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Abstract. Starting with a time-0 coherent risk measure defined for “value pro-
cesses”, we define, also at intermediate times, a risk measurement process. Two
other constructions of such measurement processes are given in terms of sets of test
probabilities. These constructions are identical and related to the former construc-
tion when the sets fulfill a stability condition also met in multiperiod treatment of
ambiguity in decision-making. We finally deduce risk measurements for final value
of locked-in positions and repeat a warning concerning Tail-Value-at-risk.

Keywords. Bellman’s principle, capital requirement, coherence, risk-adjusted val-
ues, stability by pasting, time consistency.

2



INTRODUCTION

One-period models of risk measurement considered neither the source of pos-
sibly required extra capital at the beginning of an holding period nor the actual
consequences of a “bad event” at the end of the same period. These points become
relevant for multiperiod risk because:

- first, the availability of intermediate information requires taking into ac-
count intermediate monitoring by supervisors and/or shareholders of a po-
sition even if it is locked-in . Intermediate markets may be missing, but
release of information over time does matter at date 0, for instance because
of intermediate audits, see Bennet (2001), or possible actions of competitors,

- second, the possibility of intermediate actions, the availability of extraneous
cash flows and of possible capital in- or outflows require handling sequences
of future, unknown, “values”,

- third, with one period of uncertainty, capital served as a buffer at the initial
date and as shareholders’ wealth at the final date. Intermediate dates,
whether deterministic or random, raise the question of the nature of capital
(valued in a market or accounting way) at such dates.

This paper is organised as follows.

Section 1 briefly reviews the one-period theory with general probability spaces.
We define risk-adjusted values which are more convenient in the multiperiod case
than their negative, the traditional risk measures.

Section 2 is the core of the paper. Its first part is devoted to the axiomatics of ini-
tial coherent measurement of the risk of “value” processes with our usual emphasis
on acceptability. It is intended for supervision of behaviour of “values” on trajec-
tories, a difference with the current literature, see Cvitanic̀ and Karatzas (1999),
Föllmer and Schied (2002b), Nakano (2003), Roorda, Engwerda and Schumacher
(2002), as well as Riedel (2002) (see the end of our Section 4.2).

The second part of Section 2 introduces risk measurement at intermediate stop-
ping times, the acceptance at these times and finally risk measurement processes.

Section 3 prepares a particular construction of multiperiod measurement of risk
by “pasting” test probabilities, using the likelihood ratio processes. This approach
allows for combining different risk attitudes over time. Sets of test probabilities
which are stable by pasting appeared in “multiperiod decision theory with ambigu-
ity” as “rectangular sets” in Epstein and Schneider (2003) and generalized Bayes
rule in Wang (2003). Our definitions work with general state spaces.

Section 4 also constructs two risk-measurement processes of multiperiod-risk by
using sets of test probabilities, as in the representation of one-period risk measures.
We compare them to each other and to the risk measurement process of the general
theory of Section 2. Stability of the set of test probabilities is shown to be equivalent
to Bellman’s principle and to time consistency as in Wang (1996, 1999).

Section 5 deals with multiperiod-measurement of a final locked-in position. Again
two constructions are given, using either succesive conditional expectations with
respect to all test probabilities or using a recursive procedure. They are identical
if and only if the set of test probabilities is stable. We comment on the case of
Tail-Value-at-Risk.
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1. REVIEW OF ONE-PERIOD ACCEPTABILITY

The theory of coherent risk measures at date 0 for some date 1 is best approached,
see Artzner et al. (1997, p. 69, 1999a, Section 2.2), Delbaen (2000, 2002), Föllmer
and Schied (2002a, 2002b), Heath (1998), by taking the primitive object to be an
“acceptance set”. It is a set of bounded future random net worths on a probabil-
ity space (Ω, F , P0), also simply called “values”, which satisfies some axioms of
coherence on the part of a regulator or supervisor, either internal or external.

Remark 1. In a one period model, the value at time “1” does involve an assessment
of future payments, like a market value or some form of net worth when markets are
missing (as for insurance liabilities). The risk adjusted measurement of a “value”
is the maximum amount (of numéraire) to be subtracted from it at the initial date
while keeeping it acceptable.

Remark 2. It will be convenient in the multiperiod case to work with risk-adjusted
values defined as the negative of risk measures: this simplifies the presentation of
recursive risk measurement (see for example Bellman’s principle in Theorem 4.2,
(iii) and the Remark following the statement of Theorem 5.1).

Remark 3. We express everything via a numéraire, for example the money market
account or a default-free zero-coupon long bond — doing so in Artzner et al. (1999a)
would have made r = 1 in Definition 2.2 there. Because of the translation axiom,
it is only after this choice of numéraire that risk measures can be defined can be
qualified as “monetary” (see Föllmer-Schied (2002b)).

The axioms of coherence for acceptance sets or for risk measures (see Artzner
et al. (1999a), Sections 2.2 and 2.4, Delbaen (2002), Definition 3, Delbaen (2000),
Definition 2.1) translate for coherent risk-adjusted values into:

- monotonicity: for all X and Y , if X ≥ Y then π(X) ≥ π(Y ),
- translation invariance: if a is a constant then for all X , π(a+X) = a+π(X),
- positive homogeneity: if λ ≥ 0 then for all X , π(λ · X) = λ · π(X),
- superadditivity: for all X and Y , π(X + Y ) ≥ π(X) + π(Y ).

