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Abstract

To calibrate a model, one adjusts parameters so it gives correct answers to a set of questions

with known answers. In this thesis, we consider the problem of calibrating a class of financial

models. Specifically, we consider models common in financial economics, macroeconomics,

and financial engineering based on continuous-time problems of stochastic control. We ask

the question: If a model must be solved numerically, how difficult is it to calibrate? While

numerical methods for solving stochastic control problems are well studied in both industry

and academy, the inverse problem of parameter calibration has received comparatively little

attention.

To solve the calibration problem numerically, we propose a multigrid technique that couples

the calibration process with the model solver. For well-behaved problems, we find that

the calibration problem can be solved for about three times the cost of solving the control

problem with a fixed set of parameters. Computational evidence suggests that this holds

independent of the number of parameters to be calibrated.

We illustrate this technique and its limitations with a series of examples. One example

is a recent model from financial economics. This has only one parameter to calibrate but

requires careful formulation to realize good numerical results. Another example we consider

is a classical optimal stopping problem in two-dimensions. In this problem, the location of

the stopping boundary is viewed as an infinite-dimensional parameter that must be chosen

to satisfy the smooth pasting and value matching conditions. Fourier analysis of the pseudo-

differential operators implicit in this problem show that the natural formulation is badly

conditioned for numerical purposes. This analysis suggests a reformulation to regularize the

problem without introducing distortions and a process for smoothing errors. This is used to

construct a fast multigrid solver.

v



Chapter 1

Introduction

In the physical sciences, many instruments used to take measurements need periodic ad-

justments to give meaningful readings. A tare must be applied to a scale. Clocks must be

synchronized. The practice of adjusting an instrument so its readings coincide with a set of

benchmarks is called calibration. For example, suppose you have an unlabeled thermometer,

just a tube filled with mercury that expands and contracts with temperature variations,

and wish to know the temperature outside. If you do not know exactly how a thermome-

ter works, you might proceed by postulating a simple model: If all other factors are held

constant, mercury levels vary with temperature in a linear fashion. Before measuring the

temperature outside, you would first need to expose the thermometer to two environments

with known temperatures (water in transition to ice and steam, for example), and mark

the tube appropriately. You would then have a degree of faith that the thermometer gives

reasonable measurements for a range of temperatures.

You might calibrate a thermometer in one environment, say a swamp at sea level, and then

wish to take measurements in a different setting, say high in the mountains. Since the

simple model ignored factors such as air pressure and humidity, you may be skeptical of

the thermometer’s readings in the new environment. You would then have at least three

options: ignore these effects and use the thermometer anyway, use a more realistic model

that incorporates the effects of all potentially relevant factors, or simply recalibrate the

thermometer in the new environment. The third option is often the most practical.

Calibration in the context of financial models follows the same logic: Parameters are ad-

justed so that a model gives correct answers to a carefully chosen set of questions with

known answers. These questions are chosen so the model mimics the real-world along a

few dimensions relevant to a particular issue. Once calibrated, the model can be used to

1



Chapter 1. Introduction 2

“measure” unknown quantities and re-calibrated as the environment changes. For example,

an investment bank may use a model to quote prices for derivative securities, a corporation

for accounting purposes to book values for complicated cash flows, an economist to measure

the effects of a particular trade policy or production shock. Generic models are often used to

address qualitative questions regarding existence, uniqueness, and direction: Questions that

ask “which” and “whether” and hold for a whole family of models. In contrast, a calibrated

model can address quantitative questions such as “how much” and “how big,” where the

answers depend critically on the parameters.

This thesis develops computational methods for solving and calibrating a class of mod-

els based on continuous-time stochastic control problems. These models form a basis for

many modern theories of financial economics, macroeconomics, and financial engineering,

and many canonical models in these fields have been solved with great success by apply-

ing analytical techniques to derive exact or approximate solutions. Too often, variations

on these models, ones that better reflect empirical realities or explicitly incorporate institu-

tional structures, are abandoned for want of closed-form solutions. It is sad to see technical

limitations hobble a good idea.

The field of computational economics has emerged to remove some of these limitations.

Judd [30] surveys the most common numerical techniques in economics and others from

the physical sciences that may benefit economics. In [29], he suggests that “theoretical”

analysis need not be limited to proving theorems and that computational methods can both

complement and substitute for traditional analytical methods. You need two legs to run,

but if one is broken, you can still hop with the other.

In both economics and engineering, there is a huge theoretical and applied literature covering

the numerical solution of stochastic control problems. Rust [52], Judd [30], Kushner &

Dupuis [35], and Fleming & Soner [25] survey methods relevant to economic models. The

associated calibration problems remain largely unexplored. This work takes a step toward

filling this gap.

The generic model we consider takes the form of an equation

L(v;α) = f

which characterizes the solutions to a family stochastic control problems indexed by a pa-

rameter α. In particular, this typically denotes a Hamilton-Jacobi-Bellman (HJB) equation

corresponding to a control problem with state variables governed by a stochastic differen-

tial equation which is driven by Brownian motion or some other Lévy process [25, 50]. The
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examples below illustrate a few well-known models that assume this form.

To calibrate the model, a number of equations equal to the dimension of α pair the model

parameters with observable data. This restriction is generically written as

F (v;α) = b,

where b encodes the data with which the model should coincide. In this way, the calibration

problem takes the form of the equation

C(α) = b

where C(α) = F (v;α) and the model defines v as an implicit function of α. By solving this

equation, the model is calibrated.

1.1 Examples

We now consider several examples of calibration problems consistent with our generic for-

mulation.

1.1.1 Derivative Pricing

The practice of calibration is ubiquitous in financial engineering. Models used by an invest-

ment bank to quote prices for derivative securities must match prices of related assets traded

on liquid markets. Otherwise, the bank may be subject arbitrage. For this reason, many

managers consider calibration to be an essential part of their business.

Black & Scholes Implied Volatility

The classic option-pricing model developed by Black & Scholes [10] and Merton [43] gave

birth to a whole industry. Elaborations on this model are surveyed in [28, 32, 46]. One

formulation posits a financial market with two assets: a risk-free money market account

bearing returns at a constant rate r > 0, and a stock that pays no dividends with a price

process that follows the geometric Brownian motion

dSt

St

= rdt+ σdWQ
t ,
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where WQ is a Brownian motion under a risk-neutral probability measure Q. The theory

associates random cash flow with prices; the price of a European option that pays a random

amount f(ST ) at time T is v(S0, 0), where the function

v(x, t) = E
[
e−r(T−t)f(ST )|St = x

]

satisfies the following parabolic partial differential equation for x > 0 and t ∈ [0, T ]:

vt − rv + rxvx +
σ2x2

2
vxx = 0,

v(x, T ) = f(x).

There are two parameters in this model: the interest rate r, which is often stable enough

to estimate from market data, and the stock price volatility σ, which in principle could be

estimated from historical stock prices using statistical techniques. However, for many stocks

there is an active market for various options, and a statistical estimate of σ generally predicts

theoretical prices inconsistent with prices observed in the options market. For this reason,

the volatility is usually calibrated so the model prices one of the traded options correctly.

The calibrated parameter σ is called the implied volatility.

Black & Scholes with Local Volatility

If a variety of derivative securities are available for use as calibration instruments, there are

a corresponding number of implied volatilities, and it is unclear how to calibrate the Black

& Scholes model. The calibration problem with a single parameter σ is overdetermined.

Several approaches have been developed to remedy this situation. One is to assume that the

stock price follows the process

dSt

St

= rdt+ σ(St)dW
Q
t

where σ(s) is a function of the stock price. The calibration problem then becomes to choose

a function σ(s), s > 0 so that the model correctly prices all traded options.

In this case, the parameter to be calibrated is infinite-dimensional. This type of model can

bring added flexibility to the modeling process. Usually, there are only a finite, if large,

number of traded securities available for use as calibration data, and the problem is under-

determined. This setup can introduce instability and distortions that must be confronted by

various regularization strategies. From a computational viewpoint, even a stable, regularized
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problem of calibrating an infinite-dimensional parameter can be difficult due to the sheer

size of the problem.

Nonparametric Models

Cont & Tankov [19] propose another infinite-dimensional calibration problem. Their option

pricing model calibrates the risk-neutral density of the stock price process to the price of

related call and put options with various strikes and maturities. In this model, discounted

stock returns follow a stationary jump diffusion and are manipulated by controlling the

density of the the associated Lévy measure, which is represented nonparametrically as a

function of the stock price. The structure of this problem allows use of the Fast Fourier

Transform. Extending this calibration technique to a broader class of models requires a

different formulation and different computational technique that is appropriate for very large

problems with less structure.

1.1.2 Economic Methodology

Many models in macroeconomics and finance are formulated as one or more dynamic pro-

grams. Ljungqvist & Sargent [38] survey dozens of these models.

The Lucas Model

Lucas [39] established a simple asset-pricing framework based on a general-equilibrium model.

In a continuous-time version, the aggregate consumption process follows the geometric Brow-

nian motion

dct
ct

= µdt+ σdW.

This income stream is consumed by a single agent representing a continuum of homogeneous

agents who have utility functions over a cash flows δ defined by

U(δ) = E

[∫ ∞

0

e−βsu(δs)ds|c0 = x

]
,

where the utility function is u(x) = x1−γ

1−γ
and the parameter γ > 1 denotes the agents’

coefficient of relative risk aversion. Optimality conditions imply that the state-price density
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process, defined by

ξt = e−βtu′(ct),

gives time t prices for all cash flows δ;

price(δ; [t,∞)) = E

[∫ ∞

t

ξs
ξt
δsds|ct

]
.

By regarding the sum of all corporate stock issues—the market portfolio—as a claim to the

aggregate consumption process, the market portfolio’s price is given by

St = price(c; [t,∞)) = E

[∫ ∞

t

ξs
ξt
csds|ct

]
.

︸ ︷︷ ︸
v(x)|x=ct

The drift and volatility of the market portfolio follow from an application of Itô’s formula

to v(x). The interest rate and risk premium can be computed similarly.

Working with a discrete-time version of this model, Mehra & Prescott [41] asked the ques-

tion, what value of γ is required to generate the risk premium observed for the market

portfolio? Since this model naturally maps agents’ preferences to asset prices, to recover

the risk aversion parameter, they inverted the model given empirical estimates of the risk

premium. In this spirit, many variations on the Lucas model have been proposed in an

attempt to reconcile asset pricing theory with empirical findings from asset markets and

decision theory [15,17].

Method of Moments

Calibration is not a statistical exercise. While the practice is similar to point estimation,

there is no probabilistic structure implicit in a calibration problem. Still, calibration and

estimation sometimes share a similar structure and can be implemented using the same

numerical techniques.

The Method of Moments can be viewed as a calibration problem [17]. Supposes that iid

random variables X1, . . . , XN are drawn from a parametric distribution p(x;α1, . . . , αm) and

that from this data a set of statistics MN
1 , . . . ,M

N
m (usually sample moments) have been

computed. The Method of Moments prescribes choosing parameters α so that the moments of

the distribution match the sample moments. If there are more moment matching conditions

than there are parameters, the Generalized Method of Moment technique applies [27].



1.1. Examples 7

To use the Method of Moments it is necessary to compute the moments associated with the

distribution p(x;α). This might be done analytically, or with a Monte Carlo experiment.

For many complicated models, it must usually be done numerically, which may incur the

computational expense of solving a dynamic programming problem for thousands of different

values of α.

Calibrated Simulation in Macroeconomics

Calibrating models based on dynamic programs is particularly important in macroeconomics.

In [36], Kydland & Prescott outline a successful methodology for using macroeconomic mod-

els as laboratories for quantitatively assessing policy effects. A key step in this methodology

involves calibrating parameters in a given model to stable quantities of interest in the data.

Unfortunately, calibration is a nontrivial numerical problem when the model of interest does

not admit solutions in closed form. Kydland and Prescott [36] have this to say:

If a model environment is not computable, then it cannot be used for a compu-

tational experiment. This restriction can be a severe one, and the development

of appropriate computable methods must therefore be given high priority.

In the context of business cycle models, Lucas (1980) [40] indicates:

A “theory” is not a collection of assertions about the behavior of the actual

economy but rather an explicit set of instructions for building a parallel or ana-

logue system—a mechanical imitation economy. . . [T]he most important [force]

I believe, in this area and in economics generally, consists of purely technical

developments that enlarge our abilities to construct analogue economies. Here I

would include both improvements in mathematical models and improvements in

computational capacity.

Since 1980, there have been tremendous advances in mathematical models and computational

facility. Unfortunately, the expertise required to fully leverage the computational advances

is in short supply compared with the analytical virtuosity ubiquitous in the economics liter-

ature.
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1.2 A Calibration Strategy

Suppose we face a generic calibration problem

L(v;α) = f, (1.1a)

F (v;α) = b (1.1b)

and regard the problem as solving an equation C(α) = b with v implicitly defined in terms

of α by the first equation. There two fundamental issues involved with solving this equation.

The first issue involves the mathematical nature of the mapping C(α). We call this mapping

well-behaved if it satisfies the conditions for Newton’s method to converge quadratically. In

particular, we require that C can be inverted to recover a unique solution α(b) for all b

under consideration, that the solution α(b) varies smoothly in b, and that C−1 be Lipschitz

continuous near b. The mapping must either satisfy a monotonicity property to ensure global

convergence or a good starting point for the iteration must be known. If not well-behaved,

the calibration problem will likely be difficult or impossible to solve.

A common pathology is an unstable function α(b). If the data b changes slightly and the

model is re-calibrated, the calibrated parameters may move erratically. In this case, the

model must be re-parameterized or regularized before computational techniques can be used

profitably. Good results usually require a deep understanding of the model at hand, and

while computational methods cannot fix an ill-behaved problem, they can be used to help

diagnose pathologies and help the modeler to pose an alternative, well-behaved problem.

The second issue involves the computational difficulty of inverting a well-behaved map C(α).

If α is of small dimension (up to ten or more) and a good starting point is chosen, several

competitive methods can effectively solve C(α) = b, some requiring only evaluations of the

function C. The computational cost of these methods is typically proportional to cM log(M)

where c is the cost of computing C(α) for a particular α and M is the dimension of α. For

models that must be solved numerically, the bulk of this cost comes from solving equation

(1.1a).

The most common numerical approach to the calibration problem involves writing a solver

for equation (1.1a) and using this to construct the map C(α). This map is treated as a

black-box and passed to a commercial equation solver. Usually, the bulk of the cost comes

from solving equation (1.1a) repeatedly.

We propose a technique that solves the model and the calibration problem simultaneously.

Our main finding is that well-behaved calibration problems of the form (1.1) can be solved for
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about three or four times the computational cost of solving equation (1.1a) for a particular

value of α. This property holds independent of the dimension of α and holds even for some

well-posed problems with infinite-dimensional α.

This thesis consists of a series of examples illustrating a technique for solving calibration

problems. This technique incorporates conventional methods for solving stochastic control

problems, standard multigrid methods for solving elliptic PDEs, specialized multigrid meth-

ods for solving problems in optimal shape design, and several refinements we developed for

applying these techniques to calibration problems.

The main value of this work is to provide a technological extension to calibration method-

ologies already prominent in financial engineering and economics. Large problems of the

form (1.1a) that do not admit analytical solution or simplification are right at the limits of

our computational ability, and due to the curse of dimensionality1, are likely to remain so

for the foreseeable future. While it may seem that solving the full calibration problem is

prohibitively expensive, we show this is not true for many problems in finance of practical

interest: Most well-behaved models that can be solved numerically can also be calibrated.

Our computational framework is based on multigrid methods [14, 57]. These numerical

techniques were originally developed to solve Poisson-type equations but have since been

extended to bear on many classes of problems. In finance, multigrid methods have been

successfully applied to solve HJB equations [3] and the American option pricing problem [16].

Chapter 2 presents an introduction to multigrid methods geared toward an audience trained

in probability. Chapter 3 outlines a multigrid strategy for solving calibration problems with

finite-dimensional parameters. Our approach follows Ta’asan [55], using multigrid strategies

to replace equation (1.1a) with a lower-dimensional proxy that is both easier to solve and

gives a correct solution to the calibration problem. We develop some refinements to this

technique and illustrate its application and performance with three detailed examples.

Chapter 4 treats an optimal stopping problem formulated as an infinite-dimensional calibra-

tion problem. Techniques originally developed for designing optimal airfoil shapes [7,51,56]

are used to analyze the problem and design a multigrid solver. Fourier analysis reveals a

conditioning problem in a natural discretization of the classical problem formulation. By an-

alyzing the pseudo-differential operators derived from the problem, we are able to design a

nondistortionary regularization scheme that renders the problem well-posed. In the process,

we discover an interesting relationship between the modern formulation of optimal stopping

1The curse of dimensionality [9, 53] refers the growth of a hyper-volume as a function of dimensionality.
For example, to represent the unit cube in IRd with N grid points per dimension requires Nd total grid
points.
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problems (based on viscosity solutions to variational inequalities) an its classical formulation

(based on the smooth pasting condition). This leads to a probabilistic interpretation of the

pseudo-differential operators in our analysis that gives insight into the nature of the smooth

pasting condition.



