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Probabilistic Analysis of Various Algorithms

Abstract

In recent year, theory and practice in computer science has steered away from each other in many
aspects. Recent improvements in computational capabilities and field of optimization have seen rise
to the use of various different heuristics, which work in practice with great success, but have not
seen much investigation on the theory side. This has created a need for theoretical investigation to
bridge the gap between two branches of computing. More frequently than not, the heuristic choices
relies on known empirical observations, and intuitive understanding of trade-off between runtime,
memory, quality of approximation and probability of success of these algorithms.

In this thesis, we discuss a few such interesting dilemmas, and try to provide provable justifica-
tions for some of them by using various probabilistic and analytical techniques. We will focus on
two main topics - average-case approximation quality of various lower bounds used for Euclidean
Traveling Salesman Problem and computational versus statistical efficiency of modern generative
models, like noise contrastive estimation and score estimation.
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Chapter 1

Introduction

Currently, we are in the era where complexity theory and computational practice of algorithms
have outpaced each other. Particularly, in the field of optimization. In variety of applications, even
for the problems that are proved to be NP-hard, we do have heuristical approaches which perform
significantly better than expectations, and provide either approximate or exact answers even for
large instances quite successfully. This gives rise to various questions which would help us fill in
these gaps - which heuristics are likely to work and under what conditions?

One popular approach to understanding different heuristics is to look at the average-case
analysis. The simplest example is (non-randomized) quick-sort algorithm, where pivot element is
fixed in advance, which has worst case runtime of O(n2), but average case runtime of O(n log n).
One of the most popular results in this directions would be the smoothed analysis of simplex
algorithm Spielman and Teng [ST09], which proves that simplex method runs in polynomial time
on average1, explaining why simplex is often preferred over interior-point methods, which have a
provably polynomial runtime in worst case2. Average-case analysis is an important tool for studying
Euclidean Traveling Salesperson Problem (TSP). In fact, the value of optimal TSP tour on a typical
instance - n uniformly random points in [0, 1]2 is highly concentrated around C

√
n for some absolute

constant C [BHH59]. Similar analysis for Karp’s Dissection algorithm tells us that it also converges
to C
√
n for the same constant C, justifying success of dissection algorithm in practice. In terms of

lower bounds, similar results were proved for min-cost maximum matchings [Pap78] and Held-Karp
Linear relaxation of TSP [GB91]. In particular, there was strong empirical evidence suggesting that
Held-Karp LP relaxation and TSP converge to the same value, which was recently disproved [FP15].
Although the fact that constants are nearly equal implies that Held-Karp LP relaxation provides a
lower bound very close to optimal, the separation of two constants implies that it cannot be used to
produce an exact algorithm! In chapters 2 and 3 we will explore extensions of some of the results
in this direction.

We observe a similar phenomenon among generative models in machine learning. The overarching
theme for generative modeling is to fix a parametric family of distributions {pθ, θ ∈ Θ} and given
samples from a distribution p∗, find the value of θ∗ such that p∗ and pθ∗ are close. The choice of

1In fact, average-case runtime for a random perturbation of worst-case instance is polynomial in input size.
2Runtime of simplex is exponential in worst-case
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the family pθ and estimation algorithm for θ∗ is often made heuristically using previous empirical
observations. Apart from runtime complexity, an important parameter for any estimator is statistical
efficiency - the rate of convergence of mean-squared error, E[∥θ̂n − θ∗∥2], where θ̂n is the output of
estimator. The gold standard for the estimation algorithm is the Maxmimum-Likelihood Estimation
(MLE), since MLE has optimal statistical efficiency (Le Cam 1953, see [Vaa98]), and estimator
that performs better than MLE only does so on a 0-measure (lebesgue) subset of Θ. But the
state-of-art for estimators has diverged from MLE and uses various other estimators, since they are
believed to be computationally efficient. Two of the most popular alternatives are Noise Contrastive
Estimation, introduced in [GH10; GH12] and score matching, introduced in [Hyv05]. This gives rise
to two questions: How much do noise contrastive estimate and score matching help computationally,
and how much do they lose statistically, when compared to MLE? Some facets of these questions
have recently been explored [KHR22; Liu+21; Che+22], and we will explore some of the remaining
in chapters 5 and 6.

Organization of the thesis:

This thesis groups together 7 fairly different pieces of work, and every chapter corresponds to a
different result.

Chapter 2 extends on work of Frieze and Pegden [FP15] and proves that addition of Comb
inequalities, which are a special case of cutting plan inequalities to Held-Karp LP relaxation does
not suffice to bridge the gap for asymptotic convergence, and prove a separation result. Chapter 3
looks at a partial variant of TSP problem, where we want a tour through only an ε fraction of points,
and prove a separation between behaviors of functionals TSP, MST and MM, TF as ε → 0. The per
edge cost of maximum-matching or two-factor goes to zero as ε→ 0, but for TSP it does not, and
can be lower bounded by an absolute constant.

Chapter 6 describes a simple case where the score matching estimator performs provably better
than MLE. We construct an exponential family over which there is no polynomial time algorithm
to compute MLE unless RP = NP, but on the other hand, score matching estimator can be
computed in polynomial time, while only losing a polynomial factor in statistical efficiency over
MLE. Chapter 5 describes a scenario where noise-contrastive estimation has exponentially bad
complexity as compared to MLE, even when the true distribution and noise distribution have
matching first and second moments.

Chapter 4 looks at a problem of sampling nearly shortest self-avoiding walks on a grid graph.
We provide a direct dynamic programming algorithm with expected polynomial runtime, while
proving that the Markov chain approach in this setting has exponential mixing time. Chapter 7
proves an universal approximation result, showing existence of normalizing flow networks that have
a well-conditioned Jacobian, provided that true distribution is log-concave. Finally, Chapter 8
provides an efficient single-pass algorithm to compute a low-dimensional subspace approximation
to a given matrix.

2



Chapter 2

Comb Inequalities for Euclidean
Traveling Salesman Problem

Papadimitriou showed that the Euclidean TSP is NP-hard, while Arora [Aro96] and Mitchell
[Mit99] described polynomial-time approximation schemes (PTAS) for the Euclidean TSP. On the
computational side: efficient implementations of these PTASs have not materialized to supplant the
use of heuristics without provable guarantees, while on the other hand, branch-and-cut methods
using these heuristics with LP-based lower bounds nevertheless have found (provably) optimal
tours in random or real-world (rather than worst-case) problem instances of large size; the current
record is a problem instance from an application to integrated circuit design with 85,900 “cities”
[App+06].

Underpinning the tension in these developments is the unresolved status (even subject to
standard complexity assumptions) of the hardness of finding optimal tours on typical—rather than
worst-case—instances of the Euclidean TSP:

Question 1. Is there a polynomial-time algorithm for the Euclidean TSP which, given a collection
of n independent random points, returns an optimal tour with probability pn where pn → 1 as
n→∞?

2.1 Preliminaries

2.1.1 Branch-and-cut for the Euclidean TSP

One of the most successful computational approaches in practice to find optimal tours for the
Euclidean TSP is the branch-and-cut approach, discussed by Applegate, Bixby, Chvátal and Cook
[App+06], and implemented in Cook’s software package Concorde.

Before discussing branch-and-cut, let us first recall that the more general branch-and-bound
approach is a combinatorial optimization paradigm based on pruning a branched exhaustive search.
In the context of finding optimal TSP tours, the approach combines (sub-optimal) algorithms for
finding tours subject to restrictions (e.g., edge inclusions/exclusions), methods to establish lower
bounds on tour lengths subject to restrictions, and a branching strategy which recursively partitions

3



the exhaustive search space into complementary sets of restrictions. Efficiency of the approach
depends on lower bound methods being strong enough on restricted instances to match the global
performance of upper bound (tour-finding) approaches to quickly prune large parts of the search
space.