With a general probability space (Ω,F , P0) a continuity property is in order. The
Fatou property for a risk-adjusted value π is defined as: for any sequence (Xn)n≥1 of
functions, ‖Xn‖∞ ≤ 1, and converging to X in probability, π(X) ≥ lim supπ(Xn),
see Delbaen (2002), Definition 4 or Delbaen(2000), Definition 3.1.

The representation result (see Proposition 4.1 in Artzner et al. (1999a) for the
case of a finite Ω, Theorem 6 in Delbaen (2002) or Theorem 3.2 in Delbaen (2000)
for the infinite Ω case) states the following:

One-period result. For any coherent risk-adjusted value π:L∞ → R, having
the Fatou property, there exists a convex L1(P0)−closed set P of P0−absolutely
continuous probabilities on (Ω,F) called generalised scenarios or test probabilities,
such that π(X) = infP∈P EP [X].

A future value X is accepted at the initial date if and only if for each test
probability P ∈ P we have EP[X] ≥ 0.

2. RISK-MEASUREMENT AT INITIAL AND FOLLOWING DATES

This section explores the general way of entering the multi-period world: search-
ing first for an initial supervision of the risk resulting from strategies, and then
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defining measurements at future random times, providing thereby a risk measure-
ment process.

Here we only treat the discrete time case, see Cheredito, Delbaen and Kupper
(2002) for the continuous time case.

2.1 Multiperiod information.
Uncertainty over finitely or countably many periods will be described by the

probability space (Ω,F , P0) and by the filtration (Fn)0≤n<∞ such that ∨nFn = F .

Notation. In this paper, particularly Sections 2 and 4, the domain where we at-
tempt to define risk measurement is the set, denoted G, of bounded adapted processes
on the filtered space (Ω, (Fn)0≤n<∞, P0). They will be called “value” processes.

Once a numéraire has been chosen, many interpretations of the meaning of
“value” can be made, keeping in mind that for risk supervision purposes we al-
ways consider net positions:

- market values of equity,
- accounting values of equity i.e. sharehoders’ equity or “book value”,
- liquidation values,
- “shareholders’ surplus” as initial capital plus premium received and invested

minus claims paid or reserved, in insurance; see 5.3 in Artzner et al. (1999a)
- ...

We thus deal with computations which are both prospective (marking to mar-
ket, reserving) and retrospective (cumulatively “counting the beans” received or
given at each date-event). The generality of the meaning of values will allow us to
use the theory for risk management with risk-measurements by various classes of
stakeholders: creditors or regulators, managers, and shareholders, see Artzner et
al. (1999b) for such a (one-period) study. This generality also allows to consider
individual decision theory in the framework of risk measurement, as was initiated
by Heath (1998).

The mathematics of the one-period theory is used by looking at processes as
special functions on the set of (date-event) pairs as follows: value processes are
functions on the product set of states and dates, which are measurable for the op-
tional sigma-field. We use the one-period representation result and interpret the
test probabilities in this context. Some of the axioms get a very specific tempo-
ral implication (see for example a different translation invariance property in the
related paper of Riedel (2002) bringing full axiomatics of multiperiod risk measure-
ment, in the case of a finite state space, and the related consequence at the end of
our Section 4.2).

Definition 2.1. (transforming processes into variables) Given a probability space
(Ω,F , P0) and a filtration (Fn)0≤n<∞, the probability space (Ω′, F ′

N , P
′
0) is built

as follows: Ω′ is the product space Ω × N, F ′ is the σ−field on Ω′ whose elements
are unions of families (An × {n})n , 0 ≤ n < ∞, with An ∈ Fn for each n. The
reference probability P

′
0 is defined on (Ω′,F ′) by the equality:

P
′
0[

⋃

0≤n<∞
{An} × {n}] =

∑

0≤n<∞
µnP0 [An] ,

with (µn)n a given sequence where for each n, µn > 0, and
∑

0≤n<∞ µn = 1.

The set G of bounded adapted processes, becomes the set of bounded measurable
functions on the measurable space (Ω′, F ′). On G, we use the topology coming from
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the duality between L1(Ω′,F ′, P′
0) and L∞(Ω′,F ′, P′

0). A set is closed in G if and
only if it is closed with respect to the weak∗ topology coming from L1(Ω′,F ′, P′

0).
The case of unbounded value processes is the topic of on-going research.

2.2 The cone of value processes acceptable at the initial date.
A supervisor, risk manager or regulator, will as in the one-period case decide at

date 0 upon a subset of G denoted Acc , of acceptable value processes.

Definition 2.2. (coherent acceptance set) A coherent acceptance set of value pro-
cesses is a closed convex cone of G, with vertex at the origin, containing the positive
orthant and intersecting the negative orthant only at the origin.

As in the framework of one-period risk we define

Definition 2.3. (coherent risk measure) The risk adjusted value associated with
the coherent cone Acc is defined by π(X) = sup{m | X − m ∈ Acc}.