Chapter 2

Multigrid Methods for Probabilists

Here we present a brief survey of the basic principles of an efficient numerical strategy for

solving partial differential equations of the elliptic type and related problems. Though the

basic idea dates back to the sixties, multigrid methods were not considered as an efficient

computational strategy until the seventies when they were applied to solve elliptic boundary-

value problems [11,47]. They have since been extended to solve more general equations and

applied in many disciplines.

This discussion will focus on equations related to stochastic control, elliptic Hamilton-Jacobi-

Bellman (HJB) equations in particular. A numerical treatment of this topic consists of i)

discretizing, or approximating an HJB equation with a finite-dimensional equation, and ii)

solving the resulting discrete equations. A masterful account detailing the use of probabilistic

techniques to design robust, discrete approximations to solutions of stochastic control prob-

lems can be found in Kushner & Dupuis [25, 35]. Using multigrid techniques to solve the

discrete HJB equations they prescribe is discussed by Akian [3]. An accessible introduction

to multigrid methods can be found in [14] and a more advanced account in [57].

To fix notation, the generic problem under consideration is to find a function v̄ of a cer-

tain class L(Ω) over a connected domain Ω ⊂ IRd that uniquely satisfies the (potentially

nonlinear) elliptic equation

L(v) = f

for a given function f . Any boundary conditions are implicit in this notation. In the

context of HJB equations, the operator L corresponds to the generator, or controlled family

of generators, of a continuous-time Markov process and the forcing function, f , to a cost or

utility function.

11
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Associated with this problem is a family of discrete problems indexed by n = 0, 1, 2, . . . with

grid spacings hn = h02
−n characteristic of a sequence of nested grids, denoted by

Ωhn
⊂ {(x1, . . . , xd) = (hnj1, . . . , hnjd), j ∈ Zd}.

Associated with each grid, there is a grid function space Lh(Ωh) embedded in L(Ω), an

operator Lh, and a grid function fh such that the discrete equation

Lh(vh) = fh

has a unique solution v̄h. We assume the sequence v̄hn converges to v̄ in an appropriate

sense. In particular, HJB equations from stochastic control problems often do not have

unique solutions in classical or Sobolov function spaces. In this case, we understand the

solution v̄ to be defined as a monotone limit of the v̄hn and interpret differential operators

in a weak or formal sense consistent with the theory of viscosity solutions.

To ease exposition, the analysis in this chapter deals only with linear equations until Section

2.5, though notation and algorithms are presented in a way that applies to nonlinear problems

as well.

2.1 An Example Problem

To begin, we consider the problem of finding a smooth function v over Ω = [0, 1] that satisfies

the equation L(v) = f , where

L(v) = −βv + µvx +
σ2

2
vxx (2.1a)

and f is a smooth function that vanishes at the boundaries. To close the problem, we impose

the Dirichlet boundary conditions

v(0) = v(1) = 0. (2.1b)

The Feynman-Kac theorem characterizes the solution of these equations in terms of the

stochastic process

Xt = X0 + µt+ σWt,
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where Wt is a standard Brownian motion. The solution to equation (2.1a)–(2.1b) is

v̄(x) = E

[∫ T∂Ω

0

−e−βtf(Xt)dt|X0 = x

]
,

where T∂Ω = inf{t : Wt 6∈ Ω} is the first time W hits the boundary of Ω.

A Family of Discretizations

One prominent scheme for approximating solutions to differential equations is to replace

derivatives with finite-difference quotients. In the context of equation (2.1a)-(2.1b), one

possible discretization is

−βvj + µ
[vj+1 − vj−1

2h

]
+
σ2

2

[vj+1 − 2vj + vj−1

h2

]
= f(xj),

for j = 1, . . . , Nh − 1 and v0 = vNh
= 0, (2.2)

where Ωh = {xh
j = hj : j = 0, 1, . . . , Nh} and Nh = h−1. The grid function v may be

regarded either as a vector in IRNh+1 or as a continuous function over [0, 1] defined by linear

interpolation of the nodes (xj, vj).

The discretization (2.2) is second-order accurate but may become unstable for large h. We

contrast this approximation by considering an alternative discretization that uses a one-sided

approximation for vx that is stable provided µ > 0,

−βvj + µ
[vj+1 − vj

h

]
+
σ2

2

[vj+1 − 2vj + vj−1

h2

]
= f(xj). (2.3)

For grid points on the interior of the domain, the operators on the left side of these equations,

denoted1 Lh
2 and Lh

1 , can be represented compactly in stencil notation by

Lh
2 = −β[0, 1, 0] +

µ

2h
[−1, 0, 1] +

σ2

2h2
[1,−2, 1],

Lh
1 = −β[0, 1, 0] +

µ

h
[0,−1, 1] +

σ2

2h2
[1,−2, 1].

1The subscripts denote that Lh
2

is accurate up to second order while Lh
1

is a first-order scheme.
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Analytical Solutions

If the forcing function takes the form f(x) = −c sin(πkx), we can analytically solve the

discrete and continuous example problem in the case where µ = 0. The solution to the

continuous problem (2.1) is

v(x) = c
(
β +

σ2

2
π2k2

)−1

sin(πkx).

The solution to the discrete problem is2

vh
j = c

(
β + σ2 1− cos(πkh)

h2

)−1

sin(πkxj).

Formulating the continuous and discrete problems this way allows the solutions to be rep-

resented in terms of a Fourier decomposition. Fourier techniques, both formal and rigorous,

enable much of the proceeding analysis.

2.2 Representation of (Pseudo)-Differential Operators

Consider the class of linear operators on functions over IRd that are diagonalized by the

Fourier modes. This means that an operator L is characterized by its action on the basis

functions eιk⊤x (ι =
√
−1)

Leιk⊤x = L̂(k)eιk⊤x, k ∈ IRd . (2.4)

The function L̂(k) is called the symbol of L. We also consider discrete operators Lh over an

unbounded domain Ωh = {(x1, . . . , xd) = (hnj1, . . . , hnjd), j ∈ Zd} of the form

Lheιθ⊤x/h = L̂h(θ)eιθ⊤x/h, θ ∈ Θ = [−π, π]d.

The frequency k is identified with θ/h at the discrete level, so the grid Ωh can support

functions with frequencies up to ±π/h. For small h, we expect

L̂(k) ≈ L̂h(θ/h).

2Both discretizations (2.2) and (2.3) are the same since µ = 0.
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The operators in the example problem extended to the domains Ω = IR and

Ωh = {xj = hj : j = 0,±1,±2, . . .}, are represented at the continuous level by

Lv = −βv + µvx +
σ2

2
vxx

L̂(k) = −β + ιkµ− k2σ
2

2

and at the discrete level by

L̂h
2(θ) = −β +

µι sin(θ)

h
− σ2

h2

(
(1− cos(θ)

)
(2.5)

L̂h
1(θ) = −β +

µ

h

(
ι sin(θ)− (1− cos(θ)

)
− σ2

h2

(
(1− cos(θ)

)
. (2.6)

Operators that admit the representation in (2.4) belong to the class of pseudo-differential

operators. For operators that do not admit this representation a more general operator with

space-dependent symbol is defined by

Leιk⊤x = L̂(k, x)eιk⊤x.

Differential operators with constant coefficients are simply pseudo-differential operators with

a symbol that is polynomial in the frequency k. Operators with non-polynomial symbols are

of interest as well: the class of operators that satisfy L̂(θ, x) < 0 essentially corresponds to

the generators of stochastic differential equations driven by Lévy Processes [18].

2.3 Elements of Multigrid

A multigrid algorithm weaves together a fast solver from several well-known techniques, many

of which perform very poorly in isolation. The central idea behind multigrid algorithms is

that if a grid function representing an error is smooth relative to a fine grid then, without

any essential loss of information, it can be represented on a coarser grid and the smooth error

can be eliminated by solving a smaller-dimensional equation. In order to apply this idea, we

need a process to assure that errors are smooth. In this light, a generic multigrid scheme

consists of two parts: i) a process to smooth errors (eliminate high-frequency components),

and ii) a scheme to correct the smooth component of errors by solving a coarser (smaller-

dimensional) system of equations. Essentially, the details of a multigrid algorithm simply

consist of specifying a meaning for “smooth” and “coarse.”
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2.3.1 Iterative Methods

Multigrid belongs to a class of algorithms known as iterative methods. For example, the

solution x̄ to an invertible linear system

Ax = f (2.7)

can often be found by iterating on a fixed point equation

xn+1 ←Mxn + b (2.8)

for a matrix M and vector b. One way to define the iteration is to split the matrix A into

two parts, A = B + C, and rewrite (2.7) as Bx = f − Cx. An iteration of the form (2.8)

can then be defined by taking b = B−1f and M = −B−1C.

If x̄ is a fixed point of this iteration and Mx + b is a contraction map, then the iteration

converges to x̄ at a rate governed by the contraction factor ‖M‖,
∥∥xn+1 − x̄

∥∥ ≤ ‖M(xn − x̄)‖ ≤ ‖M‖ ‖xn − x̄‖

where ‖x‖ is any norm on RN and the induced matrix norm is defined as

‖M‖ = max
‖x‖=1

‖Mx‖ .

A convergence factor for the iteration that is independent of a particular norm is the spectral

radius, denoted

̺(M) = max{|λ| : λ is an eigenvalue of M}.

The following result taken from [26][Section 10.1] is useful.

Proposition 1. The spectral radius is characterized by

̺(M) = inf
‖·‖
‖M‖

where the infimum is taken over all induced matrix norms.

The iteration (2.8) converges from any starting point x0 if and only if

̺(M) < 1.
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2.3.2 Classical Smoothing Schemes

In recent years much attention has been given to developing fast converging iterative methods

for large sparse linear equations. Most classical iterative schemes exhibit slow convergence

rates but many have strong smoothing properties. These are of primary interest in the

context of multigrid. Working with the generic problem of finding v ∈ IRN+1 that solves a

linear equation Av = f , we consider three classical iterative schemes.

1. The Jacobi iteration updates an iterate vn by choosing the jth component of vn+1

to solve the jth row of Av = f in terms of the components vn
0:(j−1) and vn

(j+1):N . By

splitting the matrix into its diagonal, upper, and lower triangular parts, A = D+U+L,

the Jacobi iteration can be written as

vn+1 = D−1(f − (L+ U)vn).

2. The damped Jacobi iteration updates vn in the same direction as the Jacobi iteration,

but only goes a distance ξ ∈ (0, 1) in that direction. This iteration can be written as

vn+1 = (1− ξ)vn + ξ
(
D−1(f − (L+ U)vn)

)
.

3. The Gauss-Seidel scheme sweeps over each grid point j = 0, 1, . . . , N and adjusts vn+1
j

to solve the jth equation in terms of the components vn+1
0:(j−1) that have already been

updated and the vn
(j+1):N that still need updating. Said differently, when sweeping

through j = 0, 1 . . . , N , the component vn+1
j is adjusted to solve the jth equation:

A(vn+1
0 , . . . , vn+1

j−1 , ·, vn
j+1, . . . , v

n
N) = fj.

We can also write this as

(L+D)vn+1 = f − Uvn, or vn+1 = D−1(f − Uvn − Lvn+1).

In contrast to the Jacobi iteration, the Gauss-Seidel scheme depends on the ordering of

the equations. For some problems, changing the order in which equations are updated

can drastically affect the behavior of this scheme. For this reason, it is also more

difficult to analyze than the Jacobi iteration.
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Figure 2.1: Shown are the effects of the damped Jacobi (with ξ = 2/3) and Gauss-Seidel
iterations on the model problem. The initial error was set to sin(2πx) + sin(20πx), and
N = 40 grid points were used. After a few iterations, the errors are smooth relative to the
fine grid. Since the equation is elliptic, the residuals f − Lv are smoothed as well.
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The damped Jacobi iteration can be fully characterized for a special case of the test problem

(2.2). To simplify the analysis we assume the forcing function f and drift µ are both zero.

This makes the solution to both the continuous and discrete problems trivial so that a

candidate solution v is also the error.

We adopt the convention that wθ/h is the wave defined by

w
θ/h
j = sin(θxj/h) = sin(θj), θ = kh, k = 1, . . . , Nh − 1,

and begin by writing the equations (2.2) compactly as a linear equation Lhvh = 0. Then, for

wave numbers k = 1, . . . , N − 1 and frequencies θk = πkh, the vector wθ/h is an eigenvector
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Figure 2.2: The amplification factor G(Sh) for the damped Jacobi iteration. Choosing
ξ = 2/3 controls the worst-case error reduction among the high frequencies. Notice that
without damping (ξ = 1) the Jacobi iteration fails to effectively reduce errors of highest
frequency where θ ≈ π.
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of Lh with an associated eigenvalue

L̂h(θ) = −β + σ2 cos(θ)− 1

h2
.

If the initial error is v0 = wθ/h then the application of one damped Jacobi sweep produces

an error of v1 = Ŝh(θ)v0 where the amplification factor is

Ŝh(θ) = 1− ξ βh
2/σ2 + 1− cos(θ)

βh2/σ2 + 1
≈ 1− 2ξ sin2(

1

2
θ). (2.9)

The approximation holds for small h provided σ2 > 0 and is exact for β = 0.

As shown in Figure 2.2, the amplification factor is near one for all low-frequency modes

θ ∈ [0, π/2] no matter what damping factor is used. This indicates that the Jacobi method

converges slowly. However, for a well-chosen damping factor, we see that high-frequency

modes with θ ∈ [π/2, π] are damped significantly. We define a smoothing factor associated

with Sh to be

G(Sh) = max
θ∈[π/2,π]

Ŝh(θ).

For β = 0, the damping factor that minimizes G(Sh) is ξ = 2/3, which gives a smoothing

factor of 1/3. Figure 2.1 shows the effects of the damped Jacobi and Gauss-Seidel iterations

starting with an error that has both high and low-frequency components. Both methods are

efficient smoothers, and both converge slowly.
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2.3.3 Grid Transfer Operators

A multigrid scheme relates functions between grids of various levels of refinement. In the

context of our one-dimensional example problem, a prolongation operator is a map Ih
2h :

L2h → Lh that takes functions on one grid to the next finest grid. For second-order HJB

equations, an appropriate choice is linear interpolation defined by

(Ih
2hv

2h)(x) =




v2h(x) for x ∈ Ω2h,

1
2

(
v2h(x+ h) + v2h(x− h)

)
for x ∈ Ωh − Ω2h.

A restriction operator is a map I2h
h : Lh → L2h that takes functions on one grid to the next

coarser grid. In this work, we consider two choices of restriction operators, the simplest of

which is the injection map

(I2h
h vh)(x) = vh(x)

where x is a point on the coarse grid. Another choice is the full-weighing map, where for x

on the interior of the coarse grid, we have

(I2h
h vh)(x) =

1

4
vh(x− h) +

1

2
vh(x) +

1

4
vh(x− h),

and points on the boundary are defined by injection. The injection and full-weighting oper-

ators can be denoted compactly in stencil form by

[0, 1, 0] (injection),

1

4
[1, 2, 1] (full-weighting),

These grid transfer operators are invariant on the two-dimensional subspaces defined by

W θ/h = span(wθ/h, wθ′/h), where θ ∈ [0, π/2) is a low-frequency wave with the comple-

mentary harmonic frequency θ′ = θ − π. The linear interpolation operator is characterized

by

Ih
2hw

2θ/2h = cos2(θ/2︸ ︷︷ ︸
Îh
2h

(θ/h)

)wθ/h + sin2(θ/2)︸ ︷︷ ︸
Îh
2h

(θ′/h)

wθ′/h. (2.10)
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The restriction operators are characterized in the frequency domain by

I2h
h (awθ/h + bwθ′/h) =

(
Î2h
h (θ)a+ Îh

2h(θ
′)b
)
w2θ/2h,

where (Î2h
h (θ), Î2h

h (θ′)) = (1, 1) for injection and (Î2h
h (θ), Î2h

h (θ′)) = (Îh
2h(θ), Î

h
2h(θ

′)) for the

case of full-weighting. The latter relationship reflects an intimate pairing between the full-

weighting and linear interpolation operators, which, up to a constant of proportionality, are

adjoint to one another.

The notation suggests that the transfer operators behave like the identity map. Indeed, they

should be thought of as satisfying

I2h
h Ih

2h ≈ I2h
2h , and Ih

2hI
2h
h = Ih

h + high-frequencies.

where Ih
h is the identity map on Ωh.

2.3.4 The Principle of Defect Correction

Before developing a multigrid algorithm, we study an iterative scheme that illustrates the

basic principle. Suppose we have two invertible matrices A and B and are interested in

finding x̄ that solves

Ax = f. (2.11)

Now suppose that solving this equation is difficult but solving the equation

Bx = g

is relatively easy for any vector g. In particular, we think of equation (2.11) as the problem

of interest and the equation Bx = f as a low-accuracy approximation.

