| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|----------|---------------------------|--------------------------|--------------------------|-------------|
|              | 000000   | 000000                    | 000000000000             | 000000000                |             |
|              |          |                           |                          |                          |             |

# Pricing of electricity forwards - The risk premium -

#### Fred Espen Benth

In collaboration with Alvaro Cartea (London), Rüdiger Kiesel (Ulm) and Thilo Meyer-Brandis (Oslo/Munich)

Centre of Mathematics for Applications (CMA) University of Oslo, Norway

#### Seminar, Carnegie Mellon University, February 23 2009





イロト イヨト イヨト イヨト

Pool The spot-forward relation

The information approach

The equilibrium approach

・ロン ・四 ・ ・ ヨン ・ ヨン

Conclusions

## Introduction

- Problem: what is the connection between spot and forward prices in electricity?
- Electricity is a non-storable commodity
- How to explain the risk premium?
  - Empirical and economical evidence: Sign varies with time to delivery
- Propose two approaches:
  - 1. Information approach
  - 2. Equilibrium approach
- Purpose: try to explain the risk premium for electricity



ool The spot-forward relation

The information approach

The equilibrium approach

・ロン ・四 ・ ・ ヨン ・ ヨン

Centre of

Mathematics for

Conclusions

#### Outline of talk

- 1. Example of an electricity market: NordPool
- 2. The "classical" spot-forward relation
- 3. The information approach
- 4. The equilibrium approach
- 5. Conclusions



NordPool The spot-forward relat •00000 000000

The information approach 0000000000000

The equilibrium approach

Conclusions

### Example of an electricity market: NordPool



・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ う へ の ・



| Introduction | NordPool The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|------------------------------------|--------------------------|--------------------------|-------------|
| Introduction |                                    |                          |                          | Conclusion  |

- The NordPool market organizes trade in
  - Hourly spot electricity, next-day delivery
  - Financial forward contracts
    - In reality mostly futures, but we make no distinction here

・ロン ・四 と ・ ヨン ・ ヨン

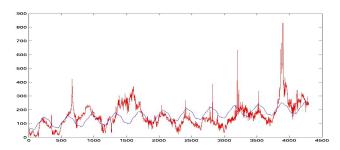
- European options on forwards
- Difference from "classical" forwards:
  - Delivery over a period rather than at a fixed point in time



NordPool The spot-forward relation

The equilibrium approach

Conclusions


## Elspot: the spot market

- A (non-mandatory) hourly market with physical delivery of electricity
- Participants hand in bids before noon the day ahead
  - Volume and price for each of the 24 hours next day
  - Maximum of 64 bids within technical volume and price limits
- NordPool creates demand and production curves for the next day before 1.30 pm



| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | C |
|--------------|----------|---------------------------|--------------------------|--------------------------|---|
|              | 000000   | 000000                    | 000000000000             | 000000000                |   |

- The system price is the equilibrium
  - Reference price for the forward market
- Historical system price from the beginning in 1992



• note the spikes....





イロト イヨト イヨト イヨト

NordPool The spot-forward relation

The equilibrium approach

イロト イポト イヨト イヨト

Conclusions

## The forward market

- Forward with delivery over a period
- Financial market
- Settlement with respect to system price in the delivery period
- Delivery periods
  - Next day, week or month
  - Quarterly (earlier seasons)
  - Yearly
- Overlapping settlement periods (!)
- Contracts also called swaps: Fixed for floating price



NordPool The spot-forward relati

The information approach

The equilibrium approach

・ロン ・四 ・ ・ ヨン ・ ヨン

Conclusions

### The option market

- European call and put options on electricity forwards
  - Quarterly and yearly electricity forwards
- Low activity on the exchange
- OTC market for electricity derivatives huge
  - Average-type (Asian) options, swing options ....



The spot-forward relation

The information approach

The equilibrium approach

Conclusions

### The spot-forward relation



・ロト ・母 ト ・ヨト ・ヨー うへの



The spot-forward relation

The information approach

ach Conclusions

The spot-forward relation: some "classical" theory

• The no-arbitrage forward price (based on the buy-and-hold strategy)

 $F(t,T) = S(t)e^{r(T-t)}$ 

• A risk-neutral expression of the price as

 $F(t, T) = \mathbb{E}_Q[S(T) | \mathcal{F}_t]$ 

• The risk premium is defined as

 $R(t, T) = F(t, T) - \mathbb{E}\left[S(T) \,|\, \mathcal{F}_t\right]$ 





イロト 不得下 イヨト イヨト 二日

| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|----------|---------------------------|--------------------------|--------------------------|-------------|
|              | 000000   | 00000                     | 000000000000             | 000000000                |             |
|              |          |                           |                          |                          |             |

- In the case of electricity:
  - Storage of spot is *not* possible (only indirectly in water reservoirs)
  - Buy-and-hold strategy fails
  - No foundation for the "classical" spot-forward relation

・ロン ・四 と ・ ヨン ・ ヨン

- ...and hence no rule for what Q should be!
- Thus: What is the link between F(t, T) and S(t)?