The coherence assumption on Acc ensures that the associated risk adjusted val-
uation is “coherent”, i.e. it satisfies the axioms listed at the end of Section 1.

Remark. As in Artzner et al. (1999a), Remark 2.5, acceptability is a numéraire
invariant concept while risk-adjusted value is not.

As in Delbaen (2000, 2002) we have the following link between the Fatou property
and the closedness of acceptance sets:

Proposition 2.1. For a convex cone Acc ⊂ G, containing the cone of nonnegative
processes, the following statements are equivalent

(1) Acc is σ(G, L1(P′
0)) closed

(2) the associated measurement π satisfies the Fatou property: if Xk ∈ G is a
sequence uniformly bounded by 1 and such that Xk → X in P

′
0 probability,

then π(X) ≥ limπ(Xk)
(3) the associated measurement π satisfies the property: if Xk is a sequence

in G, ‖Xk
n‖∞ ≤ 1 and such that for all n, Xk

n → Xn in probability, then
π(X) ≥ limπ(Xk).

2.3 Translation of the one-period representation result.
Thanks to the identification between value processes and random variables on

(Ω′, F ′) we directly deduce from the study of the one-period case (see Section 1)
that, given a coherent risk adjusted value measurement π0 with the Fatou property,
there is a closed convex set P ′ of probabilities on (Ω′, F ′), absolutely continuous
w.r.t. P

′
0, such that:

for each X ∈ G, π0(X) = inf
Q′∈P′

EQ′ [X] .

Remark. One could consider more general acceptance sets than convex cones, as
was done in Föllmer and Schied (2002a) (see also their use in Heath (1998), to
represent the risk measurement affine constraints imposed by the shareholders of a
firm).

Each “test probability” Q
′ ∈ P ′ above can be described by its density f ′ with

respect to P
′
0. This density must first of all be a random variable on (Ω′,F ′)

which we can represent as f ′ = (fn)0≤n<∞ where each fn is a non-negative and
Fn−measurable function on Ω such that

∑
0≤n<∞ µnEP0 [fn] = 1. We then have for
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each X = (Xn)0≤n<∞, EQ′ [X] =
∑

0≤n<∞ µnEP0 [fnXn]. Defining the increasing
adapted process A by An = An−1 +µnfn, with A−1 = 0, we get that EP0 [A∞] = 1
and we obtain the representation result by minimizing over the set A of processes
corresponding to the set of test probabilities P

′ ∈ P ′ :

Proposition 2.2. For each “initial date” coherent risk-adjusted valuation π0 of
value processes with the Fatou property, there is a closed convex set A of positive
adapted non-decreasing processes A with EP0 [A∞] = 1 such that for each value
process X:

π0(X) = inf
A∈A

EP0




∑

0≤n<∞
Xn · (An − An−1)



 .

Remark 1. The set A can be taken to be a closed set in the normed space of pro-
cesses with integrable variation, where ‖A‖ = EP0

[
|A0| +

∑
0≤n<∞ |An+1 − An|

]
.

Remark 2. If, with N periods, the value process X is a P0−martingale, the general
expression for π0(X) simplifies to infA∈A EP0 [XNAN ] . In words, for our risk mea-
surement method, “only the final value matters” when dealing with P0−martingales.
Being defined on the whole of G, our method handles more general business condi-
tions than “marking to (complete) markets”.

Remark 3. The reader may wonder what kind of multiperiod behaviour is dealt
with in our approach. Works like Cvitanic̀ and Karatzas (1999), Nakano (2003),
have also several periods for portfolio construction, and measure the risk of final
wealths which may depend on trajectories. But they do not take into account what
happens at intermediate dates. The trajectories have no influence except that they
define the final values. Remark 2 above explains a contrario the difference and the
first two examples below will illustrate. The Föllmer and Schied (2002a) paper
has a very special acceptance cone, deduced from the positive orthant by adding
the convex set of securities attainable via the allowed strategies at zero price: this
may correspond to an “early warning” function of risk measurement, where the
supervisor requires perfect hedging with given instruments. The paper by Jaschke
and Küchler (2001) mentions processes as potential objects of risk measurement
but does not present either the switch from Ω to Ω′ (this Section) nor the use of
the representing test probabilities (our Section 4).

2.4 Examples of initial measurement of multiperiod risk.

Example 2.1.
The measurement π0 defined for each value process X by π0(X) = EP0 [Xσ] , σ

a stopping time, is a coherent risk-adjusted measurement, describing “how good or
bad processes are at date σ”.

Define, if P0 [σ < ∞] > 0, the non-decreasing process Aσ by Aσ
n = 1

P0[σ<∞]1{σ≤n}.

Then for each X, π0(X) = EP0

[ ∑
0≤n<∞ Xn(Aσ

n − Aσ
n−1)

]
.