The idea of defect correction is to define an iterative scheme

Bxn+1 = f − Axn +Bxn, or

xn+1 = B−1(f − Axn +Bxn)

= B−1f + (I −B−1A)xn.

The solution x̄ is a stable point of this iteration, and as shown earlier, the largest eigenvalue

of I − B−1A governs the convergence rate of the iteration. In particular, this iteration
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converges provided ̺(I − B−1A) < 1. If the contraction factor is small and B−1 cheap to

apply, then this scheme defines a fast solver.

A rearrangement of this iteration shows that x̄ is the unique solution of

Bx = f + (B − A)x̄︸ ︷︷ ︸
τ

. (2.12)

Thus, the high-accuracy equation has the same solution as the low-accuracy equation pro-

vided the right side is perturbed by an appropriate vector τ , which we call the defect. If we

knew τ , we could simply solve (2.12) and recover x̄ at the cost of solving the low-accuracy

equation. Unfortunately, there is no free lunch: τ is unknown and must be computed. In

this light, the defect correction scheme can be thought of as a strategy for approximating

both x̄ and τ together as the iteration progresses.

If the condition ̺(I − B−1A) < 1 fails, the defect correction iteration may still converge if

started at a well-chosen point. For example, take M = I − B−1A and f = 0, and consider

the iteration

xn+1 = Mxn.

Suppose a few eigenvalues of M are large and the rest are much smaller than one. Suppose

further that the eigenspace X big corresponding to the large eigenvalues is orthogonal to the

complementary eigenspace X small.3 A point chosen in this subspace will converge at a rate

governed by the largest of the small eigenvalues.

If the eigenspaces X big and X small are not orthogonal, the iteration is not invariant in X small.

In this case the following iteration can be used.

xn+1 = M
(
Proj(xn|X small)

)
(2.13)

The strategy here is to split the problem into two pieces: one that exploits the defect correc-

tion principle on the relevant subspace, and another that keeps the iterates on that subspace.

To implement this algorithm, the subspaces must be identified and a projection operator de-

fined. A simple, two-grid algorithm is basically an implementation of this construction.

3This is assured if M is symmetric.
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2.3.5 Coarse Grid Correction

With the defect correction scheme in mind, we now develop a basic multigrid algorithm for

solving the equation

Lhvh = fh, on a grid Ωh.

The operator L2h is used to approximate Lh on the space of low-frequency functions. We

proceed by assuming the equation

L2hv2h = f 2h

has a unique solution over Ω2h for any coarse grid function f 2h.

The Full Approximation Scheme (FAS) of Brandt assumes that an initial guess vh is given

and the errors vh− v̄h and residuals fh−Lhvh are smooth relative to the fine grid Ωh. Since

the errors are smooth, we seek a smooth correction ṽh, which can be represented on a coarser

grid. The FAS updates vh by

vh ← vh + Ih
2h(v

2h − I2h
h vh)︸ ︷︷ ︸

evh

.

where v2h solves the coarse grid equation

L2hv2h = f 2h, (2.14)

and the coarse grid right side is given by

f 2h = I2h
h (fh − Lhvh) + L2h(I2h

h vh) (2.15)

= I2h
h fh + L2h(I2h

h vh)− I2h
h (Lhvh)︸ ︷︷ ︸

τ

.

In compact form, the FAS scheme defines a coarse grid correction operator vh ← CGC(vh)

where

CGC(vh) = vh + Ih
2h

(
(L2h)−1

[
I2h
h (fh − Lhvh) + L2h(I2h

h vh)
]
− I2h

h vh
)
. (2.16)

The τ -adjustment to the right side vector in (2.15) ensures the coarse-grid problem will

correct smooth components of the errors, leaving only high-frequency (nonsmooth) errors
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that cannot be represented on the coarse grid.

The coarse-grid correction defined by the FAS satisfies the fixed-point property

v̄h = CGC(v̄h);

however it does not contract for all vh. Indeed, it may not contract for any vh in the discrete

L2
h norm. Instead, the CGC operator may exchange low-frequency errors for high-frequency

errors, which can be removed cheaply by application of a smoother. Thus, the smoother and

coarse-grid correction play complementary roles.

As with defect correction, if the τ in (2.15) were computed using the solution v̄h rather than

the current iterate vh, the coarse-grid correction would produce a correction

vh ← vh + Ih
2hI

2h
h (v̄h − vh) = (I − Ih

2hI
2h
h )vh + Ih

2hI
2h
h v̄h,

which is correct up to the spurious high-frequency harmonics introduced by the grid transfer

operators.

Remark 1. A common mistake is to use f 2h = I2h
h fh with no τ -correction in the coarse grid

problem. In this case, the solution v̄2h does not depend on the approximation v̄h and fine-grid

accuracy does not obtain for the coarse-grid problem. The correction ṽh = Ih
2h(v̄

2h−I2h
h v̄h) is

not zero even though the iteration starts at the actual solution. This violates the fixed-point

property that any iterative scheme should have.

2.3.6 Two Grid Analysis

The FAS depends critically upon the assumption that the errors and residuals are smooth

enough to be represented accurately on the coarse grid. As we have seen, high frequency

errors can often be efficiently removed by a procedure such as the Gauss-Seidel or damped

Jacobi iterations. Once the error is smooth, the coarse grid correction update can introduce

some high-frequency error. An effective algorithm must therefore smooth errors both before

and after the coarse grid correction is applied. The two-grid operator integrates these ideas.

In compact form the two-grid operator reads

TG(vh) =
(
Ss ◦ CGC ◦ Ss

)
vh.

For the model problem (2.2) we can perform a rigorous analysis of the two-grid operator in
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* Algorithm: vh ← TG(vh, fh, s)

1. Apply s pre-smoothing sweeps, vh ← Ssvh.

2. Compute f 2h according to (2.15) and solve the coarse grid equation (2.14) for v2h using
an exact solver with I2h

h vh as a starting point.

3. Update vh ← vh + Ih
2h(v

2h − I2h
h vh).

4. Apply s post-smoothing sweeps, vh ← Ssvh and return vh.

the case when the drift µ = 0 and forcing function f(x) = 0. Since this problem is linear

and homogeneous, it admits only the trivial solution v̄h = 0, and the coarse grid correction

(2.16) simplifies to

CGC(vh) = (I − Ih
2h(L

2h)−1I2h
h Lh)vh. (2.17)

The smoother to be used is s sweeps of the damped Jacobi iteration from Section 2.3.2. As

we have seen, this smoother damps each component of the error according to

(
Sh
)s
wθ/h =

(
Ŝh(θ)

)s
wθ/h

where the symbol Ŝh(θ) is given in (2.9).

The symbol of Lh is given by

L̂h(θ) =
σ2(1− cos(θ))

h2
,

so when f 2h takes the form cw2θ/2h, the coarse grid equation is solved by

v2h = (L2h)−1f (2h) = c(L̂2h(2θ))−1w2θ/2h.

The spectral characterization of these components shows that the coarse-grid correction

operator is invariant on the subspace W hk = span(wθ/h, wθ′/h), where θ′ = θ − π. We

consider each subspace W θ/h individually, writing vh = awθ/h + bwθ′/h. On each subspace,

the coarse grid correction has the effect

ĈGC(θ)

(
a

b

)
=
[
I −

(
Îh
2h(θ)

Îh
2h(θ

′)

)
(Î2h

h (θ), Î2h
h (θ′))

L̂2h(2θ)

[
L̂h(θ) 0

0 L̂h(θ′)

] ](a
b

)
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and the action of the two-grid scheme with s pre and post-relaxation sweeps is given by

T̂G(θ)

(
a

b

)
=

(
Ŝh(θ) 0

0 Ŝh(θ′)

)s

ĈGC(θ)

(
Ŝh(θ) 0

0 Ŝh(θ′)

)s(
a

b

)
.

The spectral radius of TG governs the convergence rate of the two-grid scheme. Since TG is

invariant under each two-dimensional subspace, W θ/h, we consider each pair of eigenvalues

corresponding to T̂G(θ) for θ ∈ [0, π/2). Figure 2.3 shows the eigenvalues for various combi-

nations of smoothing sweeps and wave numbers. Using either injection or full-weighting for

the restriction operator, we see that using s = 2 pre and post-relaxation sweeps results in

a two-grid scheme with a contraction factor better than 1/10. This is considered textbook

multigrid performance.

Figure 2.3 also shows that the choice of grid transfer operators significantly affects the

convergence rate of the two grid iteration. The eigenvalues of the coarse-grid correction

(with no smoothing sweeps) are (1,−1) when using the injection operator and (1, 0) when

using full-weighting. With full-weighting, zero is an eigenvalue for every frequency, and

the coarse grid correction effectively removes errors of low-frequency. With injection, the

coarse grid correction does not eliminate low-frequency errors. Rather it transorms them

into high-frequency errors, which must be damped by a smoother. Interpreted in the context

of defect correction, the smoother plays the role of projecting the error on the subspace of

low-frequency functions and the coarse-grid correction removes the defect on this subspace

but may cause the iterate to leave that subspace. Individually, the smoother and coarse grid

correction perform poorly, but together they are effective as shown in Figure 2.4.

To properly gauge the convergence rate of the iteration, the subspaces on which TG is

invariant must be identified and the behavior analyzed there. For larger, more complex

problems, there may be no low-dimensional, invariant subspaces. In these cases, various

approximations must be made to predict the performance of the two-grid operator. One

crude approximation that is often effective ignores the effects of the grid-transfer operators

and simply ensures that the coarse-grid operator L2h is sufficiently close to Lh across all

frequencies. Using equation (2.17) but ignoring the effects of grid transfer operators gives

the convergence criteria

max
θ

∣∣∣∣∣1−
L̂h(θ)

L̂2h(2θ)

∣∣∣∣∣ < 1, (2.18)

where the maximum is taken over all low-frequency θ for which the smoother fails to damp
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Figure 2.3: Eigenvalue pairs for the T̂G matrix for frequencies θ ∈ [0, π/2] and s = 1, 2, 3
smoothing sweeps.
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the error. If this property fails, the coarse grid problem cannot be expected to approximate

the fine grid problem no matter what grid transfer operators are used. If this property holds

robustly, a variety of grid transfer operators can be used. If it barely holds, a judicious

choice of the grid-transfer operators may be necessary or a more expensive smoother may

be needed. As shown in Figure 2.4, coarse-grid correction loses effectiveness as θ approaches

π/2. Figure 2.2 shows that the smoother compensates by damping frequencies in this range.

Figure 2.3 shows that a proper choice of grid-transfer operators controls the introduction of

spurious high-frequency error. This means fewer smoothing sweeps are needed to make the

two-grid scheme effective. Condition 2.18 ignores this fact.

We pause now to comment about what had been gained by passing to a coarser grid. For

a one-dimensional problem, there are about half as many points on the coarse grid as on

the fine grid. Generally, on a d-dimensional grid the relative computational burden between

grids is about |Ωh| / |Ω2h| ≈ 2−d. Since the smoothing process and residual computations

require only O(|Ωh|) operations, passing the remaining work to the coarse grid problem can

dramatically reduce the total computational cost provided the spectral radius of the two-grid

operator is small.

2.3.7 The Multigrid Cycle

The two-grid scheme is a powerful idea. To make it useful, several issues need to be addressed.

First, an efficient solver for the coarse grid problem must be available. Second, even if the
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Figure 2.4: The symbol 1 − L̂h(θ)

L̂2h(2θ)
of the approximate CGC operator compared with the

symbol of the smoother S. We see that for middle-range frequencies, θ ≈ π/2, both the
smoother and coarse grid correction components begin to lose effectiveness. Taken together,
they reinforce one another in this critical range to give an amplification factor that is ac-
ceptable across all frequencies.
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two-grid scheme has a favorable contraction factor, a good starting point must be chosen

to ensure fast convergence. This is particularly important for nonlinear problems. Finally,

we are often interested in solving a continuous equation Lv = f and do not know a priori

how fine the approximation needs to be to ensure a given level of accuracy. We discuss these

issues in turn.

When solving an equation Lhvh = fh, the FAS prescribes solving an equation of the form

L2hv2h = f 2h. One way to solve this equation is to work with an even coarser grid, Ω4h, and

use the FAS to define an equation of the form L4hv4h = f 4h. Several iterations of the two-grid

scheme can be applied with Ω2h playing the role of the fine grid. This coarsening strategy

can continue until a coarsest grid Ωh0
—with as few as three grid points per dimension—is

reached where the equation can be solved very cheaply. Note that some functions in the

low-frequency range on Ωh are in the high-frequency range relative to the grid Ω2h. Thus,

applying a smoother on the coarse grid may damp errors that could not be cheaply removed

on the fine grid. The multigrid cycle is a recursive extension of the two-grid operator.

The most popular specifications for the multigrid cycle are the V-cycle (η = 1) and the

W-cycle (η = 2). These are shown in Figure 2.5. The following standard result for linear

equations gives conditions under which the W-cycle exhibits contraction factors rates that

mimic those of the two-grid operator.

Theorem 1 ( [57] Theorem 3.2.1). Assume that for any n ≥ 0, Lhn are linear operators and
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* Algorithm: vh ←MGh
h0

(vh, f
h, η, s)

1. If h = h0, solve Lh0vh0 = fh0 on the coarsest grid and return vh0 , else

2. Apply s pre-smoothing sweeps to vh.

3. Define the coarse-grid right side f 2h according to (2.15), initialize v2h = I2h
h vh, and

repeat the following η times:

v2h = MG2h
h0

(v2h, f 2h, η, s).

4. Update vh ← vh + Ih
2h(v

2h − I2h
h vh).

5. Apply s post-smoothing sweeps to vh and return vh.

the following two-grid estimates hold4

∥∥MGhn

2hn

∥∥ ≤ ξ,
∥∥Ih

2h(S)s
∥∥∥∥(S)sI2h

h

∥∥ ≤ C.

Then we have
∥∥MGhn

h0

∥∥ ≤ ηn where

η1 = ξ, ηn+1 = ξ + Cηη
n.

In particular, if η = 2 and 4Cη ≤ 1 then for any n we have

∥∥Mhn

h0

∥∥ ≤ η :=
1−
√

1− 4Cξ

2C
.

Often, the contraction properties of the two-grid operator and the smoother are sufficient

to predict multigrid performance. Analogous results for V-Cycles are more delicate and

problem dependent, but h-independent contraction rates can be assessed numerically and

are often observed in practice.

4We overload notation here by using the norm to indicate contraction factors of the multigrid cycle. More
precisely, the contraction factor is

∥∥MGh
h0

∥∥ = max
vh

∥∥MGh
h0

(vh)− v̄h
∥∥

‖vh − v̄h‖ .

This also assumes that the norms on various levels are compatible, such as the discrete L2 norm.
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Figure 2.5: Shown are a V-cycle with four levels, a W-cycle with three levels, and an FMG
cycle with four levels that performs two V-cycles per outer iteration.
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If the multigrid cycle defines an appropriate iteration for solving Lhvh = fh, a suitable initial

guess is still needed to start the process. One candidate starting point is an appropriately

interpolated5 function Πh
2hv

2h where v2h solves the coarser equation L2hv2h = I2h
h fh. To

solve this equation we need an initial guess which can be obtained from a still-coarser equa-

tion. This leads to another recursively defined construct called the Full Multigrid algorithm

(FMG).

The FMG-Cycle produces a sequence of approximate solutions corresponding to increasingly

finer grids. When using the FMG cycle, two questions naturally arise: How many multigrid

cycles should be done on each level? And, how fine should the finest grid be before we accept

the solution?

If FMG is being used to solve for v̄h, it is not necessary to solve for v̄2h exactly. Only a good

initial point is needed to start a new multigrid cycle on the next finer grid. It is not profitable

to cycle once the error is smaller than the relative discretization error; the multigrid cycle

5For technical reasons, linear interpolation is not appropriate. Typical Poisson-type PDEs arising in
finance require cubic interpolation. Generally, one should use an interpolation scheme of one order larger
than the order of the underlying differential operator. Using linear interpolation would introduce spurious
high-frequency errors in the fine grid starting point, which would then have to be smoothed. Since smoothing
errors on the finest grid is a relatively expensive operation, it should be avoided if possible.
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* Algorithm: vh ← FMGh
h0

(fh, η, γ, s)

1. If h = h0 set vh = 0 and go to Step 4, else

2. Set f 2h = I2h
h fh and

v2h ← FMG2h
h0

(f 2h, η, γ, s).

3. Initialize vh ← Πh
2hv

2h.

4. Repeat γ times:

vh ←MGh
h0

(vh, fh, η, s)

and return vh.

on Ω2h controls only the error
∥∥v2h − v̄2h

∥∥ while we are interested in finding a starting point

close to v̄h, which is not necessarily Ih
2hv̄

2h. Since the total error is

∥∥Ih
2hv

2h − v̄h
∥∥ ≤

∥∥v2h − v̄2h
∥∥+

∥∥Ih
2hv̄

2h − v̄h
∥∥

there is no point in iterating after

∥∥v2h − v̄2h
∥∥ <<

∥∥Ih
2hv̄

2h − v̄h
∥∥ .