The spot-forward relation

The information approach

The equilibrium approach

소리가 소문가 소문가 소문가 ...

Conclusions

### Economical "intuition" for electricity

#### • Short-term positive risk premium

- Retailers (consumers) hedge "spike risk"
- Spikes lead to expensive electricity
- Accept to pay a premium for locking in prices in the short-term
- Long-term negative risk premium
  - Producers hedge their future production
  - Long-term contracts (quarters/years)
- The market may have a change in the sign of the risk premium



The spot-forward relation

The information approach

The equilibrium approach

ヘロト 人間ト 人間ト 人間トー

3

Conclusions

# Empirical evidence for electricity

- Longstaff & Wang (2004), Geman & Vasicek : PJM market
  - Positive premium in the short-term market
- Diko, Lawford & Limpens (2006)
  - Study of EEX, PWN, APX, based on multi-factor models
  - Changing sign of the risk premium
- Kolos & Ronn (2008)
  - Market price of risk: expected risk-adjusted return
  - Multi-factor models
  - Negative on the short-term, positive on the long term



| Introduction | NordPool<br>000000 | The information approach | The equilibrium approach | Conclusions |
|--------------|--------------------|--------------------------|--------------------------|-------------|
|              |                    |                          |                          |             |

- Explore two possible approaches to price electricity futures
  - 1. The information approach based on market forecasts
  - 2. An equilibrium approach based on market power of the consumers and producers
- For simplicity we first restrict our attention to F(t, T)
  - Electricity forwards deliver over a time period
  - Creates technical difficulties for most spot models
  - Ignore this here
  - In the equilibrium approach we consider delivery periods

イロト イポト イヨト イヨト



ool The spot-forward rela

The information approach

The equilibrium approach

Conclusions

#### The information approach



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

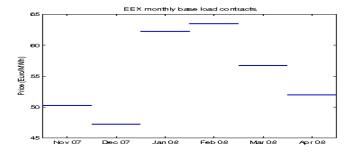


ool The spot-forward relat

The information approach

The equilibrium approach

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・


Conclusions

# The information approach: idea

- Idea is the following:
  - Electricity is non-storable
  - Future predicitions about market will not affect current spot
  - However, it will affect forward prices
- Stylized example:
  - Planned outage of a power plant in one month
  - Will affect forwards delivering in one month
  - But *not* spot today
- Market example
  - In 2007 market knew that in 2008 CO2 emission costs will be introduced
  - No effect on spot prices in the EEX market in 2007
  - However, clear effect on the forward prices around New Year



| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|----------|---------------------------|--------------------------|--------------------------|-------------|
|              | 000000   | 000000                    | 00000000000000000        | 000000000                |             |





▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



ool The spot-forward relat

The information approach

The equilibrium approach

イロト 不得 トイヨト イヨト

r r

3

Mathematics for

Conclusions

## The information approach: definition

• Define the forward price as

 $F_{\mathcal{G}}(t, T) = \mathbb{E}\left[S(T) \,|\, \mathcal{G}_t\right]$ 

- $\mathcal{G}_t$  includes spot information up to current time  $(\mathcal{F}_t)$  and forward-looking information
- The information premium

$$I_{\mathcal{G}}(t, T) = F_{\mathcal{G}}(t, T) - \mathbb{E}\left[S(T) \,|\, \mathcal{F}_t\right]$$



| Introduction | NordPool<br>000000 | The information approach | The equilibrium approach | Conclusions |
|--------------|--------------------|--------------------------|--------------------------|-------------|
|              |                    |                          |                          |             |

- Rewrite the information premium using double conditioning and  $\mathcal{F}_t \subset \mathcal{G}_t$ 

 $I_{\mathcal{G}}(t,T) = \mathbb{E}\left[S(T) \mid \mathcal{G}_{t}\right] - \mathbb{E}\left[\mathbb{E}\left[S(T) \mid \mathcal{G}_{t}\right] \mid \mathcal{F}_{t}\right]$ 