Example 2.2.
The measurement π0 defined by π0(X) = EP0 [inf0≤n≤N Xn] is a coherent risk-

adjusted measurement related to the random times τ̄X where

τ̄X(ω) = argminn:n≤N (Xn (ω))).
7



Since dates of extrema are not necessarily stopping times, it is a challenge to
represent π0 with adapted processes! To do this we define for any random time
τ the process Aτ where Aτ

n = Aτ
n−1 + EP0 [1Cn | Fn] with Cn = {τ = n}. De-

note by A the closed convex hull of all such Aτ . For each process X we have
EP0

[∑
0≤n≤N Xn · 1Cn

]
= EP0

[∑
0≤n≤N Xn ·

(
Aτ

n − Aτ
n−1

)]
. Using the random

times τ̄X defined above we find that π0 is given by

π0(X) = inf
Aτ∈A

EP0

[ ∑

0≤n≤N

Xn ·
(
Aτ

n − Aτ
n−1

) ]
.

Example 2.3.
The measurement π0 defined by π0(X) = 1

N+1EP0

[∑
0≤n≤N Xn

]
is coherent (it

would not fulfill the “translation invariance” property of Riedel (2002)).

2.5 Extension of a risk measurement to future dates.
To keep the presentation simple we suppose that the time interval is finite and

we also suppose that the risk adjusted measurements satisfy the Fatou property.

Proposition 2.3. For each coherent risk adjusted measurement π0, each stopping
time τ , and each value process X the set of all Fτ−measurable random variables

{
f | f is Fτ − measurable and for all A ∈ Fτ : π0

(
1A1[[τ,∞[[(X − f)

)
≥ 0

}

is closed under taking the maximum of a finite number of elements and it has a
maximal element, denoted by π0

τ (X) and called the risk-adjusted value of the process
X at the date τ .

The proof of this statement is left to the reader.

Proposition 2.4. For each stopping time τ the map πτ is
(1) The mapping π0

τ is positive, super-additive, positively homogeneous,
(2) For each g bounded and Fτ−measurable we have

π0
τ

(
X + g1[[τ,N ]]

)
= π0

τ (X) + g.

(3) The mapping π0
τ is Fatou, more precisely: for each sequence of processes

Xn such that ‖Xn‖ ≤ 1 and for all 1 ≤ t ≤ N , Xn
t → Xt (a.s.), we have

π0
τ (X) ≥ lim supπ0

τ (Xn), where the lim sup is taken in probability.

3. PASTING OF TEST PROBABILITIES

In contrast with Section 2, we shall keep the test probabilities on the base state
space Ω and shall use extensively conditional expectations for “updating” the mea-
surement of risk as time evolves.

We thank J. Hugonnier for pointing out the work of Epstein and Schneider
(2003) on the occasion of the presentation of these ideas in the talk Artzner et
al. (2001). There is indeed a touch of utility theory in our work since the cone of
values acceptable to the supervisor and the translation invariance define a, special,
preference order (see also Heath (1998)). We also thank L. Epstein for a discussion
on this topic. See also the paper Wang (2003) and the brief discussion of it in
Section 3.2 of Epstein and Schneider (2003).
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Nevertheless several points singularize our Sections 3 and 4, since in Epstein and
Schneider (2003):

- preferences are on lottery-valued processes,
- preferences are not required to be translation-invariant,
- preferences are not required to be monotonic,
- the state space is finite.

Notation. For the remainder of the paper we consider only N periods of uncer-
tainty (see Delbaen (2001) for a continuous time approach) and work with a closed
convex set P of “test” probabilities on (Ω,FN ) absolutely continuous with respect
to P0. For convenience we can assume that the reference probability P0 belongs to
the chosen set P.

This section prepares for two specific multiperiod-measurements of risk. We shall
combine test probabilities on Ω by identifying them to their densities with respect
to the reference probability P0 and use the likelihood ratio processes.

To avoid problems with probabilities Q ∈ P which are only absolutely continuous
with respect to P0 but not equivalent to it, we often use the convex dense set Pe

of elements of P which are equivalent to P0.

3.1. Stability of the set of test probabilities.
Any closed convex set P of test probabilities on (Ω,FN ) absolutely continu-

ous with respect to P0 is identified with the closed convex set ZP of all the P0-
martingales ZQ

n = EP0

[
dQ

dP0
|Fn

]
, 0 ≤ n ≤ N, Q ∈ P, see Chow, Robbins and

Siegmund (1972), Section 2.1, Dothan (1990), Sections 5.4, 6.4.

Definition 3.1. (pasting, stability) We say that the set P of test probabilities is
stable if for elements Q

0, Q ∈ Pe with associated martingales Z0
n, Zn , and for each

stopping time τ the martingale L defined as Ln = Z0
n for n ≤ τ and Ln = Z0

τ
Zn

Zτ

for n ≥ τ defines an element of P called the result of pasting Q0 and Q.

The following lemma rephrases the definition of stability:

Lemma 3.1. The stability of the set P implies that for any three stopping times
τ ≤ σ ≤ ν, the following two sets are equal:

{(
Zν

Zσ
,
Zσ

Zτ

)
| Z ∈ Pe

}
=

{(
Z ′

ν

Z ′
σ

,
Zσ

Zτ

)
| Z ∈ Pe, Z ′ ∈ Pe

}
.