Often, only two or three V-Cycles are necessary to satisfy this condition. Once the finest

level has been reached, more cycles may be necessary to reduce the error to a prescribed

tolerance.

The approximations vh0 , . . . , vhL generated by the FMG-Cycle can be used to determine

when h is small enough to control discretization error. If these iterates converge, they will

have the Cauchy property, and the convergence rate of the sequence
∥∥Ih

2h(v
hL−1)− vhL

∥∥ can

be used to determine when the error
∥∥vhL − v̄0

∥∥ is within a prescribed tolerance.

2.4 Smoothing Analysis

The two-grid analysis of the example problem suggested the quality of the smoother prin-

cipally determines the performance of a multigrid algorithm. In particular, given a linear

system Lhvh = fh, the smoothing factor is of interest. For a smoother S, this can be defined
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as

G(Sh) = max
θ∈ΘHigh

∣∣∣Ŝh(θ)
∣∣∣ ,

where the frequency space is Θ = [−π, π]d, the low frequencies are ΘLow = [−π/2, π/2]d, and

the high frequencies are ΘHigh = Θ \ ΘLow. If a total of s pre- and post-smoothing sweeps

are done at each level, a properly designed W-Cycle or V-Cycle should reduce the error by

about G(Sh)s independent of the number of levels in the cycle.

For some problems, a scheme such as Gauss-Seidel can be quickly implemented and the

smoothing factor assessed numerically. For more involved problems, designing an efficient

smoother requires detailed analysis. Ill-posed problems may need reformulation since there

may be no efficient smoother. We proceed formally to outline a general strategy for designing

smoothers and to derive conditions under which an efficient smoother exists.

To solve Lhvh = fh starting with a guess vh, we seek a correction ṽh that satisfies

Lhṽh = fh − Lhvh.

A process that uses only the residuals fh − Lhvh to compute ṽh is called efficient since the

residuals are readily computed. Given a matrix D we can define the correction

ṽh = D(fh − Lhvh) (2.19)

If D is close to (Lh)−1 for high frequencies, then the method should produce a smoothing

correction step. If D is simple to compute, the method is efficient.

The simplest choice of D is a constant times the identity matrix. For many problems, this

can define an efficient and effective smoother. To find an appropriate constant, we first note

that elliptic equations Lv = 0 are often regarded as long-time equilibrium limits of parabolic

equations of the form Lv + (d/dt)v = 0. As time passes (t→ −∞) the configuration v(x, t)

becomes increasingly regular with (d/dt)v approaching zero. An explicit finite difference

scheme is a common discretization of this problem.

vt−∆t − vt

∆t
= Lhvt
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As time marches, this equation defines an iterative process

vt−∆t ← (I + ∆tLh

︸ ︷︷ ︸
Sh

∆t

)vt,

which, for classical problems, converges to a smooth, equilibrium configuration v̄(x) that

solves Lv̄ = 0.

A stability analysis prescribes that this iteration respect the property that the total energy

in the configuration v does not increase as the process evolves. One way to enforce this is to

require that all frequencies are damped at each step, meaning

∣∣∣Ŝh
∆t(θ)

∣∣∣ < 1, for all θ ∈ Θ.

This condition is satisfied when (assuming for now that L̂h(θ) does not depend on x)

0 < ∆t ≤ min
θ∈Θ
−2L̂h(θ)

︸ ︷︷ ︸
∆tmax

.

This condition enforces convergence, but does not guarantee good smoothing, which requires

a judicious choice of ∆t. Ideally, we choose the time step size to achieve the most favorable

smoothing factor. That is, we seek the ∆t∗ that solves

G∗ = min
0<∆t≤∆tmax

max
θ∈ΘHigh

∣∣∣1 + ∆tL̂h(θ)
∣∣∣ .

︸ ︷︷ ︸
G(Sh

∆t)

Provided that for θ ∈ ΘHigh we have

L̂h(θ) < 0, and (2.20)

min
θ∈ΘHigh

∣∣∣L̂h(θ)
∣∣∣ > 0 (2.21)

we choose

∆t∗ = min
( 1

minθ∈ΘHigh

∣∣∣L̂h(θ)
∣∣∣
,∆tmax

)

and expect good smoothing (G∗ << 1). We also expect a convergent iteration, but since

an explicit finite difference scheme with small time steps is being used, convergence may be
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slow.

Condition (2.21) says that Lh amplifies high-frequencies. This property, known in the liter-

ature as h-ellipticity, is essentially necessary and sufficient for the existence of an efficient

smoother [57].

In general, the operator L will have a space-dependent symbol L̂(θ, x). In this case, the

above analysis holds if ∆t can be chosen small enough so that the relevant inequalities hold

uniformly in x. A better smoother can often be constructed by choosing a space-dependent

time step. In this case, the matrix D in (2.19) is not a constant times the identity but

a diagonal matrix. Generally, putting more work into constructing D results in a better

smoother.

2.4.1 Examples and Probabilistic Interpretation

We now take a probabilistic view of the h-ellipticity property and consider the Fokker-Plank

equation governing the transition density of Brownian motion with drift.

−(d/dt)v = µvx +
σ2

2
vxx

By convention, time runs backward from a given configuration. Two discretizations of this

equation are given by

vt−∆t − vt

∆t
= Lh

kv
t, k = 1, 2

where Lh
1 and Lh

2 are given in Section 2.1. From this equation, we write the iteration

vt−∆t =
(
I + ∆tLh

k

)
vt,

which can be written compactly as

vt−∆t
j = (vt

j−1, v
t
j, v

t
j+1)




σ2∆t
2h2 − µ∆t

2h

1− ∆tσ2

h2

σ2∆t
2h2 + µ∆t

2h


 for the operator Lh

2 , and
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vt−∆t
j = (vt

j−1, v
t
j, v

t
j+1)




σ2∆t
2h2

1− µ∆t
h
− ∆tσ2

h2

σ2∆t
2h2 + µ∆t

h


 for the operator Lh

1 .

According to the dynamic programming view, the weighting vectors on the right side of

these equations represent transition probabilities from state j to neighboring states. For

these weights to define a valid probability transition matrix, the weights must lie between

zero and one and sum to one. This translates into the conditions

0 ≤ ∆t ≤ h2

σ2
, σ2 ≥ h |µ| , for Lh

2

0 ≤ σ2 + 2µh ≤ 2h2

∆t
, σ2 ≥ −hµ, for Lh

1 .

The first set of inequalities identifies the largest ∆t that will enforce convergence of the

iteration. The second set is related to the h-ellipticity of the operators Lh
2 and Lh

1 . If they

hold, it will be possible to pick a ∆t > 0 that not only enforces convergence, but also defines

a good smoother.

Using the symbols of Lh
2 and Lh

1 given in (2.5)-(2.6) we make the following observations:

• If σ2 > 0, the condition σ2 > h |µ| is equivalent to Lh
2 being h-elliptic. If µ 6= 0,

h-ellipticity is lost on a sufficiently coarse grid (one with large h).

• If σ2 > 0 and µ > 0, then Lh
1 is h-elliptic no matter how coarse the grid. This stability

is bought by low-order accuracy. If µ < 0, then the condition σ2 ≥ −hµ implies

h-ellipticity.

• If σ2 = 0 and µ > 0, then Lh
1 is h-elliptic and a ∆t > 0 can be chosen to build a good

smoother.

• If σ2 = 0 and µ < 0, then Lh
1 is still h-elliptic, but the symbol is positive, which violates

condition (2.20). This means that there is no ∆t > 0 that will result in a convergent

scheme. The flow of time is reversed in this case, and a negative ∆t is required for

smoothing. This implies that the condition σ2 > 0 imparts an orientation to time flow.

• The two-sided and one-sided approximations to vx are related by

1

h
[0,−1, 1] =

1

2h
[−1, 0, 1] +

h

2h2
[1,−2, 1].
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The second term corresponds to the stencil for the usual approximation for vxx. For

µ > 0, we therefore interpret the operator Lh
1 as being an adjusted version of Lh

2

with the coefficient σ2 replaced with σ2 + µh. This can also be seen by inspecting

the symbols in (2.5)-(2.6). This extra term corresponds to the addition of artificial

viscosity or noise to the system.

A 2D Example

Consider the two-dimensional PDE over IR2, Lv = 0, where the operator

Lv = vxx + vyy

corresponds to the generator of a two-dimensional Brownian motion. We consider two dis-

cretizations of this equation.

(Lh
+v)i,j =

1

h2

(
vi,j−1 + vi,j+1 + vi−1,j + vi+1,j − 4vi,j

)
= 0, and

(Lh
×v)i,j =

1

2h2

(
vi+1,j−1 + vi−1,j+1 + vi−1,j+1 + vi+1,j+1 − 4vi,j

)
= 0, or

Lh
+ =

1

h2




1

1 −4 1

1


 , Lh

× =
1

2h2




1 1

−4

1 1


 .

These operators are called the discrete five-point Laplacian and the skew Laplacian. We can

rewrite these equations in dynamic programming form

v = (I + ∆tLh)v where ∆t =
h2

4
and

vi,j =
1

4

(
vi,j−1 + vi,j+1 + vi−1,j + vi+1,j

)
, and

vi,j =
1

4

(
vi+1,j−1 + vi−1,j+1 + vi−1,j+1 + vi+1,j+1

)
, or

P h
+ =

1

4




1

1 0 1

1


 , P h

× =
1

4




1 1

0

1 1



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where P h
+ and P h

× represent transition probabilities in stencil notation. The discrete symbols

of these generators are

L̂h
+(θ1, θ2) = − 4

h2

(
sin2(θ1/2) + sin2(θ2/2)

)

L̂h
×(θ1, θ2) = − 2

h2

(
sin2(θ1/2) cos2(θ2/2) + sin2(θ2/2) cos2(θ1/2)

)
.

Clearly, Lh
+ is h-elliptic. However, Lh

× is not h-elliptic because the symbol vanishes at

(θ1, θ2) = (π, π). This point is subtle since P h
× defines valid transition probabilities. The

problem is that the domain is not quite connected at the discrete level: the random walk has

zero probability of starting at state (xi, yj) and ever visiting the neighboring states (xi, yj±1)

and (xi±1, yj).

2.5 Multigrid for Nonlinear Equations

If the operator Lh is linear, the the FAS update

L2hv2h = I2h
h (fh − Lhvh) + L2hI2h

h vh,

vh ← vh + Ih
2h(v

2h − I2h
h vh)

simplifies, allowing us to solve for the correction rather than for the whole function

L2hṽ2h = I2h
h (fh − Lhvh),

vh ← vh + Ih
2hṽ

2h.

Historically, multigrid was developed in this form to solve linear equations. The FAS was

subsequently developed as an extension to handle nonlinear problems [11]. Since this thesis

treats mostly nonlinear equations, the algorithms in this chapter were stated in terms of the

full FAS.

There are two main approaches for solving nonlinear problems with multigrid. One is to use a

scheme such as the FAS that incorporates the nonlinearity directly into coarse grid problems.
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The other is to use Newton’s method, solving the equation Lh(vh) = fh by iterating on vh:

∇Lh(vh)ṽh = fh − Lh(vh),

vh ← vh + ṽh.

Multigrid techniques could then be used to solve the linearized equation. If a V-Cycle scheme

is used to solve the linear equation, one must choose how many cycles to do per Newton

iteration. To solve the equation exactly may require many cycles. If only one or two are

used, the quadratic convergence typical of Newton’s method does not obtain since the linear

equation is not solved exactly.

In many cases, in particular with HJB equations [3,35], the FAS and the Newton/multigrid

method with one V-Cycle per Newton step exhibit nearly identical performance. Akian [3]

concluded that using the Newton/multigrid scheme often permitted a more efficient imple-

mentation since evaluation of the optimal controls are required once per multigrid cycle and

only on the fine grid rather than during smoothing and residual computations on every level.

For calibration problems is often more appropriate to use the FAS since the coarse-grid prob-

lem defines a valid economic problem rather than a linearized equation that is difficult to

interpret. This can be helpful when designing a solver for the problem on the coarsest grid.



Chapter 3

Calibration: The Finite Parameter

Case

3.1 The Basic Problem

We now propose a general multigrid scheme for calibrating models based on stochastic control

problems. The generic problem is to find a function v over a domain Ω ⊂ IRd that solves an

HJB equation, denoted by

L(v;α) = f, (3.1a)

for a given set of parameters α ∈ IRM , which are identified by imposing an M -dimensional

restriction, denoted by

F (v, α) = b. (3.1b)

The first equation determines the value function associated with the HJB equation, and we

call to the second equation the calibration condition.

As in the previous chapter, we assume the calibration problem is discretized on a family of

grids Ωhn
and denote the discrete problems by

Lh(vh;αh) = fh, (3.2a)

F h(vh;αh) = bh, (3.2b)

which we assume have unique solutions for any right side vectors fh and bh.

39
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Problems with similar structure have been treated successfully with multigrid methods. One

common example is the Poisson problem with von Neumann boundary conditions:

vxx + vyy = f, on Ω

∇v · n = b, on ∂Ω

where n denotes the unit outward normal vector. For this problem to have a solution, it

must satisfy the compatibility condition
∫
Ω
f =

∫
∂Ω
b. If a solution does exist, it is not unique

and another equation must be imposed. One possible restriction is to specify the value of v

at a particular point; another is to impose a global constraint such as
∫

Ω
v = 0. Multigrid

treatment of this equation is outlined in [57].

This structure also arises in the context of distributed control theory where parameters have

a global effect on the behavior of a system. Ta’asan [55, 56] proposes a multigrid technique

for a class of problems where the system is governed by an elliptic PDE. We use this work

as a point of departure to study calibration problems in finance. Section 3.2 outlines a

basic multigrid strategy. While the basic technique often works well, problems in finance

often require some refinements. We introduce an appropriate modification in Section 3.3 and

consider its performance in three detailed examples.

3.1.1 A First Example

We begin by working with a simple model problem defined over the domain Ω = [0, 1].

α sin(πx) +
σ2

2
vxx = 0, (3.3a)

v(0) = v(1) = 0,

v(
1

2
) = b (3.3b)

In probabilistic terms, v defines the expected cumulative reward as

v(x) = E

[∫ T∂Ω

0

α sin(πXt)dt|X0 = x

]

where the state process is a scaled Brownian motion Xt = σWt and the stopping time T∂Ω =

inf{t ≥ 0 : Xt 6∈ (0, 1)} is the first time X exits the unit interval. The calibration problem

is to determine what scaling of the reward function α sin(πx) will produce an expected

cumulative reward of b if the state process starts at X0 = 1/2.
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For a given α the solution to the differential equation is v(x;α) = 2α
π2σ2 sin(πx). Choosing α

to enforce the calibration condition gives ᾱ = bπ2σ2/2 so that v̄(x; ᾱ) = b sin(πx).

3.1.2 Direct Solvers

A basic computational strategy for solving problems of the form (3.1) is to regard v(x;α) as

a function of α implicitly defined by equation (3.1a). The calibration problem then reduces

to solving the equation M -dimensional equation C(α) = b, where C(α) = F (v(·;α);α).

If the map C is well-behaved and its gradient computable, an arsenal of techniques are avail-

able for solving this equation. If a good starting point is chosen and ∇C(α) is nonsingular

near the solution, then Newton’s method, defined by the iteration

∇C(αn)(αn+1 − αn) + C(αn) = b,

is usually the preferred solution technique. For this chapter, we make the simplifying as-

sumption that C is well-behaved and Newton’s method converges globally. If C is not

well-behaved, more sophisticated and delicate algorithms might be used, a good starting

point chosen in advance, or the problem reformulated.

For each iteration of Newton’s method, both C(αn) and ∇C(αn) need to be evaluated.

If α is M -dimensional, computing the gradient involves solving M linearized versions of

equation (3.1a). Newton’s method typically converges in a small number of iterations that

is independent of the number of parameters. Therefore, the cost of solving C(α) = b this

way is proportional to M + 1 times the cost of solving equation (3.1a).

For some problems, it may not be convenient to compute the gradient of C. For these

problems, several direct methods are available to solve the equation using only evaluations

of C(α). The most popular of these are the quasi-Newton scheme of Broyden-Fletcher-

Goldfarb-Shanno (BFGS) and the Nelder-Mead simplex algorithm [49]. Depending on the

problem, these methods typically require a number of function evaluations proportional to

either M or M log(M). The computational cost is then this factor times the cost of solving

equation (3.1a).