Within this paradigm, branch-and-cut algorithms for the TSP specialize by using an LP
relaxation lower bound for the TSP, which, for each constrained instance, can be augmented by an
adaptive choice of cutting planes. The algorithm branches, partitioning a problem instance into a
collection of problem instances with complementary restrictions, and then prunes by searching for
cutting planes for each.

Frieze and Pegden [FP15] showed that regardless of the tour-finding algorithm used for upper
bounds (i.e., even if it actually finds optimal tours), the branch and bound decision tree will
inevitably have exponential size if lower bounds are found via the Held-Karp LP-relaxation of the
TSP, without any additional cutting planes [HK71].

This Held-Karp lower bound on the tour is defined by the linear program:

min
∑

{i,j}⊆V

c{ij}x{ij}

subject to

(i) (∀i)
∑
j ̸=i

x{ij} = 2

(ii) (∀∅ ̸= S ⊊ V )
∑

{i,j}⊆S

x{ij} ≤ |S| − 1

(iii) (∀i < j ∈ V ) x{ij} ∈ [0, 1]

. (2.1)

Let HK(X) denote the value of this LP on a set X. Note that under assumption (i) in (2.1), (ii)
can be replaced by

(∀∅ ̸= S ⊊ V )
∑

i∈S,j /∈S

x{ij} ≥ 2 (2.2)

as shown in Section 58.5 in [Sch03]; these are known as subtour-elimination constraints.
The branch-and-cut approaches used to solve TSP instances of significant size go beyond the

branch-and-bound framework considered by Frieze and Pegden, by using additional cutting planes
to further prune the TSP search space. Perhaps the most important class of such cutting planes
are the so-called comb-inequalities (which are valid for any solution x corresponding to a TSP tour
[GP86]).

Definition 2 (Comb Inequality). Given sets H and T1, . . . , Tt for odd t, such that Ti ∩ Tj = ∅

4



and Ti ∩H ̸= ∅, the comb inequality associated to these sets is given by

∑
i∈H
j/∈H

x{ij} +
t∑

k=1

∑
i∈Tk
j /∈Tk

x{ij} ≥ 3t+ 1.

In this case, we call H to be the handle and Ti to be the teeth of comb inequality. We refer to
C = H ∪

(
∪tk=0Tk

)
as the comb and we will use the term size of the comb to denote |C|.

We will obtain in this paper a proof that polynomial-time branch-and-cut algorithms based
on comb inequalities of bounded size cannot solve the Euclidean TSP on typical instances. In
particular, let Combc(X) denote the value of the LP obtained by adding all comb inequalities with
combs of size at most c to the Held-Karp LP relaxation of TSP. For a random set Xn of n points in
[0, 1]d, we prove:

Theorem 3. Suppose that we use branch and bound to solve the TSP on Xn, using Combc as a
lower bound for some fixed constant c. Then the algorithm runs in time eΩ(n/polylog(n)) almost surely.

Note that this gives a almost-exponential lower bound on the runtime of any branch and bound
strategy. Further, we have a slightly more general version of this result when c is not a constant,
but with a slightly weaker but still super-polynomial lower bound on the runtime:

Theorem 4. Suppose that we use branch and bound to solve the TSP on Xn, using Combc as a

lower bound for c = O
(

logn
log logn

)
. Then the algorithm runs in time eΩ(n0.5) almost surely.

The set of all combs of size logn
log logn

has size at least nΩ(logn/(log logn)), which is super polynomial.
It is not clear that there should be a polynomial-time separation algorithm for this set of comb-
inequalities. The known results for separation of comb inequalities are for combs with a bounded
number of teeth [Car97], and combs that are derived in a specific way [Car04].
The proof of the two theorems above theorem, along with a precise definition of the branch-and-
bound paradigm we consider, can be found in Section 2.3. The applicability of Theorems 3 and 4
to branch-and-cut follows from the fact that a branch-and-cut tree using only combs of size ≤ c
contains as a subtree the corresponding branch-and-bound which uses Combc as a lower bound. The
proofs of Theorems 3 and 4 depends on a new extension of probabilistic analyses of the Euclidean
TSP and its LP relaxations.

2.1.2 Probabilistic analysis of cutting planes for the Euclidean TSP

The proof of Theorem 3 will depend on a probabilistic analysis of the impact of comb-inequality
cutting planes on the value of the Held-Karp linear program (2.1). In particular, if x1, x2, . . . is a
sequence of random points in [0, 1]d and Xn = {x1, . . . , xn}, we aim to show for any constant c that
for some ε > 0,

Combc(Xn) ≤ (1− ε)TSP(Xn) almost surely (a.s.),

where TSP(X) denotes the length of a shortest tour through X. The random variable TSP(Xn) was
first studied by Beardwood, Halton and Hammersley [BHH59]. They proved in 1959 that there is

5



an absolute constant βd
TSP such that the length TSP(Xn) of a minimum length TSP tour through

Xn satisfies
TSP(Xn) ∼ βd

TSPn
d−1
d a.s.

Here an ∼ bn indicates that an/bn → 1. This result has since been extended to many structures
other than Hamiltonian cycles. Various similar results are also known for problems like Minimum
Spanning Tree [BHH59] and Maximum Matching [Pap78], etc. Steele [Ste81] extended this result to
a more general framework which proves existence of such asymptotic constants βF for subadditive
Euclidean functional F . One peculiar feature of these results is that the true values of the constants
are unknown, and even improvements on their estimates are rare. Some results in this direction
were proved in [BV90] and [Ste15].

Goemans and Bertsimas established in [GB91] an analogous asymptotic result for the Held-Karp
linear program:

HK(Xn) ∼ βd
HKn

d−1
d

by proving that HK(X) is a subadditive Euclidean functional. They asked in [GB91] whether
βd
HK = βd

TSP; this was answered in the negative in the same paper [FP15] showing that branch-and-
bound with HK(Xn) as a lower bound takes exponential time on typical inputs; Frieze and Pegden
proved there that

βd
HK < βd

TSP ∀d ≥ 2. (2.3)

Let Combc denote the value of the LP obtained by adding all comb inequalities with combs of
size at most c to the Held-Karp LP relaxation of TSP. Since Combc(X) ≤ TSP(X) for all x ∈ Rd,
there is some constant γ such that

lim sup
n→∞

Combc(Xn) · n− d
d−1 ≤ γ a.s. (2.4)

Note that γ = βd
TSP satisfies this equation.

Definition 5. Let Γ denote the set of constants that satisfy (2.4). Define

γc,d
Comb = inf

γ∈Γ
γ.

We claim that γc,d
Comb ∈ Γ. This holds since for all m, we have

P
[
lim sup
n→∞

Combc(Xn) · n− d−1
d > γc,d

Comb +
1

m

]
= 0.

By taking a countable union of all these events, we get that

P
[
lim sup
n→∞

Combc(Xn) · n− d−1
d > γc,d

Comb

]
= 0,

proving that γc,d
Comb satisfies (2.4) and lies in Γ. With these definitions above, we will prove

Theorem 6. For all constants c and for all d ≥ 2,

γc,d
Comb < βd

TSP (2.5)

The proof of Theorem 6 appears in Section 2.2. In Section 2.3 we show that this theorem implies
Theorem 3.