3.2 An example of a stable set of test probabilities.
Let the information structure be given by a binomial tree and a random walk

Wn = U1 + ... + Un, 0 ≤ n ≤ N, the (Un)0≤n≤N being ±1 valued independent
variables with symmetric distribution. If P0 denotes the resulting measure on
(Ω, FN ), any probability Q on (Ω, FN ) has its density with respect to P0 writ-
ten as Z =

∏
0≤n≤N (1 + qnUn) with the (qn)0≤n≤N being a predictable process

with |qn| ≤ 1.
It can then be shown that stability of a closed convex set P of test probabilities is

equivalent to representability of the density processes of elements of P, meaning that
for each n, 0 ≤ n ≤ N , there exists a closed convex set Qn of [−1, +1], described
in an Fn−1-measurable way, such that the density Z =

∏
0≤n≤N (1 + qnUn) is an
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element of ZP if and only if each qn belongs to Qn. The continuous time case is
treated in Delbaen (2001) with stochastic exponentials.

A special case of the example is obtained by taking for some d, 0 ≤ d ≤ 1, all the
sets Qn to be the interval [−d, +d]. The set P is then the set of all probabilities Q

such that dQ

dP0
= ZN satisfies Zn = EP0 [ZN | Fn] = (1 + q1U1)...(1 + qnUn) where q

is a predictable process with |q| ≤ d ≤ 1. This is indeed a stable set.

4. TWO SPECIFIC MULTIPERIOD-MEASUREMENTS
OF MULTIPERIOD-RISK

In contrast with the axiomatic approach of Section 2, we build directly processes
of risk-adjusted values by using a set P of test probabilities on (Ω,FN ). We present
two constructions and show that they are identical if and only if P is stable. More-
over, in this case, the induced initial risk measurement returns, via the construction
of Section 2.5, the multiperiod measurement of the present Section.

4.1 A risk-adjusted value process as a generalized Snell envelope.
Given test probabilities on Ω, a value process may well be a martingale un-

der some of these but risk-adjusted value processes should only be required to be
submartingales under each test probability: since information has been provided,
uncertainty of the remaining part decreases and risk-adjusted value increases “on
(conditional) average”.

Since there is no reason to over-penalize a value process, we want to risk-adjust
it by the largest possible process. The theory of the Snell envelope provides the
convenient framework (see Chow, Robbins and Siegmund (1972), Section 1.6 and
Theorem 4.7, Neveu (1972), Propositions VI.1.1 and VI-1-2, for this as well and for
a precise treatment of esential infimum).

Theorem 4.1. Given the set P of test probabilities there is for each value process
X ∈ G a unique process Ψ̄(X) which is the largest of all processes Y ∈ G with the
following two properties:

(i) Y ≤ X as processes,
(ii) for each test probability Q ∈ P, Y is a Q−submartingale.

It is given by the formula

Ψ̄N (X) = XN ; for 0 ≤ n < N, Ψ̄n(X) = Xn ∧ ess. infQ∈Pe EQ

[
Ψ̄n+1(X) | Fn

]
.

Proof. It is clear that Ψ̄(X) satisfies (i) and (ii); for any other process Y with
(i) and (ii) satisfied we have as soon as Yn+1 ≤ Ψ̄n+1(X), for each Q ∈ P, Yn ≤
EQ [Yn+1 | Fn] ≤ EQ

[
Ψ̄n+1(X) | Fn

]
. These inequalities being valid for each Q

prove, together with Yn ≤ Xn, that Yn ≤ Ψ̄n(X).

4.2 Stability of test probabilities and Bellman’s principle.

We leave the proof of the following lemma to the reader:

Lemma 4.1. For a fixed stopping time σ and for a stable set P, the set

{EQ[Xτ | Fσ] | τ ≥ σ is a stopping time and Q ∈ Pe}

is closed for taking minima (also maxima).
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Corollary. If P is stable we also have for every stopping time 0 ≤ σ and every
probability measure µ 
 P0 (not necessarily in P) that

Eµ[ess. infQ∈PeEQ[Xτ | Fσ] ]

= inf {Eµ [EQ[Xτ | Fσ]] | Q ∈ Pe;σ ≤ τ stopping time} .

The corollary follows from Lemma 4.1 by using Proposition VI-1-1 of Neveu
(1972).

Theorem 4.2. Given the set P of test probabilities, for each value process X ∈ G,
the family (Ψσ(X)), σ a stopping time, where:

Ψσ(X) = ess. inf{EQ [Xτ | Fσ] | τ ≥ σ is a stopping time, Q ∈ Pe }.

defines a process Ψ(X).
The stability of P is equivalent to each of the following

(i) for each Q ∈ P and each value process X ∈ G, Ψ(X) is a Q−submartingale,
(ii) the mappings Ψ and Ψ̄ are equal,
(iii) “Bellman’s principle”: for each X ∈ G and stopping times σ, τ, σ ≤ τ , we

have Ψσ(X) = Ψσ(Xτ− + Ψτ (τX)1[[τ,N ]]).

Remark. We recall the definitions of Xτ− and τX as τXn = 0 for n < τ, τXn =
Xn − Xτ−1 for n ≥ τ, Xτ−

n = Xn for n < τ, Xτ−
n = Xτ−1 for n ≥ τ . We remark

that τ (τX) = τX, (τX)τ− = 0 and that Ψτ (X) = Ψτ (τX) + Xτ−1.