- The information premium is the residual random variable after projecting  $F_{\mathcal{G}}(t, T)$  onto  $L^2(\mathcal{F}_t, P)$ 
  - $\mathit{I_{\mathcal{G}}}$  measures how much more information is contained in  $\mathcal{G}_t$  compared to  $\mathcal{F}_t$



| II. |  |  |  |  |  |
|-----|--|--|--|--|--|
|     |  |  |  |  |  |
|     |  |  |  |  |  |

ool The spot-forward relatio

The information approach

The equilibrium approach

・ロト ・聞 ト ・ヨト ・ヨトー

Mathematics for

Conclusions

#### • Note that

## $\mathbb{E}\left[I_{\mathcal{G}}(t,T)\,|\,\mathcal{F}_t\right]=0$

- $I_{\mathcal{G}}(t,T)$  is orthogonal to R(t,T)
  - The risk premium R(t, T) is  $\mathcal{F}_t$ -adapted
- Thus, impossible to obtain a given  $I_{\mathcal{G}}(t, T)$  from an appropriate choice of Q in R(t, T)
  - Including future information creates new ways of explaining risk premia



ol The spot-forward relat

The information approach

The equilibrium approach

Conclusions

### Example: temperature predictions

• Temperature dynamics

$$dY(t) = \gamma(\mu(t) - Y(t)) dt + \eta dB(t)$$

• Spot price dynamics

 $dS(t) = \alpha(\lambda(t) - S(t)) dt + \sigma \rho dB(t) + \sigma \sqrt{1 - \rho^2} dW(t)$ 

- $\rho$  is the correlation between temperature and spot price
  - NordPool:  $\rho <$  0, since high temperature implies low prices, and vice versa





3

・ロト ・ 四ト ・ ヨト ・ ヨト

| Introduction | NordPool<br>000000 | The information approach | The equilibrium approach | Conclusions |
|--------------|--------------------|--------------------------|--------------------------|-------------|
|              |                    |                          |                          |             |

- Suppose we have some temperature forecast at time  $T_1$ 
  - Full, or at least some, knowledge of  $Y(T_1)$

 $\mathcal{F}_t \subset \mathcal{G}_t \subset \mathcal{H}_t \triangleq \mathcal{F}_t \lor \sigma(Y(T_1))$ 

• We want to compute (for  $T \leq T_1$ )

 $F_{\mathcal{G}}(t, T) = \mathbb{E}\left[S(T) \,|\, \mathcal{G}_t\right]$ 

- Program:
  - 1. Find a Brownian motion wrt  $\mathcal{G}_t$
  - 2. Compute the conditional expectation





Pool The spot-forward related to the spot-forward related to the spot of the s

The information approach

The equilibrium approach

Conclusions

- From the theory of "enlargement of filtrations":
  - There exists a  $\mathcal{G}_t$ -adapted drift  $\theta_1$  such that  $\widetilde{B}$  is a  $\mathcal{G}_t$ -Brownian motion,

 $d\widetilde{B}(t) = dB(t) - \theta_1(t) dt$ 

• The drift is expressed as

$$\theta_1(t) = a_1(t) \left( e^{\gamma T_1} \mathbb{E}[Y(T_1) | \mathcal{G}_t] - e^{\gamma t} Y(t) - \gamma \int_t^{T_1} \mu(u) e^{\gamma u} \, du \right)$$

$$a_1(t) = rac{2\gamma \mathrm{e}^{\gamma t}}{\eta(\mathrm{e}^{2\gamma T_1} - \mathrm{e}^{2\gamma t})}$$

▲ロト ▲母 ト ▲臣 ト ▲臣 ト 三臣 - のへの





| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|----------|---------------------------|--------------------------|--------------------------|-------------|
|              | 000000   | 000000                    | 000000000000000          | 000000000                |             |

• Dynamics of S in terms of  $\widetilde{B}$ :

$$dS(t) = \alpha \left( \rho \frac{\sigma}{\alpha} \theta_1(t) + \lambda(t) - S(t) \right) dt + \sigma \rho d\widetilde{B}(t) + \sigma \sqrt{1 - \rho^2} dW(t)$$

- Note that we have a mean-reversion level being *stochastic* 
  - Explicitly dependent on the temperature prediction and todays temperature

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

•  $\theta_1(t)$  is the market price of information, or information yield



- - Calculate the forward price

$$F_{\mathcal{G}}(t, u) = \mathbb{E}\left[S(u) \mid \mathcal{F}_{t}\right] + I_{\mathcal{G}}(t, T)$$
  
=  $S(t)^{\exp(-\alpha(T-t))} + \alpha \int_{t}^{T} \lambda(s) e^{-\alpha(T-s)} ds + I_{\mathcal{G}}(t, T)$ 