6
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Figure 2.1: Solution when tour enters the gadget only once. Thick edges have value 1 and thin
edges have value 0.5.

2.1.3 Notation

Given a graph G = (V,E) and A,B ⊂ H, let δ(A) denote the set of edges of G, with exactly one
vertex inside A. If A,B are disjoint, then let e(A,B) denote the set of edges in G with exactly one
vertex in A and one vertex in B.
A weight assignment x is a function x : E 7→ R. Let F ⊂ E, then

x(F ) =
∑
e∈F

x(e)

denotes the total weight of edges in F . In particular, x(δ(A)) denotes the total weight leaving the
set A, and x(e(A,B)) denotes the total weight of edges going from A to B.

2.2 Separating Constant Size Comb LP from TSP

Frieze and Pegden show in [FP15] that for all d ≥ 2, βd
HK < βd

TSP. They prove the result by constructing
a gadget such that the length of any tour while passing through the gadget is significantly larger
than the total contribution of a solution satisfying subtour elimination constraints. They then
prove that suitable approximations to this gadget occur frequently enough in random set to ensure
that the an LP solution can be found of length (1− ε)TSP(Xn). We now define this gadget S(k).

Definition 7. The gadget S(k) consists of 2k equally spaced points on the circle of radius 4 and k
equally spaced points on the circle of radius 1, along with the points (2, 0) and (−2, 0), which we
refer to as the gap vertices.

Observation 9 (Observation 3.10 from [FP15]) states that we can enter a copy of this gadget at
most twice. Section 2.2 shows the gadget with a TSP (on the left) and corresponding Held-Karp
solution (on the right) when the TSP enters/leaves the gadget just once, while Section 2.2 shows
the same when the tour enters the same figure at most twice. Note that in both the cases, the tour
crossed the gap between smaller and larger circle roughly 3 times, while the half-integral solution

7
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Figure 2.2: Solution when tour enters the gadget exactly twice. Thick edges have value 1 and thin
edges have value 0.5.

(on the right) crosses this gap only twice (since the edges crossing the gap have weight 0.5). Thus
there is a constant gap between values of these solutions.

The proof in [FP15] of (2.3) incorporates the following two observations. Before stating them,
we will recall an important definition from [FP15]:

Definition 8. Consider a set X ⊂ Rn. A set T ⊂ X is (ε,D)-copy of S ⊂ Rn if there is a set
S ′ ∼= S1 and a bijection f between T and S ′ such that for all x ∈ T , ∥x− f(x)∥ < ε, and such that
T is at distance > D from X \ T .

Note that when we refer to a scaled (ε,D)-copy of S, by say a factor t, we mean a (tε, tD)-copy of
t · S.

Observation 9 (Observation 3.10 from [FP15]). Suppose that Sε,D is an (ε,D) copy of any fixed
set S for fixed ε and sufficiently large D. Then there are at most 2 pairs of edges in a shortest TSP
tour which join Sε,D to V \ Sε,D.

Observation 10 (Observation 3.1 from [FP15]). Let {Y1, Y2, . . .} be a sequence of points drawn
uniformly at random from [0, t]d and Yn = {Y1, . . . , Yn}, where t = n1/d. Given any finite point
set S, any ε > 0, and any D, Yn a.s. contains at least CS

ε,Dn (ε,D)-copies of S, for some constant
CS

ε,D > 0.

The structure of the proof of Equation (2.3) from [FP15] is than as follows:

(i) For Yn = t · Xn, Observation 10 ensures that we can choose a large constant D and a small
constant ε > 0 and find linearly many (ε,D)-copies of the gadget described above.

(ii) By Observation 9, for each (ε,D) copy of the gadget, the shortest tour through Yn has either
one or two components when restricted to the gadget.

(iii) For both of these two possible cases, in each approximate copy of the gadget, the tour can be
locally shortened by relaxing to a (half-integral) LP solution as in Section 2.2.2.

1For S′, S ∈ Rn, we write S′ ∼= S if there is an isometry of Rn that maps S to S′.
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(iv) In total these shorten the tour by δ · n for some δ > 0, which establishes (2.3) since after
rescaling by the factor t we have that TSP(Yn) ∼ βd

TSPn.

To extend this approach to prove Theorem 6, we will do the following:

(1) Construct a local half-integral solution on S = S(k) assuming that tour visits S exactly onces,
entering and exiting through adjacent vertices (satisfying Property 21).

(2) Prove that this solution satisfies all comb inequalities of size c for k = O(c) .

(3) Construct a gadget Π3(S) that contains 12 copies of S and any optimal tour through Π3(S)
must go through at least one copy of S while satisfying Property 21.

To begin, we prove some structural lemmas about combs.

2.2.1 Technical lemmas for comb inequalities

For the lemmas in this section, we suppose that x is a half-integral solution to the Held-Karp LP,
which has the property that all the edges of weight 1/2 in x form a graph that can be written as a
union of edge disjoint triangles.

Lemma 11. If C is a comb violated by x with handle H and teeth Ti for i = 1 . . . t for odd t, then
following must hold:

1. x(δ(H)) = t
2. x(δ∗(H)) = 0
3. x(δ(Ti)) = 2 for all i.
4. x(e(Ai, Bi)) = 1.
5. x(e(Ai, H \ Ai)) = 1.
6. x(e(Bi, X \ (H ∪ Ti))) = 1.

where Ai = Ti ∩H, Bi = Ti \H and δ∗(H) denotes the edges with exactly one endpoint inside H,
and at least one endpoint outside

⋃t
i=1 Ti.

Proof. Suppose x violates the comb inequality C with handle H and teeth T1, . . . , Tt for odd t.
Since this is a comb inequality, we know that Ti intersect H, and are pairwise disjoint. For each

i, define Ai = Ti ∩H and Bi = Ti \H. For any set two sets S, T , let e(S, T ) denote the set of edges
with one endpoint in S and another in T , and let δ(S) denote the set of all edges with exactly one
endpoint in S. Let x denote the solution of LP that we are considering. That is, for any edge e,
x(e) denote the value associated to that edge. For any set U ⊆ E,

x(U) =
∑
e∈U

x(e)

is the total weight of the set of edges.
The comb-inequality constraint is given by

x(δ(H)) +
t∑

i=1

x(δ(Ti)) ≥ 3t+ 1.

9



Since the comb inequality is not valid for the solution, we have

x(δ(H)) +
t∑

i=1

x(δ(Ti)) < 3t+ 1.

From subtour elimination, we have x(δ(Ai)) ≥ 2 and x(δ(Bi)) ≥ 2. Since Ai and Bi partition Ti,
we have

x(δ(Ti)) = x(δ(Ai)) + x(δ(Bi))− 2x(e(Ai, Bi)). (2.6)

Let δ∗(H) denote all the edges exiting H that have are not contained inside a single tooth.