Proof.

(1) We first show that Ψ ≥ Ψ̄, which will ensure that if Ψ(X) is — for each X
and each Q ∈ P — a Q−submartingale, Ψ(X) = Ψ̄(X) (use Theorem 4.1,
i.e. if (i) is satisfied so is (ii)). On the other hand (i) follows from (ii) by
construction of Ψ̄. Since for each Q ∈ P, Ψ̄(X) is a Q−submartingale, for
each stopping time τ, Ψ̄σ(X) ≤ EQ[Ψ̄τ (X) | Fσ] ≤ EQ[Xτ | Fσ]. Taking
ess. inf over Q and τ provides the stated inequality.

(2) We show now that (i) implies stability of P. We suppose that Z1 and Z2

are two elements in ZPe – coming from the measures Q
1, Q2 – and σ is a

stopping time. Also suppose that the element Z1
σ

Z2
N

Z2
σ

is not in the closed
convex set P. By the separation theorem for convex sets there is a random
variable f ∈ L∞, so that

EP

[
Z1

σ

Z2
N

Z2
σ

f

]
< inf

Q∈P
EQ [f ] .

Defining the process X by XN = f, Xn = ‖f‖ for n < N , we find that
Ψ0(X) = infQ∈P EQ [f ]. The left hand side of the displayed inequality can
be written as EQ1 [EQ2 [f | Fσ]].

This is clearly at least equal to EQ1 [Φσ(X)], a quantity which by the
Q

1−submartingale property is at least equal to Ψ0(X). This is a contradic-
tion since the right hand side of the displayed inequality is precisely Ψ0(X).

11



(3) Let us prove that stability implies Bellman’s principle (iii). To avoid com-
plicated notation, the measures Q, Q′, Q” are taken in Pe. By definition

Ψσ(X)

= ess. infQ,ν≥σ EQ[Xν | Fσ]

= ess. infQ,ν≥σ EQ[EQ[Xν | Fτ ] | Fσ]

= ess. infQ,ν≥σ EQ[Xν1ν<τ + EQ[Xν1ν≥τ | Fτ ] | Fσ]

= ess. infQ,ν≥σ EQ[Xν1ν<τ + 1ν≥τ (Xτ− + EQ[Xν − Xτ− | Fτ ]) | Fσ]

The Corollary of Lemma 4.1 together with Lemma 3.1 allow us to rewrite
the result of the simple ess.inf as a compounded expression:

Ψσ(X)

= ess. infQ′,ν≥σ EQ′ [Xν1ν<τ

+ 1ν≥τ ess. infQ′′,ν′≥τ (Xτ− + EQ′′ [Xν′ − Xτ− | Fτ ]) | Fσ]

= ess. infQ′,ν≥σ EQ′ [Xν1ν<τ + 1ν≥τ (Xτ− + Ψτ (τX) | Fσ]

= ess. infQ′,ν≥σ EQ′ [(Xτ− + Ψτ (τX))ν | Fσ]

= Ψσ(Xτ− + Ψτ (τX)1[[τ,N ]])

(4) Bellman’s principle (iii) ensures that

Ψσ(X) ≤ Ψσ(‖X‖ + Ψτ (τX)1[[τ,N ]])

≤ ess. inf{EQ[Ψτ (τX) | Fσ] | Q ∈ Pe}

hence for each Q ∈ P,Ψσ(X) ≤ EQ[Ψτ (X) | Fσ], so (i) is a consequence of
(iii) and the proof of Theorem 4.2 is complete.

Remark 1. The risk measurement of Example 2.3, Section 2, satisfies Bellman’s
principle but it is not of the form Ψ0 for any set P of test probabilities.

Remark 2. With our sign convention the risk-adjustment measurement of cash-flows
streams in Riedel (2002) would appear as

λt(D) = ess. infQ∈P EQ




∑

t≤k≤N

Dk | Ft



 ,

that is in terms of cumulative cash-flows

µt(Y ) = ess. infQ∈P EQ [YN − Yt−1 | Ft] .

This is in contrast with our theory which, dealing with

Ψt(X) = ess. infQ∈P,σ≥t EQ [Xσ | Ft] ,

does not only look at final values but also at the whole trajectories.

4.3 Time consistent set of test probability sets for value processes.
12



Definition 4.1. A set P of test probabilities is time consistent for value processes
if for each pair of value processes X ∈ G and Y ∈ G and each pair of stopping times
σ and τ, σ ≤ τ the conditions

(i) Xτ− = Y τ−,
(ii) Ψτ (X) ≤ Ψτ (Y )

provide the inequality Ψσ(X) ≤ Ψσ(Y ).

The notion goes back to Wang (1996, 1999), and we present it more generally,
in terms of random (stopping) times and test probabilities.

The following theorem identifies stability with time consistency for value pro-
cesses. It is related to decision theory with multipriors, see again Epstein and
Schneider (2003). A corresponding version for risk measurement of final values, re-
lated in the finite Ω case to Riedel (2002) and Roorda, Engwerda and Schumacher
(2002), will be established in Theorem 5.1.