The complexity of C and the efficacy of the solver determine the number of function evalua-

tions required to solve C(α) = b. Little can be done to reduce this. But whatever technique

is used, the computational burden is proportional to the cost of solving (3.1a) alone. The

multigrid technique presented here aims at reducing this cost.
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3.2 A Multigrid Strategy

The basic technique for using multigrid to solve the calibration problem (3.2) is captured in

the following two-grid iteration:

* Algorithm: (vh, α)← TG(vh, α)

1. Solve the equation Lh(vh, α) = fh for vh exactly (holding α fixed).

2. Find (v2h, α′) solving the coarse-grid full calibration problem on Ω2h,

L2h(v2h, α′) = f 2h, (3.4a)

F 2h(v2h, α′) = b2h; (3.4b)

with the FAS right sides defined as

f 2h = I2h
h (fh − Lh(vh, α)) + L2h(I2h

h vh, α), (3.4c)

b2h = bh − F h(vh, α) + F 2h(I2h
h vh, α). (3.4d)

3. Update the iterates according to

vh ← vh + Ih
2h(v

2h − I2h
h vh), (3.5a)

α← α′. (3.5b)

4. Solve Lh(vh, α) = fh for vh exactly, (holding α fixed) and return (vh, α).

This algorithm is essentially the two-grid scheme in Section 2.3.6 with an extreme interpreta-

tion of smooth error: For grid functions only the zero function is smooth; for the parameter

space all vectors are smooth.1 In this sense, an exact solver is always an effective, if expen-

sive, smoother. On the fine-grid, the residuals of Lh(vh, α) = fh are “smoothed” with an

exact solver, while α is not updated since the corresponding errors are already “smooth.”

The crucial feature of this algorithm is that α is only adjusted on the coarse grid, where

seaching for α by repeatedly solving for v is considerably cheaper.

1We say all vectors are smooth, since all perturbations have only global effects on v. Therefore, no
parameter adjustment is needed on fine levels since the variation is reflected in the coarse-grid problem.
It could also be said that only the zero vector is “smooth” since the problem cannot be coarsened in the
parameter space.
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In this setup, vh is defined implicitly as a function of α. We therefore interpret this two-

grid algorithm as an iteration in α alone, with the fine-grid problem solving the equation

Ch(α) = bh and the coarse-grid problem solving the equation C2h(α′;α) = bh where C2h

reflects the FAS adjustments. According to the defect correction principle in Section 2.3.4,

the two-grid scheme can be interpreted in terms of the iteration

C2h(αn+1) = bh − Ch(αn) + C2h(αn).

The FAS is constructed so the fine-grid solution ᾱ is a fixed point to this iteration. To assure

convergence, the iteration must contract. If Ch and C2h are well-behaved, the condition

̺
(
I −

(
∇Ch(ᾱ)

)−1∇C2h(ᾱ)
)
<< 1, (3.6)

enforces the contraction property for α close to ᾱ. This algorithm should be efficient when

the contraction factor is small and the coarse-grid problem is much cheaper to solve than

the fine-grid problem.

Remark 2. The basic principle of this algorithm is to defer the search for α to the coarse

grid where solving for v is cheap. A solver for C2h(α) = b is still needed. A natural choice

for this solver is a quasi-Newton method with a Jacobian updating scheme such as the one

devised by Broyden-Fletcher-Goldfarb-Shanno (BFGS). This method is outlined in [49]. One

appealing feature of the BFGS scheme is that it can be initialized with an estimate of the

Jacobian already computed. If this estimate is accurate and the iteration is started near the

solution, performance close to Newton’s method can be expected for well-behaved problems.

Since each of many V-Cycles calls the direct solver on the coarsest grid, reusing the Jacobian

estimate from previous V-Cycles can significantly reduce runtime if the coarse-grid problem

has several parameters and starts near the solution.
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The Example Continued

We now explore the performance of the two-grid scheme using a discrete version of the model

problem (3.3):

α sin(πxh
j ) + (Ahvh)j = 0, with (Ahvh)j =

σ2

2

vh
j+1 − 2vh

j + vh
j−1

h2
, (3.7a)

for j = 1, . . . , Nh − 1, and

vh
0 = vh

Nh
= 0,

vh(
1

2
) = b. (3.7b)

The solution vh for a fixed α is

vh
j = − α

Âh(π)
sin(πxh

j ), where (3.8)

Âh(θ) = −σ
2

h2

(
(1− cos(θ)

)
.

Since the two-grid algorithm solves exactly equation (3.7a) at the fine level, the corresponding

residuals are eliminated and the coarse-grid problem prescribed by the FAS takes a given vh

and α and seeks v2h and α′ that solve

α′ sin(πx2h) + A2hv2h = α sin(πx2h) + A2hI2h
h vh, (3.9a)

for j =1, . . . , N2h − 1, and

v2h
0 =v2h

N2h
= 0,

v2h(
1

2
) =b. (3.9b)

If injection is used to restrict grid functions and residuals, the solution to the coarse-grid

problem is

α′ = α
(
1− Â2h(2hπ)

Âh(hπ)

)
− Â2h(2hπ), (3.10)

v2h = b sin(πx2h).

We could apply this two-grid scheme with coarse and fine-grid spacing other than 2h and

h. Equivalently, we could build a V-Cycle from this two-grid scheme. If the fine-grid has

spacing 2lh0 for l ≥ 1 and the coarse-grid has spacing h0, the coarse-grid correction defines
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Figure 3.1: Contraction factors in equation (3.11) in the limit as l→∞.
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a fixed point iteration in α with a contraction rate given by

1− Âh0(h0π)

Âh0/2l(h0π/2l)
. (3.11)

Figure 3.1 shows that when the spacing of the coarsest grid becomes too large, the coarse-grid

problem can no longer reasonably mimic the fine-grid problem’s variations in α.

This two-grid algorithm can be viewed as a special case of the scheme by Lewis & Nash [37]

for optimizing functionals subject to generic PDE constraints. They use the FAS to construct

a coarse-grid optimization problem and use an exact solver rather than a smoother to handle

the PDE constraints.

For the example at hand, using an exact solver to smooth errors on the fine-grid is unnec-

essarily expensive. Ta’asan [7, 55, 56] considers optimzation problems subject to constraints

govered by elliptic PDE and applies FAS to the optimality conditions, which form an elliptic

system that can be efficiently smoothed.

To build a more efficient V-Cycle, we use a few Gauss-Seidel smoothing sweeps on the fine-

grid. This is shown in Figure 3.2. For the example problems, a few smoothing sweeps per level

gives performance similar to using an exact solver for the fine-grid equation Lh(vh, α) = fh.

Figure 3.3(b) shows convergence plots for errors in α using V -cycles in various configurations.

For all configurations, errors are reduced by more than a factor of twelve in each V-Cycle.

Using four smoothing sweeps per level gives identical performance to using an exact solver.
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Figure 3.2: V-Cycle performance.
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(a) V-cycles for a calibration problem. Parameters are adjusted only
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(b) Convergence plots for the residuals of the calibration
condition for V-cycles with various smoother configurations
and depths.

* Algorithm: (vh, α)← V-Cycle(L, vh, α, fh, bh)

1. If L = 0, apply a direct solver to the full calibration problem on the coarsest grid,
equations (3.2), and return the solutions vh and α. Else,

2. Apply a smoother to Lh(vh, α) = fh (holding α fixed.

3. Compute the FAS coarse-grid right sides, f 2h and b2h, according to equations (3.4).

4. Set (v2h, α′)← V-Cycle(L− 1, I2h
h vh, α, f 2h, b2h).

5. Apply the corrections (3.5).

6. Apply a smoother to Lh(vh, α′) = fh (holding α fixed). Return vh and α.
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If only two pre-smoothing and one post-smoothing sweeps are used, convergence is still

favorable, but the rate is not uniform when errors become very small.

3.3 The Need for τ-Expansion

We now consider a more challenging calibration problem that requires a modification of the

FAS to achieve acceptable convergence rates. We seek to find a parameter α and a grid

function vh defined over Ωh (embedded in [0, 1]) such that

sin(πx/2) + α2
[vh

i+1 − vh
i−1

2h

]
+ α

[vh
i+1 − 2vh

i + vh
i−1

h2

]
= 0, (3.12a)

for j = 1, . . . , N2h − 1, and vh
0 = vh

Nh
= 0,

vh
Nh
− vh

Nh−1

α2h
= b. (3.12b)

The FAS scheme (3.4) defines right side vectors that adjust for relative discretization in error

in v. This scheme neglects to account for the effects on v caused by changes in α done on

the coarsest level. To capture these effects, we replace the usual FAS right sides (3.4c,3.4d)

with functions that depend on the changes made to α on the coarsest grid.

f 2h(α′) = I2h
h fh + L2h(I2h

h vh, α′)− I2h
h Lh(vh, α′)︸ ︷︷ ︸

τf (α′)

b2h(α′) = bh + F 2h(I2h
h vh, α′)− F h(vh, α′)︸ ︷︷ ︸

τb(α′)

Often, it will suffice to introduce only a first-order τ -expansion to the right side.

f 2h(α′) = I2h
h fh +∇ατ

f (α)(α′ − α)

b2h(α′) = bh +∇ατ
b(αh)(α′ − α)

In either case, this technique keeps track of how changing α affects the discretization errors

of v at various levels. Figure 3.4(a) shows how the coarse-grid calibration condition residual

for the easier problem (3.7) varies with α. No τ -expansion is required since the coarse-

grid correction essentially shifts the calibration residuals in parallel. This can be seen from

equation (3.8). For the harder problem (3.12), the calibration condition residuals on the

coarse-grid have more significant variation in α, and τ -expansion is needed to ensure a good



3.4. An Example from Economics 48

two-grid contraction rate. Indeed, when using the standard FAS (zeroth order τ -expansion),

error reduction factors for the two-grid scheme is too small for practical purposes (about

3.6). In contrast, with full and linear τ -expansion, the respective factors are favorable (10.9

and 13.7).

Based on the two-grid scheme, an effective V-cycle or FMG-cycle can be implemented.

Figure 3.4(b) compares the V-Cycle convergence of an implementation of the full τ -expansion

scheme with that of the standard FAS. When using τ -expansion, the V-Cycle is still effective

when only a few smoothing sweeps are used on each fine level.

3.4 An Example from Economics

To illustrate these techniques, we apply them to numerically calibrate a model recently devel-

oped by Farhi & Panageas [24] and Dybvig & Liu [23]. The model describes the consumption

and investment problem of a utility-maximizing individual who has claim to labor income

and an option to retire at any time. This model builds on the work of Duffie et. al. [22] and

Koo [34], who incorporate the effects of labor income into the classic model of Merton [42].

Munk [44, 45] uses the techniques of Kushner & Dupuis [35] to solve these models numeri-

cally. We build on this work, incorporating the retirement option and parameter calibration

into the numerical analysis.

The model posits an investor who trades in a Black-Scholes-Merton financial market with

interest rate r > 0 and a stock price evolving according to the geometric Brownian Motion

dSt

St

= (µ+ r)dt+ σdWt.

The positive constants µ and σ govern the excess expected rate of return and the volatility

of the stock. In this version of the model, stock price variations are the only source of

uncertainty.

The investor has claim to labor income that grows at rate κ until he chooses to retire. After

this time, he receives no wage income but has more leisure time. Let TR denote the stopping

time associated with the investor’s retirement. Then, the wage process Yt follows simple

geometric growth until retirement.

dYt

Yt

= κdt on [0, TRetire)

Yt = 0 on [TRetire,∞)
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Figure 3.3: Illustrating τ -expansion.
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If the investor chooses portfolio and consumption processes p and c, his financial wealth

evolves from X0 ≥ 0 according to the SDE

dXt =
(
Xtr + ptµ+ (Yt − ct)

)
dt+ σptdWt.

The agent must choose only portfolio and consumption processes that respect the constraint

Xt ≥ 0 for all t with probability one. This admissibility constraint both excludes the use of

doubling strategies and prevents the agent from borrowing against unrealized labor income.

We denote by X (x, y) the set of all retirement times and predictable consumption and

portfolio processes associated with an admissible wealth and wage processes (Xt, Yt) that

start at (X0, Y0) = (x, y). The investor’s problem is then characterized by the value function2

v(X0, Y0) = ess sup
c,p,TR∈X (x,y)

E
[ ∫ TR

0

e−βtu(ct)dt+ e−βTRv(αXTR
, 0)|X0, Y0

]
, (3.13)

where β > 0 is interpreted as a mortality rate, and the utility function is u(x) = x1−γ

1−γ
for a

risk aversion parameter γ > 1. The parameter α > 1 reflects the investor’s willingness to

substitute leisure time for income.

3.4.1 Characterizing the Value Function

After the agent retires, the income process vanishes. This implies v(x, 0) solves the classical

problem of consumption and investment of Merton [42]. The associated value function is

vMerton(x) = Ax1−γ , where the relevant constant is

A =
(β − r(1− γ)

γ
− 1− γ

2γ2

µ2

σ2

)−γ

.

The following system of HJB complementary inequalities characterizes the value function:

sup
c,p

u(c)− βv + [rx+ µp+ (y − c)]vx +
1

2
σ2p2vxx + κyvy ≤ 0 (3.14a)

v(x, y) ≥ vMerton(αx), (3.14b)

with at least one of the inequalities binding for each (x, y) ∈ [0,∞)2 − 0.

2Existence, uniqueness, and regularity solutions are established in [24] and [23]. They solve the case we
consider here explicitly using duality techniques. With minor modifications our numerical scheme extends
to the cases that admit no explicit solutions.
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The problem’s homothetic structure allows the value function to be factored as v(x, y) =

V (x
y
)y1−γ for an appropriate function of one variable, V (z). The relevant state variable is

the wealth-to-wage ratio Zt = Xt/Yt, and the optimal controls satisfy

c = y(Vz)
−1/γ , p = y

−µVz

σ2Vzz

,

so that ĉ = c/y and p̂ = p/y depend only on z = x/y for z ≥ 0. With these substitutions we

derive corresponding complementary HJB inequalities for V :

sup
ĉ,p̂

u(ĉ) + (κ(1− γ)− β)V +
(
(r − κ)z + µp̂+ (1− ĉ)

)
Vz +

1

2
σ2p̂2Vzz ≤ 0, (3.15a)

V (z) ≥ vMerton(αz) (3.15b)

with at least one of these inequalities binding for each z ≥ 0.

This formulation is probably the best point of departure for numerical treatment if one is

only interested in solving the retirement problem. For the calibration problem considered in

Section 3.4.2, this formulation is not appropriate so we consider an alternative.

The relations (3.15) are the optimality conditions corresponding to the stochastic control

problem defined by

V (Z0) = ess sup
ĉ,p̂,TR

E
[ ∫ TR

0

e(κ(1−γ)−β)tu(ĉt)dt+ e−βTRvMerton(αZTR
)|Z0

]

where the controlled process Z follows the SDE

dZt = (r − κ)Zt + µp̂t + (1− ĉ)dt+ σp̂dWt

and Z ≥ 0. The relevant stopping times are characterized by the first time Zt hits a given

level indexed by z∗. If the agent retires when Zt = z∗, then the associated value function

satisfies the HJB equation

sup
ĉ,p̂

u(ĉ) + (κ(1− γ)− β)V +
(
(r − κ)z + µp̂+ (1− ĉ)

)
Vz +

1

2
σ2p̂2Vzz = 0 (3.16a)

for each z ∈ [0, z∗), along with the value matching condition that states

V (z∗) = vMerton(αz∗). (3.16b)
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The boundary condition associated with z = 0 is implicit in equation (3.16a) since the

admissibility condition Xt ≥ 0 implies the agent holds no stock when Zt = 0. This removes

the second order term and we interpret Vz in the one-sided sense. With V defined in terms

of z∗, the task is to choose z∗ to maximize V (0). The associated optimality condition is

d

dz
V (z∗) =

d

dz∗
vMerton(αz∗), (3.16c)

which is called the smooth pasting condition3. It says that at the instant the agent chooses

to retire, he is indifferent between retiring and not.

3.4.2 Calibration

Equations (3.16) define the retirement model for a given set of parameters. Most of the

parameters can be estimated from market data or calibrated using a simpler model. One

approach to identifying the parameter α is to set up the model so that the investor chooses

to retire in about, say, fifty years. Mathematically, the expected retirement time is

R(z) = E [TRetire|Z0 = z] .

The calibration problem consists of choosing α so that R(0) = µRetire for a given target µRetire.

If the controls (ĉ, p̂) and retirement boundary z∗ are given, R satisfies the equation

1 +
(
(r − κ)z + µp̂+ (1− ĉ)

)
Rz +

1

2
σ2p̂2Rzz = 0 on [0, z∗) (3.17a)

R(z∗) = 0. (3.17b)

From a computational viewpoint, the full calibration problem consists of choosing α such

that:

1. The value function V and the free boundary z∗ solve the HJB equation (3.16a)-(3.16b)

on [0, z∗) together with the smooth pasting condition (3.16c),

2. The function R satisfies the system (3.17) on [0, z∗], and

3. The calibration condition C(α) = µRetire is satisfied where C(α) = R(0).

3The smooth pasting condition is presented informally in [20] and [54]. A rigorous account of the appli-
cability of this condition in a particular context can be found in [13].
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Said differently, we want to recover α by inverting the mapping

α 7→ (V, ĉ, p̂, z∗) 7→ R(z) 7→ C(α) = µRetire

where V and R are regarded as implicit functions of α. Having formulated the optimal

retirement problem in a form consistent with a generic calibration problem, we apply the

techniques developed in this chapter to solve it numerically.