δ∗(H) = δ(H) \

(
t⋃

i=1

e(Ai, Bi)

)

Substituting this into the comb inequality,

x(δ∗(H)) +
t∑

i=1

(
x(e(Ai, Bi)) + x(δ(Ti))

)
< 3t+ 1. (2.7)

Because of subtour elimination constraints, we have x(δ(Ti)) ≥ 2 for all i, which gives

x(δ∗(H)) +
t∑

i=1

x(e(Ai, Bi)) < t+ 1

=⇒
t∑

i=1

x(e(Ai, Bi)) < t+ 1− x(δ∗(H)) (2.8)

on the other hand, (2.6) gives

x(δ∗(H)) +
t∑

i=1

(
x(e(Ai, Bi)) + x(δ(Ai)) + x(δ(Bi))− 2x(e(Ai, Bi))

)
< 3t+ 1

=⇒
t∑

i=1

(
x(δ(Ai)) + x(δ(Bi))

)
− 3t− 1 + x(δ∗(H)) <

t∑
i=1

x(e(Ai, Bi))

=⇒ t− 1 + x(δ∗(H)) <
t∑

i=1

x(e(Ai, Bi)) (2.9)

Combining the both, we have

t− 1 + x(δ∗(H)) <
t∑

i=1

x(e(Ai, Bi)) < t+ 1− x(δ∗(H)). (2.10)

This immediately forces only two possible values of x(δ∗(H)), either 0 or 1/2.
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Substituting the lower bound (2.9) into (2.7), we get

x(δ∗(H)) +
t∑

i=1

x(δ(Ti)) + t− 1 + x(δ∗(H)) < 3t+ 1

=⇒
t∑

i=1

(x(δ(Ti))− 2) < 2− 2x(δ∗(H))

Recall that edges of weight 1/2 in x form a graph that can be written as union of edge disjoint
triangles. For any set S, any triangle can have either exactly 2 edges crossing it, or no edges
crossing it. Hence, for any S, a triangle with all edges of weight 1/2 contributes either 1 or 0 to
x(δ(S)). Since we can decompose all the edges of weight 1/2 into edge disjoint triangles, no edges
are double counted while adding up elements in δ(S), so for each set S, x(δ(S)) is an integer. Now,
observing the equation above, we can note that there is at most one Ti for which x(δ(Ti)) = 3.
Further, even this cannot happen if x(δ∗(H)) = 1/2. Now we are left with three cases, namely:

1. x(δ∗(H)) = 1/2 and x(δ(Ti)) = 2 for all i.
2. x(δ∗(H)) = 0, x(δ(T1)) = 3 and x(δ(Ti)) = 2 for all i ̸= 1.
3. x(δ∗(H)) = 0 and x(δ(Ti)) = 2 for all i.

we will show that only case (3) can happen.

Case 12. In this case,

x(δ(Ti)) = x(δ(Ai)) + x(δ(Bi))− 2x(e(Ai, Bi)) = 2

since x(δ(Ai)), x(δ(Bi)) ≥ 2, this gives x(e(Ai, Bi)) ≥ 1. Substituting this in (2.8) gives

t+ 1− 1

2
>

n∑
i=1

x(e(Ai, Bi)) ≥ t

Since the sum only takes half integral values, this forces the value of the sum to be t. So,
x(e(Ai, Bi)) = 1 for all i. Now, note that

x(δ∗(H)) = x(δ(H))−
t∑

i=1

x(e(Ai, Bi)) = x(δ(H))− t

which implies that x(δ∗(H)) is an integer since x(δ(H)) is an integer, and hence must be zero,
forcing us to be in case 14 instead.

Case 13. In this case, by the same argument as in case (1), we have x(e(Ai, Bi)) ≥ 1 for all i > 1,
and x(e(A1, B1)) ≥ 1/2. Substituting these values in (2.7) gives

t− 1

2
≤

t∑
i=1

x(e(Ai, Bi)) < 3t+ 1−
t∑

i=1

x(δ(Ti)) = t

which forces equality on the left since summation only takes integer values. Therefore, x(e(A1, B1)) =
1/2, and thus there is exactly one edge of weight 1/2 between A1 and B1. This edge is part of a
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triangle, whose vertex must lie outside Ti. But, then it contributes to x(δ∗(H)), and will contradict
the assumption that x(δ∗(H)) = 0. Therefore, case (2) can’t hold either, which means we are in
case 14

Case 14. Now we have x(δ∗(H)) = 0, and hence if there is an edge of weight 1/2 in e(Ai, Bi), then
the unique triangle containing that edge in the decomposition must also be completely contained
in Ti. Therefore, every triangle with edges of weight 1/2 contributes either 1 or 0 to x(e(Ai, Bi)).
Further, by the same argument as in analysis in case (1), x(e(Ai, Bi)) ≥ 1 for all i, and using (2.8)
gives

t+ 1 >

t∑
i=1

x(e(Ai, Bi)) ≥ t.

Forcing the following equalities for all i:
1. x(e(Ai, Bi)) = 1.
2. x(e(Ai, H \ Ai)) = 1.
3. x(e(Bi, X \ (H ∪ Ti))) = 1.

and these are the only non empty boundary crossings with respect to x for Ai, Bi. Thus, each of
these boundaries is either an edge of weight 1, or a triangle with two edges of weight 1/2 crossing
the boundary. This completes the proof.

Now we are ready prove a couple of trivial lemmas. But first, we will define induced subgraphs
with respect to an assignment x.

Definition 15. Given a set X ∈ Rn, and an assignment x, for every subset Y ⊆ X, we define
G[Y ] to be the graph with vertex set Y and edges e with both endpoints in Y such that x(e) > 0.

Lemma 16. For any comb C violated by x, with teeth Ti, the induced subgraph G[Ti] is connected
for all teeth Ti.

Proof. Suppose not, then applying subtour elimination constraint on each connected component
(there are at least two) gives x(δ(Ti)) ≥ 4.

Lemma 17. Consider an assignment x and a comb C with handle H and teeth Ti such that x
violates the comb inequality corresponding to the comb C. If C is the comb with least number of
teeth such that x violates C, then the induced subgraph G[H] is connected.

Proof. Suppose not, and let Hi be the connected components of G[H]. Let αi = {j : Tj ∩Hj ̸= ∅}
denote the set of teeth intersecting Hi. Note that by Lemma 11, edges exiting any teeth into the
handle must have weight 1. This and the fact that weight 1/2 edges form a graph that can be
decomposed into edge disjoint triangles imply that a tooth can’t interest two different connected
components of the handle. Then, by the constraints in Lemma 11, x(δ(Hi)) = |αi| since edges in
Hi can only exit through some teeth Tj with j ∈ αi, and they must exit with weight 1. Therefore,
it follows that

x(δ(Hi)) +
∑
j∈αi

x(δ(Ti)) = 3|αi|.

Since at least one of the αi must be odd, this gives us a smaller comb on which the solution violates
the comb inequality, contradicting minimality of H.

12



Lemma 18. Any comb violated by x must contain an edge of weight 1/2 inside it.

Proof. Suppose not. Note that edges exiting the handle exit through a tooth, so all of them must
have weight 1 by Lemma 11. Since all the edges intersecting the handle have weight 1, we can split
the handle into connected components, which are paths. Note that each path contributes exactly 2
to x(δ(H)), and thus x(δ(H)) must be even, which contradicts that x(δ(H)) = t is odd.

Definition 19. For any set S, define E(S, n) to be the size of the smallest set T ⊇ S such that
x(δ(T )) ≤ n.

Note that x(δ(Ti)) = 2 and x(δ(H)) = t. Hence, a handle can only contain sets that have small
E(S, t) values and a tooth can only contain sets that have small E(S, 2) values.

Lemma 20. Let S ⊂ T be sets such that for all u ∈ S, x(e(u, T \ S)) ≤ 1. Suppose x(δ(S)) = n
and x(δ(T )) = n− 1. Then there are two vertices u, v ∈ S such that T contains a path from u to v
outside S.

Proof. For each u ∈ S, define Pu to be the set of vertices in T \ S that are connected to u using
edges in T but outside S. If Pu ∩ Pv ̸= ∅ for some u ̸= v, then there is a path from u to v strictly
contained in T \ S, and Pu = Pv.