Theorem 4.3. A set P of test probabilities is stable if and only if it is time con-
sistent for value processes.

Proof. If P is time consistent we define for each X ∈ G and each stopping time τ , the
process Y = Xτ− + Ψτ (τX)1[[τ,N ]] and we find that Xτ− = Y τ−, Ψτ (X) = Ψτ (Y ).
By time consistency we find for each stopping time σ, σ ≤ τ that Ψσ(X) = Ψσ(Y ),
which proves Bellman’s principle.

For a stable P, Bellman’s principle together with conditions (i), (ii), and mono-
tonicity of Ψσ ensures that

Ψσ(X) = Ψσ(Xτ− + Ψτ (τX)1[[τ,N ]])

= Ψσ(Y τ− + Ψτ (X)1[[τ,N ]])

≤ Ψσ(Y τ− + Ψτ (Y )1[[τ,N ]])

= Ψσ(Y τ− + Ψτ (τY )1[[τ,N ]])

= Ψσ(Y ),

which proves time consistency.

4.4 Relation with the construction in Section 2.

Proposition 4.1. For any set P of test probabilities, the deduced initial risk-
adjusted measurement Ψ0 again generates Ψ via the construction defined in Propo-
sitions 2.3, 2.4.

Proof. We indeed have for each value process X and each stopping time ρ,

ψρ(X) = ess. infQ∈P,τ≥ρ EQ [Xτ | Fρ]

= ess. sup {g ∈ Fρ | for all Q ∈ P and all τ ≥ ρ : g ≤ EQ [Xτ | Fρ]} ,

The last condition on g can also be written as: for each A ∈ Fρ, Q ∈ Pe, τ ≥
ρ, EQ

[
1A(X − g1[[ρ,N ]])τ

]
≥ 0. This means that ψ0(1A(X − g1[[ρ,N ]])) ≥ 0.

5. MULTIPERIOD-MEASUREMENT OF FINAL VALUES

This section deals with multiperiod risk-measurement of a “final value” (bounded
FN−measurable random variable) for which a whole process of risk-adjusted values
will be built. One may consult Wilkie, Waters and Yang (2003), Sections 3.4.2 and
3.4.3, for an example of early discussion (ca. 1980) of multiperiod “reserving” i.e.
capital requiring for such a “locked-in” position.
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5.1 Direct and derived constructions of a risk-adjusted value process.
In earlier versions of this paper we gave in detail, out of a given set P of test

probabilities, two constructions of processes of risk-adjusted values. Here we shall
rather connect such constructions to the definitions of Ψ and Ψ̄ of Sections 4.1 and
4.2. For this we use the following

Definition 5.1. A bounded FN−random variable f is called a “final value” and
we denote by Xf the element of G such that (Xf )N = f, (Xf )n = ‖f‖ for n < N .
For each stopping time σ we define

Φσ(f) = Ψσ(Xf ), Φ̄σ(f) = Ψ̄σ(Xf ).

Proposition 5.1. For each “final value” f we have

Φτ (f) = ess. infQ∈Pe EQ [f |Fτ ] for each stopping time τ.

Φ̄n(f) = ess. infQ∈Pe EQ

[
Φ̄n+1(f) | Fn

]
, 0 ≤ n < N, Φ̄N (f) = f.

We leave the proof, based on the following equalities, to the reader

ess. infQ∈Pe EQ [f | Fn]

= ess. sup {g | for all Q ∈ P : g ≤ EQ [f | Fn] , Q a.s.}
= ess. sup {g | for all Q ∈ Pe : g ≤ EQ [f | Fn] , Q a.s.} .

5.2 Time consistency of test probability sets for final values.
We want to single out test probability sets for which “acceptability tomorrow in

any event” ensures “acceptability today”.

Definition 5.2. A set P of test probabilities is called time consistent for final
values if for each pair of stopping times σ ≤ τ and each pair of final values f , g,
we have that Φτ (f) ≤ Φτ (g) implies that Φσ(f) ≤ Φσ(g).

Remark. Notice that without any assumption on P the inequality Φτ (g) ≥ 0 implies
that for σ ≤ τ , Φσ(g) ≥ 0, a weaker form of time consistency. It will be shown in
Section 5.3 that the tail value-at-risk measurement does not satisfy this weak form
of time consistency.

The equivalence between Definition 4.1 and Definition 5.2 will follow from the
Theorem 5.1. The following theorem is clearly similar to Theorem 4.2 and identifies
stability with time consistency.

Theorem 5.1. The properties (1) to(5) below are equivalent.

(1) stability of the set P,
(2) recursivity: For each final value f , the family of all the Φσ(f) satisfies: for

every two stopping times σ ≤ τ we have Φσ(f) = Φσ(Φτ (f)),
(3) for each final value f , for every stopping time σ we have Φ0(f) ≤ Φ0(Φσ(f)),
(4) time consistency of the set P for final values,
(5) for each final value f the family of the Φσ(f) satisfies the submartingale

property: for each Q ∈ P and each pair of stopping times σ ≤ τ we have
that Φσ(f) ≤ EQ[Φτ (f) | Fσ].