• The information premium is, by applying the definition

$$I_{\mathcal{G}}(t, T) = \rho \sigma \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(T-s)} dB(s) | \mathcal{G}_{t}\right]$$

・ロト ・聞 ト ・ ヨト ・ ヨト …

 ₹ ► ₹
 Centre of Mathematics for

• Use that 
$$\widetilde{B}$$
 is a  $\mathcal{G}_t$ -Brownian motion



ool The spot-forward rela

The information approach

The equilibrium approach Co

• Expression for the information premium

$$\rho_{\mathcal{G}}(t,T) = \rho_{\mathcal{A}}(t,T) \left( e^{\gamma T_1} \mathbb{E}\left[ Y(T_1) \,|\, \mathcal{G}_t \right] - e^{\gamma t} Y(t) - \gamma \int_t^{T_1} \mu(s) e^{\gamma s} \, ds \right)$$

where

$$A(t,T) = \frac{2\gamma\sigma e^{\gamma T} (1 - e^{-(\alpha + \gamma)(T-t)})}{\eta(\alpha + \gamma)(e^{2\gamma T_1} - e^{2\gamma t})}$$

- Observe that A(t, T) is positive
- The sign of the information premium is determined by
  - The correlation  $\rho$
  - The temperature prediction





・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ool The spot-forward relat

The information approach

The equilibrium approach

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Conclusions

### Example with complete information

- Suppose we know the temperature at  $T_1$ 
  - The information set is  $\mathcal{H}_t$
  - Unlikely situation of perfect future knowledge....
- Assume we we expect a temperature drop

$$Y(T_1) < \mathrm{e}^{-\gamma(T_1-t)}Y(t) + \gamma \int_t^{T_1} \mu(s) \mathrm{e}^{-\gamma(T_1-s)} \, ds$$

- At NordPool, where ho < 0:
  - The information premium is positive
- Drop in temperature will lead to increasing demand, and thus higher prices



ool The spot-forward rel

The information approach

The equilibrium approach

Conclusions

#### The equilibrium approach



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



ol The spot-forward rela

The information approach

イロン イヨン イヨン

# The equilibrium approach: idea

- Producers and consumers can trade in both spot and forward markets
  - No speculators in our set-up
- We suppose that the forwards deliver electricity over an agreed period
  - No fixed delivery time as in other commodity markets
  - Natural for electricity due to its nature
- Choice of an electricity producer
  - Sell production on spot market, or on the forward market



ool The spot-forward relation 000000

The equilibrium approach

・ロト ・四ト ・ヨト ・ヨト

Conclusions

• Producer is indifferent when  $(U_{pr}$  is the utility function)

$$\mathbb{E}\left[U_{\mathsf{pr}}\left(\int_{\tau_1}^{\tau_2} S(u) \, du\right)\right] = \mathbb{E}\left[U_{\mathsf{pr}}\left((\tau_2 - \tau_1) \mathcal{F}_{\mathsf{pr}}(t, \tau_1, \tau_2)\right)\right]$$

- The certainty equivalence principle
- *F*<sub>pr</sub> is the lowest acceptable price for the producer can accept to be interested in entering a forward
  - Similarly,  $F_{\rm c}$  is the highest acceptable price for the consumer, for a given utility function  $U_{\rm c}$
- We assume exponential utility  $U(x) = 1 \exp(-\gamma x)$ , with respective risk aversion for producer and consumer  $\gamma_{pr}$  and  $\gamma_{c}$



- - By Jensen's inequality, the predicted average spot price is within the price bounds

$$F_{\mathsf{pr}}(t,\tau_1,\tau_2) \leq \mathbb{E}\left[\frac{1}{\tau_2-\tau_1}\int_{\tau_1}^{\tau_2} S(u)\,du\,|\,\mathcal{F}_t\right] \leq F_{\mathsf{c}}(t,\tau_1,\tau_2)$$

• Hypothesis: The settlement price of the forward will depend on the market power  $p \in [0, 1]$  of the producer

$$F^{p}(t, \tau_{1}, \tau_{2}) = pF_{c}(t, \tau_{1}, \tau_{2}) + (1 - p)F_{pr}(t, \tau_{1}, \tau_{2})$$

・ロット (四) ・ (目) ・ (目)

Mathematics for



ool The spot-forward relat

The information approach

The equilibrium approach

• Assume a simple two-factor spot model with jump component

 $S(t) = \Lambda(t) + X(t) + Y(t)$ 

•  $\Lambda(t)$  seasonal function

 $dY(t) = -\lambda Y(t) \, dt + Z \, dN(t)$ 

- Jumps (accounting for spikes)
  - Z jump size
  - N Poisson process
- Slowly varying base component