Suppose this doesn’t happen. Then Pu are disjoint for all u. Let

T ∗ = T \

(
S ∪

⋃
u∈S

Pu

)
.

There are no edges between T ∗ and S by definition. We have the following:

x(δ(T )) = x(δ(S)) + x(δ(T \ S))− 2x(e(S, T \ S))

T ∗ along with Pu form a partition of T \ S. Note that there are no edges between any of these
parts by definition. Therefore,

x(δ(T \ S)) = x(δ(T ∗)) +
∑
u∈S

x(δ(Pu)).

and if {u, v} ∈ e(S, T \ S) with u ∈ S, then v ∈ Pu by definition. Therefore,

x(e(S, T \ S)) =
∑
u∈S

x(e(u, Pu))

Using these identities, we get

x(δ(T )) = x(δ(S)) + x(δ(T ∗)) +
∑
u∈S

(
x(δ(Pu))− 2x(e(u, Pu))

)
(2.11)

Observe that
x(δ(Pu ∪ u)) = x(δ(u)) + x(δ(Pu))− 2x(e(u, Pu))
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Figure 2.3: The gadget with the tour enters it once. Thick edges have weight 1 and thin edges
have weight 0.5.

and therefore that
x(δ(Pu))− 2x(e(u, Pu)) = x(δ(Pu ∪ u))− x(δ(u)) (2.12)

Now, we claim that x(δ(Pu ∪ u)) ≥ x(δ(u)). We split each of the boundaries into two parts to get

x(δ(u)) = x(e(u,X \ (Pu ∪ u))) + x(e(u, Pu))

x(δ(Pu ∪ u)) = x(e(u,X \ (Pu ∪ u))) + x(e(Pu, X \ (Pu ∪ u)))

Subtracting the equations, we get

x(δ(Pu ∪ u)))− x(δ(u)) = x(e(Pu, X \ (Pu ∪ u)))− x(e(Pu, u))

On the other hand,

x(e(Pu, X \ (Pu ∪ u))) + x(e(Pu, u)) = x(δ(Pu)) ≥ 2.

Now, the condition that x(e(Pu, u)) ≤ x(e(u,X \ S)) ≤ 1, it must be the case that x(e(Pu, X \
(Pu ∪ u))) ≥ 1 ≥ x(e(Pu, u)). This implies that

x(δ(Pu ∪ u)))− x(δ(u)) = x(e(Pu, X \ (Pu ∪ u)))− x(e(Pu, u)) ≥ 0.

for all u. Substituting this into (2.11) (using (2.12)),

x(δ(T )) ≥ x(δ(S)) + x(δ(T ∗))

which is clearly false, since x(δ(T )) < x(δ(S)) by assumption. This completes the proof of the
lemma.

2.2.2 Construction of Half Integral Solution for the Gadget

We will now describe the construction of a local half-integral modification of the tour at an (ε,D)-
copy of the gadget S, which is compatible with all comb inequalities of size c. For any Hamiltonian
tour P , this modification can be made on any (ε,D)-copy of S that has the following property with
respect to P :
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Property 21. We say that an (ε,D)-copy S1 of S has Property 21 with respect to a Hamiltonian
path or tour P if and only if

1. P visits S1 exactly once, and enters and leaves through consecutive vertices on the outer
circle vertices.

2. If x, y are the points adjacent to S1 in P , then the points x, y are respectively connected to
points of S1 which are closest to them.

We will construct another gadget Π3
S(k) in Section 2.2.3 that contains multiple copies of

S = S(k), such that given any optimal Hamiltonian tour P , at least one (ε,D)-copy of S contained
in an approximate copy of Π3

S must satisfy Property 21 with respect to P .
The local half-integral solution mentioned above on S (see Section 2.2.2) consists of

(i) Four edge-disjoint triangles of edges of weight 1
2
—for each gap vertex, one such triangle joins

that point to the closest two points on the outer and inner circles, respectively;

(ii) Weight-1 edges joining the remaining consecutive pairs of points on the inner ring of the
gadget;

(iii) Weight-1 edges joining the remaining consecutive pairs of points on the outer ring of the
gadget, except between entry/exit edges.

Moreover, we require that the entry/exit edges are separated by at least c− 1 points on the circle
from the weight 1

2
edges. Section 2.2.2 shows the local solutions when c = 2 and k = 12, under

Property 21. Now, we have the following lemma:

Lemma 22. Consider gadget S = S(k). Let x, y be points outside S and let P be a Hamiltonian
path P from x to y in {x, y} ∪ S satisfies Property 21. Then length of Hamiltonian path P is at
least

dist(x, S) + dist(y, S) + 10π + 8−O

(
1

k

)
.

On the other hand, cost of the half-integral solution described above is at most

dist(x, S) + dist(y, S) + 10π + 6 +O
( c
k

)
.

Proof. Proof of the first lower bound is given in [FP15]. We include a discussion about the lower
bound in Section A.2.4 for sake of completeness.

For the second bound, observe that in the half-integral solution, the total length of half-integral
edges is 12 + 8π 4

2k
+ 2π 4

k
. On the other hand, the total length of integral edges contained in S

is 10π − 8π 3
2k
− 2π 2

k
, since we are missing 3 edges on bigger circle and 2 edges on smaller circle.

Further, length of entry and exit segments is at most dist(x, S) + dist(y, S) + 28πc
2k

since these are
the original entry / exit points moved by length at most c points. Therefore, we get the total length
of at most

dist(x, S) + dist(y, S) +
8πc

k
+ 10π − 16

k
+ 6 +

12

k

which gives the required bound.
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Corollary 23. There exists a constant γ such that if k = γc and S = S(k), then for any points
points x, y, and an Hamiltonian path from x to y on S ∪ {x, y} such that S satisfies Property 21
with respect to P , the half-integral solution described above has total value at least 1 smaller than
length of P .

In particular, γ = 16π ensures that for c ≥ 3, k ≥ 48π, the total cost of the half integral solution
is at most L+ 6.5. Following the computations in Section A.2.4, total length of any Hamiltonian
path P from x to y on S1 is at least L+ 7.5, which implies the result.

The two results above, namely Corollary 23 and lemma 22 show that the proposed half-integral
solution is much smaller than the shortest tour. What remains is to show that this half-integral
solution also satisfies all comb inequalities of bounded size.

Satisfying combs with 3 teeth

Now we prove that the half-integral solution described above in the gadget S satisfies all 3-combs
of size at most c, assuming c < k. Note that we will pick k = γc where γ > 2, and hence this
condition is always satisfied.

Lemma 24. If a gap vertex is contained in a 3-comb such that the comb inequality corresponding
to the 3-comb is violated, then |H ∪ T1 ∪ T2 ∪ T3| ≥ 2c.

Proof. The gap vertex is contained in two triangles of weight-1
2
edges.

Case 25. If any triangle P is contained in some tooth T , then note that x(δ(P )) = 3 and
x(δ(T )) = 2. Further, each vertex of triangle has exactly 1 weight going outside the triangle.
Therefore, by Lemma 20, T contains a path between two vertices of the triangle that lies completely
outside the triangle. Any such path either must go along entire inner circle, or entire outer circle
or it exits the gadget and enters again. In first two cases, this path as length at least 2k and in
second case, the path has length at least 2c, implying that |T | ≥ 2c.

Case 26. If some tooth contains exactly two vertices of one of the two triangles, then since it
doesn’t contain the third vertex, all the conditions of Lemma 20 are satisfied. This again implies
that T contains a path between the two vertices that does not use any edges in the triangle, and
hence must have size at least 2c.