3.4.3 Numerical Treatment

Conditioning is usually improved by changing variables when the state processes grow geo-

metrically, usually by taking logarithms. Since Z is the ratio of X and Y which both grow

geometrically, transforming Z is appropriate. But Z can take the value zero with positive

probability (the agent starts with zero wealth), so we use a transformation that behaves like

log(Z) for large z and like the identity map for z near zero, defining w = ψ(z) = log(z + 1)

so that z = ψ−1(w) = ew − 1, which behaves like z up to first order for z near zero. Substi-

tuting the function U(log(z + 1)) = V (z) into equations (3.16) and (3.17) and making the

identifications q̂ = p̂
1+z

and z = ew − 1, we find the function U satisfies the equation

sup
ĉ,q̂

ĉ1−γ

1− γ + (κ(1− γ)− β)U +
((r − κ)z

1 + z
+

1− ĉ
1 + z

+ µq̂ − σ2q̂2

2

)

︸ ︷︷ ︸
m(ĉ,q̂,z)

Uw +
σ2q̂2

2︸︷︷︸
s(q̂,z)

Uww = 0,

over [0, w∗) and the boundary conditions

U(w∗) = vMerton(αz∗)
∣∣
z∗=(ew∗

−1)
,

Uw(w∗) = ew d

dz∗
vMerton(αz∗)

∣∣
z∗=(ew∗

−1)
.

Similarly, the function J(w) = R(ew − 1) satisfies

1 +m(ĉ, q̂, z)Jw + s(q̂, z)Jww = 0,

J(w∗) = 0.

Finite Difference Discretization

We use a finite difference scheme over a uniform grid spanning [0, w∗]. During the iterative

process the whole grid expands or contracts to accommodate changes in w∗, which in our
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formulation must be a grid point. The grid is expressed as

Ωh(w
∗) = {wj = w∗ j

N
= w∗jh for j = 0, 1, . . . , N + 1}.

Given a parameter µRetire and a grid wj = w∗jh, the discrete calibration problem is to find

scalars α > 1 and w∗ > 0 so that

1. The grid function U satisfies the discrete HJB equation4

max
ĉ,q̂

ĉ1−γ

1− γ − (κ(1− γ)− β)Uj +m(ĉ, q̂, zj)
Uj+1 − Uj

w∗h

+s(q̂, zj)
Uj+1 − 2Uj + Uj−1

(w∗h)2
= 0, for j = 1, . . . , N, (3.18a)

sup
ĉ,p̂

ĉ1−γ

1− γ − (κ(1− γ)− β)U0 +m(ĉ, q̂, 0)
U1 − U0

w∗h
= 0, (3.18b)

UN+1 − UN−1

2w∗h
= ewN

d

dz∗
vMerton(αz∗)

∣∣
z∗=(ew∗

−1)
, (3.18c)

2. The grid function J satisfies

1+m(ĉ, q̂, zj)
Jj+1 − Jj

w∗h
+ s(q̂, zj)

Jj+1 − 2Jj + Jj−1

(w∗h)2
= 0, (3.19a)

for j = 1, . . . , N,

1 +m(ĉ, q̂, 0)
J1 − J0

w∗h
= 0, (3.19b)

JN = 0, (3.19c)

4Even if the continuous problem is well-posed and has well-behaved controls, the same may not be true
of the discrete problem. Following Kushner & Dupuis [35], to ensure well-posedness we require a bound on
the controls to ensure the HJB equation remains well-posed:

0 < ĉmin ≤ ĉ ≤ 1 + B1(1 + z),

0 ≤ q̂ ≤ B2

for some positive constants ĉmin, B1, B2. These constraints do not bind in the final solution but are imposed
to enforce the contraction property of iterative schemes. These constants must be chosen by experimentation
and economic reasoning. Since controls vary over a compact set, we are justified in replacing the sup operation
with the max operation.
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3. The calibration condition J0 = µRetire and the value matching condition

UN = vMerton(αz∗)
∣∣
z∗=(ew∗

−1)
hold.

The HJB equation has two boundary conditions associated with w∗. To define U we use the

smooth pasting condition. The location of w∗ is associated with the value matching condition.

For purposes of a multigrid algorithm, w∗ can be thought of as another parameter. In this

regard, the calibration problem can be thought of as inverting a two-dimensional map:

(
α

w∗

)
7→ (U, ĉ, q̂) 7→ J 7→

(
J0

UN

)
=

(
µRetire

vMerton(αz∗(w∗))

)
.

3.4.4 Multigrid Treatment

To smooth errors in U and J , we use a Gauss-Seidel scheme sweeping from j = N, . . . , 1.

This is consistent with the one-sided discretization of Uw and that agents in this model tend

to get more wealthy over time. A two-sided approximation would result in an operator that

is not h-elliptic near w = 0 since q = 0 there. First U is relaxed and optimal controls are

computed; then J is relaxed. For the HJB equation corresponding to U , it is difficult to

solve for Uj explicitly in terms of other quantities. Instead, we relax at point wj by first

choosing the controls ĉ and q̂ that attain the maximum in equation (3.18a) and then solving

for Uj with everything else held fixed. This is essentially a local version of Newton’s method

applied within the Gauss-Seidel iteration.

We transfer U and J to coarser and finer grids by injection and linear interpolation. Residuals

are also transfered by injection.

The Need for τ-Expansion

All equations in the system (3.18) have strong nonlinear dependence on w∗ or α. The

smooth pasting condition has dependence on both. Numerical experiments indicated that

calibration with the standard FAS fails unless the coarsest grid is unreasonably fine. We

therefore consider a multigrid scheme based on a full τ -expansion in w∗ and α.

Finding a starting point

We require a good starting point from which to begin our interative scheme. This is because

the smooth pasting formulation of the retirement problem is based on a local optimality
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Figure 3.4: The calibration problem is ill-posed when the standard discrete dynamic pro-
gramming formulation is used. For critical levels of α the stopping boundary moves discon-
tinuously. This causes the expected retirement time to jump as well. The smooth pasting
condition ensures the calibration condition varies smoothly in α.
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condition and there are spurious solutions. A more robust formulation of the retirement

problem is based on the dynamic programming formulation based on equations (3.15). To

approximate the retirement problem for a given α, we could write the discrete problem as a

dynamic programming equation consistent with the system (3.15):

V h
j = max

(
vMerton(αz∗), fj∆t+ sup

ĉ,p̂
P h

j→j+(−1,0,1)(ĉ, p̂)
′



vh

j+1

vh
j

vh
j−1



)

(3.20)

where j = 0, 1, . . . and P h
j→j+(−1,0,1) represents the local transition probabilities implicit in

the finite difference discretization. The uniqueness theorems of Kushner & Dupuis show this

formulation is robust and that Gauss-Seidel relaxation converges from an initial guess of

V h = 0.

Remark 3. While equation (3.20) is a reasonable way to solve the retirement problem, it is

not appropriate for the calibration problem. Figure 3.4 shows that expected retirement times

are not continuous in α when using equation (3.20) to define w∗, so the calibration problem

is ill-posed at the discrete level. This may not matter for very fine-grids, but our calibration

approach adjusts α only on the coarsest grid where these distortions are large. In contrast,

the location of the free boundary, and the expected retirement times, vary smoothly in α with

formulation based on the smooth pasting condition.
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To find a starting point for the calibration problem, we proceed by choosing an economically

reasonable α > 1 and solving the equation (3.20) on a coarse-grid. The approximate retire-

ment boundary w∗ can be located by the smallest index j such that Uj = vMerton(αz∗). This

point can be used to determine an initial guess for w∗.

Given w∗ and α, the smooth pasting formulation can then be used to solve the discrete

retirement problem for Uh, w∗, and Jh. At this point, the target retirement time is initialized

µRetire = J0.

A continuation method is then used to move µRetire continouously toward the target level

while adjusting α and w∗ locally to compensate so that the calibration problem stays solved

in the continuation process. This results in a solution to the calibration problem on the

coarsest grid. It can also be used as the basis of a coarse-grid solver in a V-Cycle.

3.4.5 Numerical Results

For a numerical experiment, we chose parameters consistent with the study of Dybvig &

Liu [23]. The numerical values are listed in Figure 3.5 which shows the value function,

consumption and portfolio rules, and expected retirement times. The model was calibrated

to b = 38 years, which implies α ≈ 3 depending on the level of discretization.

Each V-Cycle consists of three parts. First, the optimal control functions, ĉ and q̂, are

computed in terms of U and w∗. For the rest of the V-Cycle, the controls are frozen at these

values. Then a V-Cycle is performed with α held fixed as U , J , and w∗ are updated. This

V-Cycle is done so that the value function reflects the changes made in optimal controls. A

second V-Cycle is then done where α is adjusted along with U , J , and w∗. Again, w∗ and α

are adjusted only on the coarsest grid. Figure 3.7 shows the convergence history of several

V-Cycles using L = 5 levels and three pre- and post- smoothing Gauss-Seidel sweeps for U

and J at each level.

The cost of each V-Cycle is about three or four times that of a similar iteration that solves

for the value function alone with a fixed parameter α. Indeed, this corresponds to first

inner V-Cycle of our iteration. The second inner V-Cycle must relax both U and J , so it

incurs roughly twice the cost. Convergence rates for the calibration problem are similar to

the textbook multigrid rates observed for the retirement problem. We therefore conclude

that the calibration problem does not require much more computation than does solving the

model.
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Figure 3.5: The solution to the calibration problem with parameters r = 2%, µ = 4%, σ =
15%, β = 1%, κ = 0, γ = 2, b = 38 years. The grid spacing in this example is h = 1.35−4.
The value function is shown with the reward associated with retiring. Smooth-pasting and
value-matching conditions can be seen on the right where the wealth-to-wage ratio reaches
the retirement threshold. To compare results against the benchmark of Merton’s model
(shown as a dotted line), consumption and portfolio policies ĉ and p̂ are normalized by
(Z + 1/(r − κ)), which is a proxy for financial wealth plus the value of labor income. Since
the investor retires and cannot short his labor income, his valuation is less than this.
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Figure 3.7: A V-Cycle reduces all errors by about 8.6. Here L = 5 levels were used with a
coarsest grid with N = 12 grid-points. The starting point was the cubic interpolant of the
solution corresponding to level L − 1 = 4. The convergence history of the V-Cycles at all
levels is shown in Appendix A.
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Chapter 4

An Infinite Dimensional Example

Following the developments in the previous chapter, we consider a problem of the form

L(v;α) = f

F (v;α) = b

where the first equation determines the value function for a stochastic expectation or control

problem. In this chapter, we take a first step toward solving problems where the parameter

α is an infinite-dimensional object such as a function. Specifically, we study classical opti-

mality conditions associated with an optimal stopping problem driven by a two-dimensional

Brownian motion. While this is not a calibration problem, the optimality conditions take

the form of a calibration problem and serve as a laboratory in which we can develop and

test multigrid schemes. Techniques from Optimal Shape Design (OSD), Fourier analysis of

pseudo-differential operators in particular, are used to design a multigrid solver for these

equations.

In the course of the numerical analysis, we discover three properties of the optimal stopping

problem. First, a naive discretization of the classical formulation (based on the smooth-

pasting condition) results in an badly-conditioned problem. In contrast, the modern for-

mulation of the problem, which consists of a system of variational inequalities that are

understood in terms of viscosity solutions, forms a well-conditioned problem. We identify

the source of the bad conditioning in the classical formulation and suggest a regularization

scheme to remedy the conditioning problem. Our regularization scheme is simply a refor-

mulation and does not distort the solution as would a scheme based on inexact penalties.

Finally, by studying the structure of the classical formulation, we are able to identify a

probabilistic interpretation of the classical formulation that is difficult to recover from the

60
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modern formulation.

While our study of the optimal stopping problem in its classical form deepens our under-

standing of this class of problems, the resulting solvers are no faster than the best of those

based on the modern variational formulation. Still, developing techniques for solving the

stopping problem posed in the classical form helps us develop methods for solving calibra-

tion problems that admit no clean alternative formulation. Furthermore, many calibration

problems are ill-posed and are badly conditioned like the naive formulation of the stopping

problem. In this regard, we expect the methods developed here and borrowed from OSD

will be helpful in formulating and solving calibration problems from a variety of financial

models based on dynamic programming.

4.1 The Problem

We begin with a standard Brownian Motion in IR2 denoted by (Xt, Yt), and define the

stopping time τ0 to be the first time Xt hits zero. The value function of the optimal stopping

problem is defined as

v(x, y) = ess sup
τ
E

[
B(Yτ0)1I(τ0<τ)−

∫ τ0∧τ

0

g(Xt, Yt)dt|X0 = x, Y0 = y

]

where B(Yt) ≥ 0 determines the reward if Xt hits zero before the chosen stopping time,

g(Xt, Yt) > 0 measures the local cost per unit time before stopping, and the supremum is

taken over all stopping times of the Brownian filtration. This problem strikes a balance

between the reward associated with waiting until X hits zero and the costs borne for letting

the clock run.

One way to think of this problem is to write it recursively as a dynamic programming

equation. A discrete-time, recursive formulation of this equation reads

v(Xt, Yt) = max
(
0, E [v(Xt+∆t, Yt+∆t) | Xt, Yt]− g(Xt, Yt)∆t

)
,

v(0, y) = B(y).

If the Brownian motion is replaced with a symmetric random walk on a uniform lattice with
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Figure 4.1: The left panel shows the value function for the optimal stopping problem with
constant g. The right panel shows sample paths of the Brownian motion over Ω(α) that
starting from a particular point. If Xt hits zero before you cut your losses, you win a prize
B(Yt) > 0.

spacing h and time steps ∆t = 1
2
h2, the equation becomes

v(x, y) = max
(
0,
v(x+ h, y) + v(x− h, y) + v(x, y + h) + v(x, y − h)

4
− g(x, y)∆t

)
, (4.1)

v(0, y) = B(y)

where v is defined on lattice points (x, y) = (ih, jh). The modern characterization of the

value function is obtained as the limit as h→ 0 of this problem. Formally, v is the viscosity

solution to the following complementary inequalities:1

1

2
△v − g ≤ 0,

v ≥ 0,

v(
1

2
△v − g) = 0,

v(0, y) = B(y).

Equation (4.1) can be rearranged to fit a discrete version of this form. As shown in Figure

1Details on the theory of these problems can be found in [25,33,35,50].
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4.1, the interface defined by these inequalities partitions the state space into a continuation

region, where the first inequality holds with equality, and a stopping region, where the second

inequality binds. On the interface where both inequalities are tight, the incentive to stop

and continue are balanced. This is called the stopping boundary, and the optimal stopping

time is defined as the first time state process hits this boundary.

4.1.1 A Classical Formulation

In the dynamic programming formulation of the optimal stopping problem, the stopping

boundary is defined implicitly as an artifact of the value function. In contrast, the classical

formulation controls the location of stopping boundary explicitly. If a function α(y) indexes

the stopping boundary, the continuation region is defined by

Ω(α) = {(x, y) : y ∈ IR, 0 ≤ x ≤ α(y)}.

The value function is defined only over the domain Ω(α), rather than over all of the half-

space as with the dynamic programming formulation. The problem is to choose a smooth

stopping boundary α(y) and a function v over Ω(α) that satisfy equations

1

2
△v = g, (4.2a)

v(0, y) = B(y), (4.2b)

v(α(y), y) = 0, (4.2c)

∇v(α(y), y) · n = 0 (4.2d)

where n denotes the unit outward normal vector. On the stopping boundary, two conditions

must hold: one is associated with the value function v and the other with the stopping

boundary α. In this way, equations (4.2a)-(4.2d) take the form of a calibration problem.

Condition (4.2c), called the value-matching condition, follows from the definition of the

value function. It simply says that the reward is zero at the stopping time. Equation (4.2d),

called the smooth-pasting condition, says the location of the free boundary is locally optimal,

meaning small perturbations to the boundary have no first order effects on the value function.

Remark 4. Our representation of the stopping boundary certainly restricts the set of stopping

times under consideration. In general, the optimal stopping boundary can not be represented

as a function α(y). For certain choices of cost function g, the stopping region may not even

be a connected set. In the case that g > 0 is constant and B(y) > 0, however, the stopping
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boundary can be represented as a function of y.

Even if we were considering a problem with a more complicated stopping boundary, the

topology of the optimal continuation region and its basic shape can be determined in a low-

resolution discretization. Once the basic structure of the stopping boundary is established, an

appropriate parameterization can be chosen, and the methods developed here apply to resolve

the stopping boundary at higher accuracy.

