W (t, ·) =
∞∑
i=1

√
λiBi (t)ei



The temperature market A stochastic model for temperature Temperature futures Hedging spatial temperature risk Conclusions

Optimal synthetic futures

• Given a temperature index I(xi ) in different locations
x1, . . . , xn

• Locations where futures on I(xi ) are traded
• I may be CDD, HDD, CAT
• Mixtures of these, and even different measurement periods

• Problem: Find optimal (adapted) strategy a(t) minimizing

E

(I(y)−
n∑

i=1

ai (t)I(xi )

)2

| Ft


• y is the location where we would like to have the temperature

futures on the index I
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Example

• Suppose temperature model with no spatial dependency in Λ,
α and σ

• Spatial dependency modelled by a spherical correlation
function

q(x , y) = 1− 3

2

|x − y |
γ

+
1

2

|x − y |3

γ3

• All parameters taken from the Lithuanian study
• Average values
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• Set-up with 4 locations around a point y

• CAT indices, with 10 measurement days in middle of June

• Calculate a1(t), . . . , a4(t) for 10 previous days to
measurement

• Based on simulation of the temperature field
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• Average weights are: a1 = 0.08, a2 = 0.37, a3 = 0.35 and
a4 = 0.21

• Plot of standard deviation of weights relative to mean
• Plotted in %

x1
x2
x3

x4
20 21 22 23 24 25 26 27 28 29

0.0
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0.6

0.8
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1.2

1.4

1.6

1.8

• Note the increase, similar to the volatility of CATs

• Also, the variation dependent on distance to y
• Note: more tradeable futures do not necessarily reduce risk
• Reduction depends on correlation and geometry of the

locations
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Conclusions

• CAR(p) model for the temperature dynamics
• Auto-regressive process, with
• Seasonal mean
• seasonal volatility

• Allows for analytical futures prices for the traded contracts on
CME

• HDD/CDD, CAT and PRIM futures
• Futures contracts with delivery over months or seasons
• Seasonal volatility with a modified Samuelson effect: volatility

may even decrease close to maturity

• Considered the construction of a synthetic temperature
futures based on traded contracts

• Minimizing the variance
• Based on a spatio-temporal temperature model
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Coordinates

• fredb@math.uio.no

• folk.uio.no/fredb

• www.cma.uio.no
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