Therefore, a tooth can contain at most one vertex of the triangles that contain the gap vertex.
Hence, the handle must contain the gap vertex, and both the triangles containing the gap vertex.
Let Q denote the union of both the triangles. Then x(δ(Q)) = 4, and every vertex has edges
of weight exactly 1 going out of Q. By Lemma 11 and the fact that this is a 3-comb, we have
x(δ(H)) = 3. Thus, it satisfies the conditions of Lemma 20, and hence, H \ Q contains a path
between two vertices in Q which lies completely outside Q. This path must have length at least 2c
by exactly the same argument as above.

Hence, in all cases, either a tooth or the handle must contain at least c vertices, proving the
lemma that we want.

Since all the half weight edges in the Gadget are contain at least one gap vertex, every 3-comb
must have a gap vertex in it, and hence must have large size.
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Figure 2.4: The figure shows (a)Π(t, h, w), (b)Π(S, t, h, w) and (c)∆(S,D) from left to right.

Satisfying combs with 5 or more teeth

Lemma 27. If a gap vertex is contained in a t-comb, with t ≥ 5, then∣∣∣∣∣H ∪
t⋃

i=1

Ti

∣∣∣∣∣ ≥ c.

Proof. For this case, we will assume that the given comb in minimal, in particular, we have a comb
with minimum value of t. If not, then we can always show the result for a smaller comb contained
in this comb. From Lemma 17, if H is not connected, then we can always find a smaller comb that
invalidates the solution. Hence, we will assume that H is connected for rest of the proof.

First, note that case (1) of Lemma 24 does not use the assumption that the comb has only 3
teeth. Therefore, we can conclude that teeth of comb of any size cannot contain the gap vertex.
Hence, we only need to handle the case that the handle of the comb contains a gap vertex.

Note that any edge leaving the gadget is at least c distance away from the gap vertex. Since the
comb, that is H ∪

⋃t
i=1 Ti is connected, if the comb contains any vertex outside the gadget, then it

must have at least c vertices. Thus, we can assume that the comb is completely inside the gadget.
Further, any tooth can’t have an edge of weight 1/2, since that would mean it contains two

vertices of a gap triangle, and then by case (1) of Lemma 24 the tooth must contains a large cycle.
Hence, all the edges strictly inside a tooth have weight exactly 1. Hence, each tooth is completely
contained inside one of the 4 paths left after deleting all the edges of weight 1/2 in the gadget.
Note that there are only 4 paths and at least 5 teeth. Let L1, L2, L3, L4 be the 4 paths.

Hence, one of the paths, say P , contains at least 2 teeth. Let these be T1, T2 such that the
closest point in T1 is closer to the gap vertex than the closest point in T2. Now, since T1, T2 are
connected, this implies that every vertex in T1 is closer to the gap vertex than every vertex in
T2. But, since T2 intersects the handle, there is a path from the gap vertex to T2, say Q, which is
completely contained in the handle. If Q is completely contained in P , then it contains entire T1

implying that T1 is contained in the handle, which contradicts definition of the comb. Otherwise,
the path Q must wrap around using one of the other paths, Li ̸= P . Since it must contain the
whole path, that implies that the handle has size at least k. This completes the proof.
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2.2.3 Expanding the gadget

We will now describe the gadget Π3
S = Π3

S(k) that contains 12 copies of S(k), such that there
is an almost optimal Hamiltonian tour that satisfies Property 21 in at least one copy of S in
all (ε,D) copies of Π3

S. This gadget is obtained by combing two more gadgets with S, namely
ΠS = Π(S, t, h, w) and Π3

S = ∆(ΠS, D). Section 2.2.3 illustrates these gadgets. We will provide the
formal definitions and state few lemmas below, proofs of which are given in Section A.2.

Definition 28. We define the gadget Π(t, h, w) for t ∈ Z≥0 and h,w ∈ R≥0, given by points
π1 =

(
−w

2
, 0
)
, π2 =

(
w
2
, 0
)
, π3 =

(
−w

2
, h
)
, π4 =

(
w
2
, h
)
and points v1, . . . , vt which are evenly spaced

along (0, 0), (0, h), with v1 = (0, 0) and vt = (0, h). We will refer to sets {π1π2} and {π3π4} as
shorter sides of the gadget, and sets {π1π3} and {π2π4} as longer sides of the gadget.

Lemma 29. Let p, q be two points on the opposite sides of the horizontal line y = h
2
such that

dist({x, y},Π(t, h, w)) ≥ D.

Let P be a shortest Hamiltonian path from p to q in Π(t, h, w)∪ {p, q}. Suppose all of the following
inequalities hold:

D ≥ h2+w2

4w
h ≥ 2w t ≥ 16h

w

Then for at least two i ∈ 1, 2, 3, 4 we have that neither neighbor v1i , v
2
i of πi on P is not in {p, q}

and moreover, v1i , v
2
i are two points in {v1, . . . , vt} closest to πi.

Intuitively, this lemma holds since the shortest path through Π(t, h, w) must travel through
both the shorter sides, and connect them using the middle segment. The condition on positions of
p, q ensures that it is beneficial to enter the gadget on one of the shorter sides and exit from the
other shorter side. A formal proof is given in Section A.2.1.

Now, we extend this gadget to the gadget ΠS, which is constructed by replacing each of the
four corner points in C = {π1, π2, π3, π4} by a copy of gadget S(k) defined in Definition 7.

Definition 30. We construct the gadget Π(S(k), t, h, w) by replacing points in C by copies of S(k)
centered at each point πi ∈ C. We let Si denote the copy centered at πi.

Lemma 31. Let p, q be two points on the opposite sides of the line y = h
2
such that

dist({p, q},Π(t, h, w)) ≥ D.

Let P be a shortest Hamiltonian path from p to q in Π(S(k), t, h, w) ∪ {p, q}. Suppose all of the
following inequalities hold:

D ≥ h2+w2

4w
h ≥ 2w w ≥ 100 t ≥ 2h

h

t
≤ 4π

k

Then there is a Hamiltonian path Q from p to q in Π(S(k), t, h, w)∪{p, q} such that Q visits each Si

at most once, ℓ(Q) ≤ ℓ(P ) +O(1/k) and for at least two i ∈ 1, 2, 3, 4 we have that neither neighbor
v1i , v

2
i of Si on Q is not in {p, q} and moreover, v1i , v

2
i are two points in {v1, . . . , vt} closest to Si.
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In particular, ΠS(k) = Π(S(k), 200k
4π

, 200, 100) satisfies this lemma for D = 125. A complete
proof of Lemma 31 is given in Section A.2.2.

Now, we introduce the final piece of the puzzle, the gadget ∆(D,ΠS(k)) which contains three
copies of the gadget ΠS(k). This gadget is designed in a way that at least one of the copy of ΠS(k)
is visited exactly once in any optimal tour.

Definition 32. For any gadget T ∈ R2 with diameter d and D ∈ R≥0, we define the gadget
∆(D,T ) containing three copies of T , T1, T2, T3 centered at points C1 =

(
R, π

2

)
, C2 =

(
R, 7π

6

)
and

C3 =
(
R, 11π

6

)
for R = D+2d√

3
and rotated clockwise in angles of π

2
, −π

6
, and π

6
respectively.