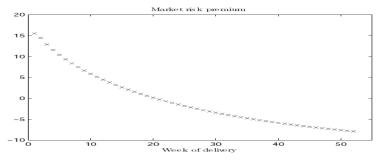
 $dX(t) = -\alpha X(t) \, dt + \sigma \, dB(t)$ 





イロト 不得下 イヨト イヨト 二日

ool The spot-forward re


The information approach

The equilibrium approach

< ロ > < 同 > < 三 > < 三

Conclusions

- Calculate prices for weekly contracts and compute the risk premium
  - The market power set to p = 0.25
  - Constant positive jumps at rate 2/year



- Note the positive risk premium in the short end
  - Caused by the jump risk



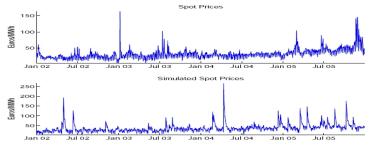
ool The spot-forward rela

The information approach

The equilibrium approach

(a)

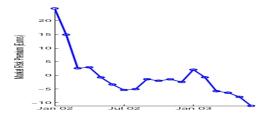
Centre of


Mathematics for

Applications

Conclusions

## Empirical example: EEX (Metka, Ulm)


Fit two-factor model to daily EEX spot prices (Jan 02 – Dec 05)





| Introduction | NordPool | The spot-forward relation | The information approach | The equilibrium approach | Conclusions |
|--------------|----------|---------------------------|--------------------------|--------------------------|-------------|
|              | 000000   | 000000                    | 000000000000             | 00000000000              |             |

- Using observed prices for 18 monthly forward contracts and fitted spot model
  - Calculate the risk premium,
  - Difference between forward price and predicted spot
  - Observe a positive premium in the short end, and negative in the long end



(日) (同) (三) (三)



| Introduction | The spot-forward relation | The information approach | The equilibrium approach<br>00000000●0 | Conclusions |
|--------------|---------------------------|--------------------------|----------------------------------------|-------------|
|              |                           |                          |                                        |             |

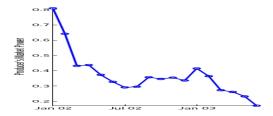
• Based on all available forward prices in the study, risk aversion parameters were determined

• 
$$\gamma_{pr} \ge 0.421$$
 and  $\gamma_c \ge 0.701$  are such that  
 $F_{pr}(t, \tau_1, \tau_2) \le F(t, \tau_1, \tau_2) \le F_c(t, \tau_1, \tau)$ 

• Calculate the empirical market power

$$p(t,\tau_1,\tau_2) = \frac{F(t,\tau_1,\tau_2) - F_{\rm pr}(t,\tau_1,\tau_2)}{F_{\rm c}(t,\tau_1,\tau_2) - F_{\rm pr}(t,\tau_1,\tau_2)}$$

イロト イヨト イヨト イヨト


СГ

Centre of Mathematics for



| Introduction | The spot-forward relation | The information approach | The equilibrium approach<br>00000000● | Conclusions |
|--------------|---------------------------|--------------------------|---------------------------------------|-------------|
|              |                           |                          |                                       |             |

• Observe that producer's power is strong in the short end, while decreasing to be rather weak in the long end



<ロト </p>

Centre o

Mathematics for



approach The equilibriu

e equilibrium approach

・ロン ・四 ・ ・ ヨン ・ ヨン

#### Conclusions

# Conclusions

- Discussed two potential ways to understand the link between spot and forward prices in electricity markets
- Information approach:
  - Include future information in pricing
- Equilbrium approach:
  - Certainty equivalence principle for upper and lower bounds of prices
  - Use market power as an explanantory variable for price formation



ool The spot-forward relation

The information approach 000000000000

The equilibrium approach

・ロン ・四 と ・ ヨン ・ ヨン

CM

Centre of Mathematics for

Applications

Conclusions

### Coordinates

- fredb@math.uio.no
- folk.uio.no/fredb
- www.cma.uio.no



| Int |  |  |  |  |
|-----|--|--|--|--|
|     |  |  |  |  |

ool The spot-forward relatio

The information approach

The equilibrium approach

Conclusions

#### References

Benth and Meyer-Brandis (2007). The information premium in electricity markets. E-print

Benth, Cartea and Kiesel (2008). Pricing forward contracts in power markets by the certainty equivalence principle: explaining the sign of the market risk premium. J Banking Finance, 32