14



Remark. Property (2) would be written in terms of risk measures as ρσ(f) =
ρσ(−ρτ (f)). With three periods we would get formulas like ρ0(f) = ρ0(−ρ1(−ρ2(f)))
and it again clear that it is better to work with the “risk-adjusted value” π = −ρ.

Proof. Let us show that (4) follows from (2). Suppose that for two bounded random
variables f, g and two stopping times σ ≤ τ , we have Φτ (f) ≤ Φτ (g). Then we have
by monotonicity of Φσ, if (2) holds, Φσ(f) = Φσ(Φτ (f)) ≤ Φσ(Φτ (g)) = Φσ(g).

Conversely to prove (2) out of (4), we take for the two random variables, the
functions f and g = Φτ (f). We have equality Φτ (Φτ (f)) = Φτ (f) and therefore
(applying item(2) twice) that Φσ(Φτ (f)) = Φσ(f).

Obviously (2) implies (3).
We show now that (3) implies (1); this is the same as in Theorem 4.2. We suppose

that Z1 and Z2 are two elements in Pe – coming from the measures Q
1, Q2 – and

σ is a stopping time. Also suppose that the element Z1
σ

Z2
N

Z2
σ

is not in the closed
convex set P. By the separation theorem for convex sets there is a random variable
f ∈ L∞, so that

EP

[
Z1

σ

Z2
N

Z2
σ

f

]
< inf

Q∈P
EQ [f ] .

We can write the left hand side as EQ1 [EQ2 [f | Fσ]]. This is clearly at least equal
to EQ1 [Φσ(f)], a quantity at least equal to Φ0[Φσ(f)], hence by property (3), at
least equal to Φ0(f). This is a contradiction since the right hand side is precisely
Φ0(f).

If (2) holds we take g = Φτ (f) in the definition of Φσ(g) to find that for each
Q ∈ P, Φσ(f) ≤ EQ[Φτ (f) | Fσ] which proves (5).

Suppose now that (5) holds and let us prove (3). For each f ∈ L∞ and each
pair σ ≤ τ of stopping times we have Φσ(f) ≤ EQ[Φτ (f) | Fσ], hence Φσ(f) ≤
Φσ(Φτ (f)). Since always Φσ(f) ≥ Φσ (Φτ (f)), we have equality.

Since by Theorem 4.2, (1) implies Bellman’s principle, the proof of the theorem
shall be completed by showing that Bellman’s principle implies time consistency
(2) for values. This results from the relation

Φσ(f) = Ψσ(Xf ) = Ψσ((Xf )τ− + Ψτ (τ (Xf ))1[[τ,N ]])

= Ψσ(‖f‖, ..., ‖f‖, Ψτ (Xf ), ...,Ψτ (Xf ))

= Φσ(Ψτ (Xf ))) = Φσ(Φτ (f)).

5.3 Discussing the Tail Value-at-risk measurement.
Tail Value-at-risk, see Embrechts (1995), Artzner et al. (1997, 1999), Delbaen

(2000, 2002), has been well received, see Wilkie, Waters and Yang (2003), as it
gives an idea of “how bad is bad”. We explain here why care must be used in the
multiperiod setting, as we had warned in Artzner (2002).

The good definition of Tail Value-at-risk of level α for the one-period case reads
as follows:

TV aRα(X) = inf
Q

{EQ[X] | dQ

dP0
≤ α−1}

that is also:

TV aRα(X) = inf{EP0 [Z · X] | 0 ≤ Z ≤ α−1,EP0 [Z] = 1}.
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Definition 5.5. Given a final value f and dates n, n+h, 0 ≤ n ≤ n+h ≤ N , Tail
Value-at-risk for the time interval (n, n+h) at level α is given by TV aRα

n,n+h(f) =
ess. inf{EP0 [Z · f | Fn] | 0 ≤ Z ≤ α−1,EP0 [Z | Fn] = 1, Z is Fn+h-measurable}.
Remark. Notice that for n + h = N fixed and n variable, we use different sets of
test probabilities.

We first notice that the set of test probabilities providing the coherent one-
period risk-adjusted measurement TV aRα

0,N is not stable, see Artzner (2002). We
also show that the system of the (TV aRα

n,N )n does not come from a mapping like
Φ or Φ̄ of Section 5.1, since the weak form of time consistency is not even satisfied.
Here is an example of a future value g at date N = 2 with a “TailVaR” positive as
random variable at date 1 and negative at date 0:

Ω = {[uu], [um], [ud], [du], [dm], [dd]}, P0 uniform on Ω, F1 generated by [u] and [d],

g([uu]) = −10, g([um]) = 12, g([ud] = 14, g([du]) = −20, g([dm]) = 22, g([dd]) = 22.

We find for g the TVaR values, at the level α = 2
3 , at date 0 and at date 1:

TV aRα
1,2(g)([u]) = TV aRα

1,2(g)([d]) = 1, TV aRα
0,2(g) = −1.
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ers. Preliminary presentations have been made at various academic and business
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Epstein, L. and Schneider, M. (2003), Recursive multiple-priors, Journal of Economic Theory

113, 1-31, earlier versions June 2001, April 2002.
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