4.2 Linearizing the Problem

In practice, it is impractical to perturb the location of a boundary in the process of solving

for the value function. To avoid this difficulty, we linearize the problem, working instead

over a static domain so that α affects the boundary conditions defining the value function

rather than the location of the actual boundary. The resulting linear problem is sometimes

called the small disturbance approximation.

4.2.1 A Special Case

If B and g are constant functions, then the value function and the location of the free

boundary do not depend on y, and the equations (4.2) simplify to

1

2
vxx = g (4.3a)

v(0) = B (4.3b)

v(α) = 0 (4.3c)

vx(α) = 0 (4.3d)

If v and α solve these equations, then, for any perturbations α← α+ α̃ and v ← v + ṽ, the

linearized equations (4.4) have only the trivial solution.

1

2
ṽxx = 0 (4.4a)

ṽ(0) = 0 (4.4b)

ṽ(α) = 0 (4.4c)

ṽx(α) = 2gα̃ (4.4d)
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Suppose we regard v as being defined implicitly in terms of α as the solution to equations

(4.3a,4.3b,4.3c). The problem is then to chose a scalar α to enforce the smooth pasting

condition (4.3d). Viewed this way, a perturbation α̃ induces a variation

v ← v + ṽ +O(α̃2)

where ṽ satisfies equations (4.4a,4.4b,4.4c). Since these equations admit only the trivial

solution, changes in α have no first-order effects on v. In other words, the solution ṽ does

not tell us how to correct the perturbation α̃.

If instead, v is regarded as an implicit function of α defined by equations (4.3a,4.3b,4.3d),

then α should be chosen to solve the value matching condition (4.3c). In this formulation,

the perturbation α̃ induces a first order variation ṽ that satisfies equations (4.4a,4.4b,4.4d).

The solution is ṽ(x) = 2gα̃x.

This perturbation affects the residual of the value matching condition (up to first order) by

an amount 2gα̃α. We can use this residual to correct for the perturbation α̃ and drive the

system back toward the solution. To do this, we look for ˜̃α = −α̃ + O(‖α̃‖2) by choosing ˜̃α
such that

˜̃v(α) = −ṽ(α)

where ˜̃v solves equations (4.4a,4.4b,4.4d) with α̃ replaced by ˜̃α. Based on this strategy,

Newton’s method applied to the mapping from α to the value matching condition is defined

as follows.

1. Given αn, solve equations (4.3a,4.3b,4.3d) for the value function v(x;α).

2. Solve the small disturbance approximation, equations (4.4a,4.4b,4.4d), for ṽ and α̃.

3. Update αn+1 ← αn + α̃ and go to step 1.

Since the equations can be solved in closed form, the iterates can be computed explicitly

αn+1 =
B + gα2

n

2gαn

.

This iteration scheme converges quadratically from a well-chosen starting point.

If numerically solving v and ṽ in terms of α and α̃ can be done efficiently, which it can in

the one-dimensional case, then this method is a viable computational strategy for locating

the stopping boundary.
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4.2.2 The General Case

We formulate the two-dimensional problem in an analogous fashion. Given a function α(y)

defining the stopping boundary, let the function v(x, y;α) be the solution to equations

(4.2a,4.2b,4.2d). We then seek a function α(y) to enforce the value matching condition

(4.2c). Starting from a given α(y) a perturbation α← α+ α̃ induces a variation

v(x, y;α + α̃) = v(x, y;α) + ṽ(x, y) +O(‖α̃‖2)

where ṽ satisfies the equation2

1

2
△ṽ = 0 (4.5a)

ṽ(0, y) = 0 (4.5b)

∇ṽ(α(y), y) · n = −α̃(y)[vxx, vyx] · n−∇v · ñ. (4.5c)

The correction α̃ should be chosen to enforce the linearized value matching condition

ṽ(α(y), y) = −v(α(y), y;α). (4.5d)

Newton’s method can be applied to generate a sequence of stopping boundaries:

1. Given α, solve equations (4.2a,4.2b,4.2d) for the value function v(x, y;α) on Ω(α).

2. Solve the small disturbance approximation, equations (4.5a,4.5b,4.5c,4.5d), for ṽ and

α̃ on Ω(α).

3. Update α← α+ α̃ and go to step 1.

To implement this algorithm, we need a method to solve for both the value function and

the associated small disturbance approximation. Solving for the value function is a classical

problem in numerical analysis that is well understood. Solving ṽ for a given α̃ is similarly

2There are several ways to compute the change in the outward unit normal ñ ∝ (1,−αy(y)). For numerical
purposes, we use first order approximation that moves in the unit tangent direction t ∝ (αy(y), 1) until it
hits the ray generated by the displaced unit normal vector m ∝ (1,−αy(y)− α̃(y)). The angle between these
vectors is θ = cos−1(〈n,m〉), and so we use the approximation

ñ = tan(θ)t.
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Figure 4.2: For high frequencies, the effects of far boundary conditions and smooth variation
in coefficients are negligible.

Ω(α)

straight forward. Solving for ṽ and α̃ jointly is much more difficult. We now regard ṽ as

an implicit function of α̃ and focus on solving for the α̃ that satisfies the linearized value

matching condition. Understanding the mapping from α̃ to equation (4.5d) is fundamental

to the numerical analysis of the problem.

4.2.3 Half-space analysis

Assume for now that B and g are constant functions so that the optimal boundary α(y) is

constant. A perturbation of the form α̃ = eιky induces a perturbation ṽ that solves (4.5a)–

(4.5c), which can be computed explicitly. On the stopping boundary, the perturbation

corresponding to the value matching condition is

ṽ(α, y) =
2g

|k|
(
1− eα

cosh(k)

)

︸ ︷︷ ︸
bF (k)

eιky. (4.6)

This exposes a problem with the formulation: Since high-frequency perturbations to α vanish

in the value matching condition, the mapping F from α̃ to ṽ(α, y) in (4.5d) is not h-elliptic.

For numerical purposes, this formulation of the problem is badly conditioned. According to

the theory of variational inequalities, see [33] for example, the optimal α(y) is known a priori

to be at least as smooth as B(y), which is smooth and has essentially no high-frequency com-

ponents. The value matching condition has trouble differentiating between boundaries that

differ only by high frequencies. This suggests that some kind of regularization is necessary

in order to choose the correct α from all those that are nearly optimal. There are many

ways to do this. One possibility is to consider only low-frequency α that are appropriately

smooth. Another is to consider all perturbations but introduce some tie-breaking penalty
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for oscillatory perturbations. Both approaches can introduce distortions into the solution.

We proceed along different lines.

The value matching condition (4.5d) can be reformulated as

d2

dy2

(
v(α, y;α) + ṽ(α, y)

)

︸ ︷︷ ︸
G(eα)

= 0 (4.7)

lim
y→±∞

v(α, y;α) + ṽ(α, y) = 0.

It follows that

d2

dy2
ṽ(α, y) = 2g |k|

(
1− eα

cosh(k)

)

︸ ︷︷ ︸
bG(k)

eιky, (4.8)

which is characteristic of an h-elliptic operator as defined in Section 2.4 since G̃(k) ≈ 2g |k|
for large |k|. By taking the second derivative, we have effectively preconditioned the value

matching equation in a way that the operator becomes less rather than more singular when

considering eigenfunctions of increasingly high frequency. The h-ellipticity of this precondi-

tioned operator is key to designing a multigrid solver.

If B and g are not constant, the preceding analysis fails to hold exactly. It does hold

approximately for the high-frequency perturbations responsible for the poor conditioning of

the operator F (α̃) corresponding to the value matching condition.

A small neighborhood around a point (α(y), y) on the stopping boundary induces a new

coordinate system spanning a half-space as shown in Figure 4.2. In this local coordinate

system, we solve the appropriately transformed version of equations (4.5a,4.5c) on the half-

space, ignoring the effects of the far boundary condition (4.5b). For α̃ of high-frequency, this

is justified since these perturbations decay before they interact with the far boundary.3 Since

the Laplacian is invariant to coordinate rotations, the local symbol of the value matching

condition derived from the half-space analysis is

F̂ (k) ≈ 2g(α(y), y)

|k| .

3A detailed analysis of the interaction of elliptic operators and boundary conditions can be found in [1,2].
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This is consistent with the symbol (4.6) for large k. This operator can be preconditioned by

G(α) =
d2

dy2
ṽ(α(y), y).

to give a symbol Ĝ(k) ≈ 2g(α(y), y)|k|, which approximates the exact symbol (4.8). Since

this symbol corresponds to an h-elliptic operator, it can be used to design an effective

smoother.4

4.3 Discretization

As formulated, the value function is defined over a domain unbounded in the y direction. To

solve the problem numerically, a finite domain must be used. A simple approach is to truncate

the domain so that y varies in some interval [0, ymax] and impose the von Neumann conditions

(4.9c) on the the artificial boundaries. These boundary conditions can be interpreted as

replacing the Brownian motion Y by a process that reflects off the artificial boundaries in

the inward normal direction.

Given a boundary defined by α(y), the value function v(x, y;α) is defined for y ∈ [0, ymax]

and x ∈ [0, α(y)] by

1

2
△v − g = 0, (4.9a)

v(0, y) = B(y) (4.9b)

vy(x, 0) = 0, vy(x, y
max) = 0 (4.9c)

∇v(α(y), y) · n = 0. (4.9d)

The corresponding small disturbance approximation is

1

2
△ṽ = 0 (4.10a)

ṽ(0, y) = 0 (4.10b)

ṽy(x, 0) = 0 ṽy(x, y
max) = 0 (4.10c)

∇ṽ(α(y), y) · n = −[vxxα̃, vyxα̃] · n−∇v · ñ, (4.10d)

4If the boundary α has significant curvature it may improve conditioning to re-parameterize α and
differentiate with respect to the arc-length of α rather than with respect to y.
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where α̃ is chosen to enforce the linearized value matching condition

ṽ(α(y), y) = −v(α(y), y). (4.10e)

4.3.1 Grid Generation

The domain Ω(α) depends on the function α, which is usually not constant. Choosing

a discrete problem to properly reflect this has been the subject of much research in both

industry and the academy. In cases where α is constant, the domain is rectangular and it

is possible to use a standard finite-difference discretization over a uniformly spaced grid.

When α is almost constant, we follow [57, Section 5.7] and use a simple, boundary-fitted

grid. The idea is to map the unit square into Ω(α) and pass the square grid through this

transformation to recover the boundary-fitted grid.

Suppose there are Nx + 1 grid points on the x axis and Ny + 1 points on the y axis. The

spacings hx = 1/Nx and hy = 1/Ny then define a uniform grid over the unit square. When

there is no ambiguity we use h to denote the pair (hx, hy). Let αh > 0 be a grid function

over the domain Ωhy
= {yj = ymax(j/Ny) : j = 0, 1, . . . , Ny}. Then, the boundary-fitted

grid is defined by

Ωh(αh) = {(x(i,j), yj) = (αh
j ihx, jhy) : i(j) = 0, 1, . . . , Nx(Ny)}.

Functions over this grid are defined by their values at grid points. Between grid points, they

are defined by bilinear interpolation of the values at neighboring grid points.

4.3.2 A Finite Volume Scheme

As shown in Figure 4.3, the discrete domain is partitioned into interior and boundary ele-

ments. Each interior element has four corners. There is much freedom in how to define the

location of these corners, and a poor choice leads to a low-accuracy scheme. Formulating

high-accuracy discretizations over boundary fitted grids is a challenging task. A detailed

analysis of a robust discretization scheme appropriate for Poisson-type and other equations

over two-dimensional domains can be found in [48].

This chapter focuses on methods for solving discrete equations associated with a given dis-

cretization schemes, not on how to choose an accurate scheme. We therefore use a simple
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Figure 4.3: Finite volume discretization on a boundary fitted grid. Shaded regions represent
generic elements. Black dots denote grid points. Small circles represent element corners.
Small squares locate the grid points defined by Dirichlet conditions. Triangles inside the
elements, along with the values of associated grid points, are used to define a gradient on
each triangle and outward normal derivatives on the boundary of each element.

 

Interior Element

Boundary Element

Corner Element

yet potentially low-accuracy scheme to locate the corners.

ci,j =
vi,j + vi+1,j + vi,j+1 + vi+1,j+1

4

i = 0, 1, . . . , Nx − 1; j = 0, 1, . . . , Ny − 1.

Wherever they are located, these points define elements Ei,j that partition the space. The

discrete equations associated with the value function are

∫

Ei,j

(
1

2
△v − g) = fi,j, (4.11)

and those associated with the small disturbance approximation are

∫

Ei,j

1

2
△ṽ = f̃i,j.

These equations must hold for each element Ei,j, which is indexed by i = 1, . . . , Nx and

j = 0, . . . , Ny. The arbitrary right side vectors f and f̃ have been added since this form

is prescribed by the FAS coarse-grid problem. They are zero for a problem defined on the
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finest grid.

To implement this discretization we use the integration-by-parts formula

∫

E

△v =

∫

∂E

∇v · n (4.12)

where n is the unit outward normal vector on the element E. As shown in Figure 4.3, each

element is naturally partitioned into triangles. If we assume the function over each triangle

is affine, then the three grid points associated with each triangle define a gradient. Residuals

in each element can then be computed by applying equation (4.12) and summing over the

triangles in that element.

Some edges on the boundary elements are not naturally associated with a triangle, and

a gradient cannot be defined as it can for interior elements. For these edges, the von-

Neumann boundary conditions (4.9c,4.9d,4.10c,4.10d) define the outward normal derivatives.

Elements on the Dirichlet boundary take the values prescribed by equations (4.9b,4.10b) at

the associated grid point.

Finally, the linearized value matching condition is given by

ṽ(x(Nx,j), yj) = −v(x(Nx,j), yj), j = 0, . . . , Ny.

In the case where the grid is regular, this finite-volume scheme reduces to a standard finite-

difference5 scheme based on the five point discrete Laplacian in Section 2.4.1. In this case

implementation is considerably simpler, and results in a second-order accurate scheme if the

corners of the domain are handled carefully.

4.4 Multigrid Treatment

We now focus on designing a V-cycle scheme to solve for ṽ and α̃ in the small disturbance

approximation. Assume the value function v in equation (4.11) is solved for exactly in terms

of a given boundary α, which may not be optimal.

5The finite-volume equations are scaled the area of each element. This scaling must be reflected in a
multigrid treatment when residuals are restricted.
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4.4.1 Multigrid Components

The Smoother

The most important and distinctive component of this multigrid scheme is the smoother.

For a given α̃, smoothing errors in ṽ is straightforward. There are many effective point-

wise smoothers compatible with this problem. We choose a standard Gauss-Seidel iteration

(described in Section 2.3.2) that sweeps through the grid points in lexicographic order: For

each j = 0, 1, . . . , Ny it visits points i = 1, . . . , Nx, updating ṽi,j at each point. We denote

Mv sweeps of this algorithm by

ṽ ← GS-LEX(ṽ, α̃,Mv).

It is not tractable to implement such a point-wise smoothing scheme for α̃ since it is pro-

hibitively expensive to invert the value matching condition one component at a time. As

described in Section 2.4, a smoother based on the residuals of the value matching condition

can be constructed. Equation (4.6), shows that the mapping between α̃ and the linearized

value-matching condition (4.10e) is not h-elliptic and therefore does not define a smoothing

correction. Equation (4.8) prescribes an equivalent value matching condition and provides

an h-elliptic operator that does define a smoothing correction. The symbol of this operator

at the continuous level is

Ĝ(k) ≈ 2g |k|

for large |k|. It follows that for small h, the discrete symbol is

Ĝhy(θ) ≈ Ĝ(θ/hy).

If hy is too large for this approximation to hold, it is possible to derive the actual discrete

symbol or at least a better approximation. For this problem, the approximation suffices.

The residuals of the preconditioned value matching condition defines a search direction,

and the symbol gives the magnitude of the step size. The highest frequencies that can be

represented on the grid are |π| /hy. Therefore, to smooth the highest frequency errors for

the equation

d2

dy2
ṽ(α, y) = − d2

dy2
v(α, y)
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Figure 4.4: The effects of smoothing sweeps using Mv = 3 and Mα = 1. The smoother is
both inexpensive and effective. This plot also shows that the value matching residuals do
not respond to high-frequency errors but the preconditioned residuals are sensitive.
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a smoothing correction is defined by α̃← α̃+ ˜̃α where

˜̃α = ξ

d
dy2

(
v(α, y)− ṽ(α, y)

)

Ĝhy(π)
(4.13)

and the step size is ξ ∈ (0, 1]. Choosing ξ must be done experimentally. While any choice

defines a smoother, a choice of ξ = 1 proves most effective for this problem.

At the discrete level, we replace the second derivative operator with finite difference quo-

tients. The resulting smoother performs well for y safely inside the interval (0, ymax), but

it may not interact well with the artificial boundary conditions. Indeed, at the corners of

the domain where two Neumann conditions hold simultaneously, there is a weak singularity

that becomes problematic on fine grids. To overcome this, the smoother does not change

the value of the boundary points α0, αNy
on the fine grid (only on the coarse grid), and the

neighboring points α1, αNy−1 are defined by linear interpolation with their neighbors rather

than by the preconditioned value matching residuals.