An illustration for ∆(D,ΠS) is given in Section 2.2.3. The rotations are to ensure that gadgets
are symmetrically situated around rays along OC1, OC2 and OC3 respectively. Further, distance
between Ti and Tj is at least D for any i ̸= j. Now, we have following lemma about this gadget:

Lemma 33. Let ε > 0 be positive real. Then there exists constants D1, D2 ≥ 0 such that if P is an
optimal Hamiltonian tour over V , and if ∆1 is any (ε,D2) copy of ∆(D1,ΠS(k)), then there exists
an i ∈ {1, 2, 3} such that P visits Πi exactly once, where Π1,Π2,Π3 are (ε,D1)-copies of ΠS(k)
contained in ∆1, with centers C1, C2, C3 respectively. Further if p, q are neighbors of Ti in P , then

p, q lie on the opposite side of
←→
OCi, where O is the center of ∆1. In particular, the values

D1 =
2000

1− cos π
10

and D2 =
30000(

1− cos π
10

)2 (2.13)

suffice.

Proof of this lemma is a repeated application of Observation 9, in particular, the condition
that if an (ε,D)-copy of a gadget T is visited multiple times, then the entry and exit rays must be
parallel. The details are given in Section A.2.3.

We define Π3
S = Π3

S(k) = ∆(D1,Πs(k)) where D1 = 2000
1−cos(π/10)

is as defined in Lemma 33.

Combining Lemmas 31 and 33, we get the following lemma which shows the existence of (ε,D)-
copies of S which have Property 21.

Lemma 34. For any k ≥ 4 and ε > 0, there is are constants D1, D2 > 0 such that any (ε,D2)-copy
Π3

1 of Π3
S(k) contained in V , and for any optimal Hamiltonian tour P on V , there is a Hamiltonian

tour Q such that ℓ(Q) ≤ ℓ(P ) + 40kε and (ε,D1)-copy S1 of S(k) such that S1 ⊆ Π1 and S1 has
Property 21 with respect to path Q.

Further, if k ≥ γc where γ is given by Corollary 23 and if ȳ is the half-integral solution described
in Section 2.2.2, then replacing Q by S1 gives an half-solution satisfying Combc inequalities. This
replacement can be made in all disjoint (ε,D2)-copies of Π

3
S(k) in V simultaneously.

Proof. We pick D1, D2 as defined in Lemma 33, namely

D1 =
2000

1− cos π
10

and D2 =
30000(

1− cos π
10

)2 .
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Recall that ΠS(k) = Π(S(k), 200k
4π

, 200, 100). It follows from Definitions 7, 30 and 32 that ΠS(k) has
at most 40k points for k ≥ 4. Since Π3

1 is an (ε,D2)-copy of Π3
S(k), there exists a translation T1 of

Π3
S(k) and a bijection f : T1 → Π3

1 such that ∥x− f(x)∥ ≤ ε.
Using Lemma 33, there is an (ε,D1)-copy Π1 of ΠS(k) that is visited by P exactly once. Further,

if p and q are the points adjacent to Π1 in P , then p, q are on opposite side of OC1 where O is
center of T1 and C1 is the center of T2 = f−1(Π1). Let P̄ be an optimal Hamiltonian path from p
to q in T1 ∪ {p, q}. Then by Lemma 31, there is an Hamiltonian path Q̄ from p to q in T1 ∪ {p, q}
such that ℓ(Q̄) ≤ ℓ(P̄ ) + O(1/k) and a copy T2 of S(k) such that S(k) has Property 21 with
respect to Q̄. Let Q be the Hamiltonian tour that equals P outside f(T1) ∪ {p, q} and f(Q̄) inside
f(T1) ∪ {p, q}. Then f(T2) has Property 21 with respect to Q. Since P̄ was optimal on T1 ∪ {p, q}
and T1 has at most 40k points, we must have ℓ(P̄ ) ≤ ℓ(P ∩ (T1 ∪ {x, y})) + 40kε. It follows that
ℓ(Q) ≤ ℓ(P ) + 40kε+O(1/k).

Using Corollary 23 for k = γc, and ε = O( 1
k
), we can ensure that the cost of half-integral

solution ȳ is at least 1 smaller than length of Q, and at least 0.5 smaller than length of P . Further,
Section 2.2.2 implies that we can make this replacement in a single gadget without violating Combc
inequalities.

If we do the replacement simultaneously in multiple disjoint (ε,D2)-copies of Π3
S(k), then

any comb of size at most c containing an half-integral edge must be completely contained in an
(ε, 0)-copy S(k). And hence again by Section 2.2.2, we do not violate any Combc inequalities.

Now, we are in a position to complete proof of Theorem 6. Let c > 0 be a constant. Using
Lemma 171 (which is a tighter version of Observation 10), we can find CΠn disjoint (ε,D2)-copies
of Π3

S(k) in Yn with probability at least 1− 1
n2 , where k = γc, ε = O(1/k) and D2 = O(1) is an

absolute constant, where CΠ = CΠ(k, ε,D2). Note that when c is a constant, then so is CΠ.
Using Lemma 34, given any optimal tour in Yn, we can find a half-integral solution ȳ on the

edges of Yn which is at least 1
2
CΠn smaller than the length of optimal tour. Therefore,

Combc(Yn) ≤ TSP(Yn)− C∗
Πn

with probability 1− 1
n
where C∗

Π = 1
2
CΠ is an absolute constant. Therefore, we have∑

n

P
[
Combc(Yn) ≥ TSP(Yn)− C∗

Πn
]
≤
∑
n

1

n2
<∞

Therefore, by Borel-Cantelli Lemma,

lim sup
n→∞

Combc(Yn) ≤ lim
n→∞

TSP(Yn)− C∗
Πn =

(
β2
TSP − C∗

Π

)
n

almost surely, since limn→∞ TSP(Yn) = β2
TSPn almost surely. This implies that

γc,2
Comb ≤ β2

TSP − C∗
Π

completing the proof of Theorem 6 in two dimensions.
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2.2.4 Higher Dimensions

Note that the construction above only works for d = 2. For higher dimensions, we construct gadget
Td(k) which contains 5 copies of Π3

S(k) which are at least D2 distance apart from each other and
lie in the same 2-dimensional plane, where D2 is as defined in Lemma 34.

Since an optimal tour can enter Td(k) at most twice (Lemma 157), at least one of the 5 copies
of Π3

S(k) must only be connected to points in Td(k). This reduces problem to two dimensional case,
and we can then use Lemma 34 to conclude higher dimensional version of Lemma 34!

Lemma 35. For any k ≥ 4 and ε > 0, there is are constants D1, D2 > 0 such that any (ε,D2)-copy
Td of Td(k) contained in V , and for any optimal Hamiltonian tour P on V , there is a Hamiltonian
tour Q such that l(Q) ≤ l(P ) + 200kε and (ε,D1)-copy S1 of S(k) such that S1 ⊆ Π1 and S1 has
Property 21 with respect to path Q.

Further, if k ≥ γc where γ is given by Corollary 23 and if ȳ is the half-integral solution described
in Section 2.2.2, then replacing Q by S1 gives an half-solution satisfying Combc inequalities. This
replacement can be made in all disjoint (ε,D2)-copies of Td(k) in V simultaneously.

In particular, following the Borel-Cantelli argument in 2 dimensional case, this gives us the
separation in higher dimensions, namely

γd
Comb ≤ βd

TSP − C

for some constant C.

2.3 Branch and Bound Algorithms

In this section, we will prove Theorem 3. For this section, we will assume that we are working in
some fixed dimension d. Further, throughout this section, O notation will hide constants dependent
on d.

As considered here, a branch and bound algorithm depends on three choices:
(1) A choice of heuristic to find (not always optimal) TSP tours.
(2) A choice of lower bound for TSP (such as Combc or HK).
(3) A branching strategy.