The smoothing step in equation (4.13) assumes that ṽ has been solved exactly for a given
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α̃. It is not necessary to capture all of the variation in ṽ induced by α̃. For smoothing,

only high frequencies are relevant, and these can be resolved with only a few Gauss-Seidel

relaxation sweeps of ṽ. Furthermore, since high-frequency variations in boundary data decay

quickly into the interior of the domain, it is only necessary to relax points near the stopping

boundary. These considerations can drastically affect the efficiency of the smoother. While

the general structure of the smoother was done through a formal analysis, striking an efficient

balance between good smoothing factors and total work done in a smoothing sweep must be

done experimentally.

Figure 4.4 shows how the following smoother acts on a random configuration with both high

and low-frequency components:

* Algorithm: (ṽ, α̃)← Smooth(ṽ, α̃,Mα,Mv)

1. Repeat Mα times:

(a) Smooth ṽ ← GS-LEX(ṽ, α̃,Mv).

(b) Update α̃ according to (4.13).

2. Smooth ṽ ← GS-LEX(ṽ, α̃,Mv).

Grid Transfer Operators

Transferring grid functions ṽ and α̃ is straightforward: Simple injection is used for the

restriction operator and bilinear interpolation for prolongation.

With von Neumann boundary conditions, restricting the residuals is more subtle. In [57,

Section 5.6.2] it is shown that using injection near von Neumann boundaries can result in

improper scaling in the coarse grid problem. As we saw in Figure 2.3.6, even if the scaling

problems are fixed, the convergence rate of a multigrid cycle is improved substantially when

a higher-order restriction operator is used. A conventional choice for restricting residuals for

Poisson-type equations is the restriction operator I2h
h that satisfies

∫

E2h

wh =

∫

E2h

I2h
h wh (4.14)

for each fine grid function wh and each coarse grid element E2h. The left hand integral in

this formula is computed through the trapezoid rule and the right integral by the midpoint

rule. When the grid is uniform and rectangular, this definition produces the full-weighting
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operator, written in stencil form as

I2h
h =

1

16




1 2 1

2 4 2

1 2 1


 .

Similarly, stencils for restricting residuals boundary and corner elements are

1

16

[
2 4 2

2 4 2

]
,

1

16




2 2

4 4

2 2


 , and

1

16

[
4 4

4 4

]
.

For the linearized value matching condition, residuals are restricted by the one-dimensional

full-weighting operator, given in stencil form by [1, 2, 1]/4. End points are simply injected.6

The Coarse Grid Problem

Suppose the problem on a given grid Ωh(α
h) is to find grid functions ṽh and α̃h that satisfy

the equations

(
Lh(ṽh, α̃h)

)
i,j

= f̃h
i,j

ṽh
(Nh

x ,j) = −vh
(Nh

x ,j)

where the operator Lh is defined as

(
Lh(ṽh, α̃h)

)
i,j

=

∫

Eh
i,j

1

2
△ṽh

6Because residuals are injected at the boundaries j = 0, Ny the total contribution from the residual at
neighboring points j = 1, Ny − 1 is one half rather than one. This practice loses some information in the
coarsening process since it is inconsistent with equation (4.14). A potentially better choice for restriction
operators at the boundaries is defined by the stencils [2, 2, 1]/4 and [1, 2, 2]/4. For the problem at hand, this
detail does not seem to improve performance of the V-Cycle. However, the artifacts of residual transfer near
the boundaries on the coarsest grid can be seen in the convergence plots in Figure 4.6(b).
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with the boundary conditions (4.10b,4.10c,4.10d) appropriately incorporated into the oper-

ator. Then, the coarse grid problem is to find grid functions ṽ2h and α̃2h that satisfy

(
L2h(ṽ2h, α̃2h)

)
i,j

= f̃ 2h
i,j

ṽ2h
(Nh

x ,j) = −v2h
(N2h

x ,j)

where the right side vector is defined by the Full Approximation Scheme

f̃ 2h
i,j =

∣∣E2h
i,j

∣∣
∣∣∣Eh

(i,j)′

∣∣∣
I2h
h

(
f̃h − Lh(ṽh, α̃h)

)
i,j

+
(
L2h(I2h

h ṽh, I2h
h α̃h)

)
i,j
. (4.15)

The subscripts (i, j)′ denote the fine grid points corresponding to the index (i, j) on the

coarse grid. Scaling the residuals in this manner is necessary because the residuals repre-

sent integrals of grid functions rather than grid functions themselves. Note that the value

matching condition does not require a right side correction.

Exact Solver on Coarsest Grid

To close the V-cycle iteration, we require a robust, exact solver for the small disturbance

approximation on the coarsest grid. We write

(ṽh, α̃h)← ExactSolve(f̃h).

On the coarsest grid, it is desirable to use only three to five grid points per dimension so

that ṽh can be efficiently solved for a given of α̃h using dense matrix techniques available

in any linear algebra package. This solver establishes a bijective map between α̃h and the

residuals of the value matching condition. To find the zero of this map, a direct solver7 that

requires only evaluations of the value matching residuals can be used.

4.4.2 The V-Cycle

These multigrid components can now be assembled into a standard V-cycle algorithm.

7See Remark 2 in the previous chapter.



4.4. Multigrid Treatment 78

Table 4.1: Estimated error reduction factors for V-Cycles with various smoother configura-
tions and depths. Textbook error reductions for V-cycles are in the range of 8–12.

Mα Mv ξ Level 2 3 4 6 9
1 1 1 8.44 7.78 7.54 6.64 6.76
1 2 1 8.75 8.19 8.04 7.99 8.12
1 ∞ 1 9.19 8.46 8.61 8.71 n/a
2 1 1 13.37 11.50 10.55 9.77 9.12
2 2 1 13.07 12.46 12.21 11.71 11.33
2 ∞ 1 13.67 13.28 13.27 12.95 n/a
3 1 1 17.09 16.77 15.04 13.69 12.79
1 1 2/3 4.69 4.04 4.09 4.29 4.17
1 3 2/3 5.13 3.98 4.06 4.06 4.05
2 1 2/3 9.32 9.59 8.97 8.46 8.58
2 2 2/3 10.01 9.74 9.66 9.53 9.38
2 4 2/3 10.60 9.88 9.98 9.89 9.84
3 2 2/3 12.93 12.65 12.63 12.21 11.91

* Algorithm: (ṽh, α̃h)← V-Cycle(L, ṽh, α̃h, f̃h,Mα,Mv)

1. If L = 0 set (ṽh, α̃h)← ExactSolve(f̃h) and return.

2. Otherwise, set (ṽh, α̃h)← Smooth(ṽh, α̃h,Mα,Mv).

3. Compute the coarse-grid right side f̃ 2h according to equation (4.15).

4. Solve the coarse-grid problem

(ṽ2h, α̃2h)← V-Cycle(L− 1, ṽ2h, α̃2h, f̃ 2h,Mα,Mv)

5. Apply the update (ṽh, α̃h)← (ṽh, α̃h) + Ih
2h

(
(ṽ2h, α̃2h) + I2h

h (ṽ2h, α̃2h)
)

6. Apply post-smoothing (ṽh, α̃h)← Smooth(ṽh, α̃h,Mα,Mv) and return.

Performance of V-cycles

For a first set of numerical experiments, we work with constant B and g and linearize

around the exact solution (vh, αh) to the problem on the grid Ωh(α
h). This choice implies

a rectangular domain and simplifies implementation issues considerably. To explore the

performance of the V-Cycle, we start with an initial perturbation α̃ and track the convergence
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back to α̃ = 0.

Table 4.1 and Figures 4.6(a) and 4.6(b) show the performance of the V-Cycle starting from a

random configuration with both high and low frequencies. Taking a full-size smoothing step

(ξ = 1) results in a textbook error reduction factor for all but the cheapest smoothing scheme

where (Mα,Mv) = (1, 1). The step size for this smoother is particularly well chosen since

it exploits the rectangular shape of the domain. For more general boundary configurations,

we might not expect the smoother to perform this well. To test this, we chose a step size

of ξ = 2/3. The rates are more modest and, possibly, more realistic. In this case, a more

expensive smoother with Mα = 2 bolsters the method enough to give textbook multigrid

performance.

Figure 4.6 shows a possible FMG algorithm for solving the stopping problem to a given level

of accuracy.
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Figure 4.5: Convergence of V-Cycles.
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(a) Convergence plots for V-cycles with six levels and various
smoother configurations. In all cases the convergence rate settles
in immediately after the first V-cycle.
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(b) Shown is the convergence of α̃ starting from a random configuration. Several V-
Cycles were run with L = 5 levels. Relaxation on each level consists of two iterations
of smoothing α̃ using three Gauss-Seidel sweeps of ṽ per iteration. The coarsest grid
has spacing h = 1/5 in both directions. Parameter values are B = g = 1. Error
reduction factors of the discrete L2 norm of α̃ are about 9.2. Artifacts of the artificial
boundary conditions can be seen as convergence progresses.
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Figure 4.6: A Full Multigrid cycle with embedded Newton-style iteration.
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* Algorithm: (vh, αh)← FMG-Cycle(L,Mα,Mv,MV C , M̃V C)

1. If L = 0, solve the coarse-grid and return (ṽh, α̃h) = ExactSolve(0).

2. Otherwise set (v2h, α2h) = FMG-Cycle(L− 1,Mα,Mv,MV C , M̃V C).

3. Apply cubic interpolation to α2h to get αh. Generate grid Ωh(αh) and let vh be the
cubic interpolation of v2h to the new grid.

4. Repeat MV C times: vh ← V-Cycle(L, vh, 0,Mv)

5. Initialize (ṽh, α̃h) = 0 and repeat M̃V C times:
(ṽh, α̃h,Mα,Mv)← V-Cycle(L, ṽh, α̃h, 0,Mα,Mv)

6. Update vh ← vh + ṽh and αh ← αh + α̃ and return.
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4.5 A Probabilistic Interpretation

A prominent operator in our numerical analysis is defined by

Aeιky = |k|︸︷︷︸
bA(k)

eιky.

Taking A to be the generator of a Markov process, we solve the Fokker-Plank equation

pt = Ap

p(t, y; y′) = δy′(y)

to find the transition density is

p(t, y; y′) =

∫

IR

p̂(θ, t)eιθ(y−y′)dθ,

where p̂(θ, t) ∝ e−|θ|t.

In the space variables, the transition density defines a Cauchy process :

Prob(Yt ∈ E|Y0 = y) =

∫

E

p(t, y; y′)dy′

where p(y, y′, t) ∝ t

(y − y′)2 + t2
.

What stochastic process in the context of the optimal stopping problem has the same tran-

sition probabilities?

Suppose the optimal stopping boundary is (α, y) for constant α. Let LX
t be the cumulative

local time that X has spent at this boundary. Formally, the local time is the random function

LX
t = lim

ǫ→0

1

ǫ

∫ t

0

1I(|Xs − α| < ǫ)ds.

Now define the reflection of the process X off the stopping boundary:

XR
t =




Xt for Xt ≤ α

α− (Xt − α) for Xt > α.

It is straightforward to show that the local time of Xt and XR
t at α have the same transition
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Figure 4.7: Sample paths of XR and Y plotted in real time and Y subordinated in the local
time of X at α = 0. Vertical lines indicate where Y has visited during excursions X takes
away from zero.
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law. Let us now define a process that is Y subordinated in the local time of XR. That is,

the process

Zs = Y(LXR
)−1(s)

is the Brownian Motion Y where the unit of time is measured not by the physical clock

but by the amount of local time accumulated by XR up to given physical time. A simple

conditioning argument shows that the transition probabilities of Zs are given by p(s, z; z′),

so Zs is a Cauchy process. We can relate these two constructions of a Cauchy process by

considering the smooth pasting condition

vx(α, y) = 0
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in relation to the Poisson equation

1

2
△v = g.

The probabilistic interpretation of the smooth pasting condition is that Xt is replaced with

XR
t , which reflects off the boundary in local time. If X is replaced with XR, the transition

density q(t, x, y;x′, y′) for (XR, Y ) solves the Fokker-Plank equation

1

2
△q = qt

qx(t, α, y) = 0.

If the smooth pasting condition is considered a natural boundary condition for the value

function, we can interpret it together with the value matching condition: At the stopping

boundary, we are indifferent to stopping and getting zero and continuing if the state process

reflects off the boundary in local time. The value matching condition v(α(y), y) = 0 is entirely

local: it does not depend on nearby points. By taking second derivatives, we effectively

introduced a coupling.

To illustrate, suppose the process (XR
t , Yt) is on the stopping boundary (α(y), y). The

process may then take an excursion away from this boundary and hit the reward boundary

after time τ0 or return to the stopping boundary after time τα. In this way, we can reduce

the two-dimensional dynamic programming equation to the stopping boundary. Assuming

constant g, the dynamic programming equation can be written

U(Yt) = E
[
−g∆τ + 1I(τ0 < τα)B(Yτ0) + 1I(τ0 ≥ τα)U(Yτα

)
∣∣ Xt = α(Yt), Yt

]

where U(y) = v(α(y), y) and ∆τ is the amount of physical time the excursion takes, which is

indicated by the inverse local time. The value matching condition v(α(y), y) = 0 can then be

interpreted as follows: The stopping boundary α makes zero the only solution of the above

dynamic program. By using Itô’s formula to transform the dynamic programming integral

equation into an pseudo-differential equation, we find that the relevant operator corresponds

to our preconditioned value matching condition where the operator generates a Lévy process.

At the discrete level, with a right side added to the smooth pasting condition, we have

v(α, y)− v(α− h, y)
h

= f =⇒ v(α, y) = v(α− h, y) + hf.

The interpretation is that when X hits the boundary α it goes to state α−h with probability



4.5. A Probabilistic Interpretation 85

one, and a reward of f dollars per unit local time is collected. In contrast to the interior

equations where ∆t = h2/2, the local time step is ∆tloc = h. This can be seen in the rate at

which information decays over time. We saw that p̂(t, θ) ∝ e−|θ|t. In contrast, the transition

density for a Brownian motion would have p̂BM(t, θ) ∝ e−|θ|2t. This implies that Brownian

Motion damps high frequencies faster than does a Cauchy process.



Appendix A

Convergence History of Residuals

A printout of the residuals at all levels can be a valuable diagnostic tool. The following table

gives the convergence history on each level of the first three V-Cycles shown in Figure 3.7.

The patterns displayed here are characteristic of textbook multigrid performance.

Notice that at level L = 0 the coarsest equations are solved down to machine zero. At the

finest level L = 4, the difference between the end of one V-Cycle and the beginning of the

next is the effect of one relaxation sweep.

86
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Level Interior U Smooth Pasting Interior J Calibration Condition

4 1.18e-5 -1.04e-4 2.20e-5 8.21e-3

3 1.15e-5 -1.07e-4 2.17e-5 8.21e-3

2 1.13e-5 -1.13e-4 2.20e-5 8.21e-3

1 1.08e-5 -1.26e-4 2.27e-5 8.22e-3

0 3.10e-14 5.32e-15 1.33e-14 -2.13e-14

1 8.59e-6 -1.26e-4 1.33e-5 -7.46e-6

2 1.13e-5 -1.93e-4 1.78e-5 -9.45e-6

3 1.28e-5 -2.27e-4 2.e-5 -9.83e-6

4 1.34e-5 2.44e-4 2.08e-5 -9.86e-6

4 1.52e-6 1.31e-5 2.18e-6 -8.66e-4

3 1.48e-6 1.34e-5 2.14e-6 -8.66e-4

2 1.45e-6 - 1.42e-5 2.16e-6 -8.66e-4

1 1.40e-6 1.58e-5 2.23e-6 -8.67e-4

0 2.06e-14 1.77e-15 2.25e-14 -4.26e-14

1 9.02e-7 -1.33e-5 1.40e-6 7.87e-7

2 1.19e-6 -2.03e-5 1.87e-6 9.98e-7

3 1.34e-6 -2.39e-5 2.11e-6 1.03e-6

4 1.40e-6 -2.57e-5 2.19e-6 1.04e-6

4 1.59e-7 -1.38e-6 2.30e-7 9.11e-5

3 1.55e-7 -1.41e-6 2.26e-7 9.11e-5

2 1.52e-7 -1.50e-6 2.28e-7 9.12e-5

1 1.47e-7 -1.67e-6 2.35e-7 9.13e-5

0 2.61e-14 -2.48e-14 2.94e-14 -1.13e-13

1 9.50e-8 -1.40e-6 1.47e-7 -8.29e-8

2 1.25e-7 2.14e-6 1.97e-7 -1.05e-7

3 1.41e-7 -2.52e-6 2.22e-7 -1.09e-7

4 1.47e-7 2.71e-6 2.31e-7 -1.09e-7
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