The result of a branch-and-bound approach is a branch-and-bound tree, which is a rooted tree such
that to each vertex v of this tree, we associate two sets Iv and Ov such that
(1) When v is the child of u, Iv ⊇ Iu and Ov ⊇ Ou

(2) If u has children v1, . . . , vk, then we have Λu =
⋃k

i=1 Λvi , where Λu denotes the set of TSP
tours which include all the edges in Iu and exclude all the edges in Ou.

(3) The leaves of the (unpruned) branch and bound tree satisfy |Λv| = 1.
For any node v of the branching tree, let bv denote the value of the lower bound, which in our case
is the value of Combc under the additional constraints given by Iv and Ov (that is, the solution for
Combc must include all the edges in Iv with weight 1 and must exclude all the edges in Ov). Let B
be the value of the tour given by our heuristic. For each vertex v, we find a tour using the some
heuristic that includes the edges in Iv and excludes the edges in Ov, and whenever we find a tour
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smaller than B, we update B. For every vertex v such that bv ≥ B, we know that we have already
found a tour as good as any in Λv, and we prune the tree at v. The process ends when the set L of
leaves of the pruned tree satisfies v ∈ L⇒ bv ≥ B. Note that such a tree in fact gives a proof that
B is an optimal tour.

Note that following any branching strategy to generate the tree will give us an optimal tour
and proof of its optimality. For a branch and bound to be efficient, we want to prune the tree such
that only polynomially many leaves remain.

We can now state a more precise version of Theorem 3 as follows:

Theorem 36 (Theorem 3 restated). For any TSP heuristic, any branching strategy and a lower
bound heuristic which is Combc for some constant c, the pruned branch and bound tree will have
eΩ(n/ log5 n) leaves almost surely.

Further, we state a generalization of above result when c is not a constant as follows:

Theorem 37 (Theorem 4 restated). Given any ε > 0, For any TSP heuristic, any branching

strategy and a lower bound heuristic which is Combc for c = O
(

ε logn
log logn

)
, the pruned branch and

bound tree will have eΩ(n1−6ε) leaves almost surely.

Note that setting ε = 0.08 gives us Theorem 4
Any branch-and-bound approach should produce not only an optimal tour, but, via the pruned

tree and computed bounds, a certificate verifying that the returned tour is optimal. Theorem 36
shows that even just the size of this certificate is exponential. Our general strategy to prove
Theorem 36 will be to show that when Combc(Xn | Iv, Ov) ≥ TSP(Xn) then either Iv or Ov is must
be large, and hence Λv is in fact small. Since Λ =

⋃
Λv, this would imply that there are a lot of

leaves in any pruned tree.
Following [FP15], we will further modify this approach by looking at a special set of tours Λ.

Given the point set Xn, we will consider the division of [0, 1]d into s = n
σ
boxes of side-length s−

1
d .

We will eventually σ = Ω(log n) as required for the runtime bounds. Let B1, . . . , Bs denote these
boxes, taken in some order such that consecutive terms share a (d− 1) dimensional face. Note that

|x− y| ≤
√
d · s−

1
d = O

(
s−

1
d

)
if x, y lie in the same box. We consider Xn = {x1, . . . , xn}, and for each 2 ≤ j ≤ s − 1, we let
x1
j , x

2
j , x

3
j , x

4
j denote the four points xi ∈ Xn∩Bj of smallest index (this choice can be arbitrary, and

is just for definiteness). We also chose points x3
1, x

4
1 ∈ Xn ∩B1 and x1

s, x
2
s ∈ X ∩Bs, again by simply

choosing points of minimum index. These points chosen as above can be viewed as preselected
interface points between boxes Bj. In particular, we let Λ denote the set of TSP tours in Xn with
the properties that, in that tour,

1. x4
1 is joined to x3

1 by a path lying entirely in B1;
2. for 1 ≤ j ≤ s− 1, x3

j and x1
j+1 are adjacent;

3. for 2 ≤ j ≤ s− 1, x1
j is joined to x3

j by a path lying completely in Bj;
4. x1

s is joined to x2
s by a path lying entirely in Bs;
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5. for s ≥ j ≥ 2, x2
j and x4

j−1 are adjacent; and
6. for s− 1 ≥ j ≥ 2, x2

j is joined to x4
j by a path lying completely in Bj.

We will only restrict our attention to these special tours. Note that we are now only looking at a
smaller subset of tours. We claim that these tours have asymptotically almost the same length as
the TSP tour almost surely. These tours are similar to those produced by Karp’s fixed dissection
heuristic [Kar77], which divides the square into s boxes like we have, finds optimal tours through
each, and then joins into a closed walk by means of an optimal tour through a set of representatives.

For the sake of notation, let TSP(Xn) denote the best tour in Λ. Let TSPF (Xn) denote the tour
given by fixed dissection heuristic. We claim that asymptotically

TSP(Xn) ∼ TSP(Xn)

The proof is based off the techniques used to show TSP(Xn) ∼ TSPF (Xn). We will leverage parts of
Lemma 4 in Chapter 6 from [Law85], in particular,

Lemma 38. Let TSP(Bj) denote the best tour in Xn ∩Bj. Then we have the following bound:

s∑
j=1

TSP(Bj) ≤ TSP(Xn) +O
(
n

d−2
d−1 s

1
d(d−1)

)
+O

(
s

d−1
d

)
= TSP(Xn) +O

(
n

d−1
d σ− 1

d(d−1)

)
(2.14)

where s is the number of boxes Bj. Recall that s = o(n).

Apart from finding the best tour in each cube Bj, the cost of modifying this solution into a
path that starts at x1

j and ends at x3
j is at most 2d1/2s−1/d. The cost of patching edges between Bj

and Bj+1 also at most 2d1/2s−1/d. This gives us the upper bound:

TSP(Xn) ≤ TSP(Xn) +O
(
n

d−2
d−1 s

1
d(d−1)

)
+O

(
s

d−1
d

)
+O

(
s · s−

1
d

)
Since we choose s = n

σ
= o(n), we get

TSP(Xn) ≤ TSP(Xn) ≤ TSP(Xn) +O
(
n

d−1
d

(
σ− 1

d(d−1) + σ− d−1
d

))
∴ TSP(Xn) ≤ TSP(Xn) +O

(
n

d−1
d σ− 1

d(d−1)

)
where the O-notation hides constants dependent only on d. Note that this statement holds true
deterministically.

Now we use the bounds on sizes of Λ and Λv = Λv ∩ Λ proved in [FP15] (equations 29− 32).
Let βj = |Xn ∩Bj|, let Oj

v denote the set of edges in Ov that have both the endpoints in Bj and let
Ijv be the set of edges in Iv that have both the endpoints in Bj. Let I

′
v ⊆ Iv denotes edges in Iv of

the form {x3
j , x

1
j+1} or {x2

j , x
4
j−1}. We will provide short proofs of these bounds again for sake of

completeness. ∣∣Λ∣∣ = (β1 − 2)!

(
s−1∏
j=2

(βj − 3)!

)
(βs − 2)! (2.15)
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This bound follows since we can choose tour in every box Bj by choosing the path from x1
j to x3

j

and the path from x2
j to x4

j , by choosing a permutation of (βj − 4) vertices ((βj − 4)! choices) and
breaking it up into 2 parts (βj − 3 choices). First and last terms follow from a similar logic on
box B1 and Bs, which only have 2 special vertices instead of 4. Now, observe that Λv = ∅ unless
Iv = I ′v ∪

⋃s
j=1 I

j
v . To get an upper bound on Λv, we look at the portion of tour in Bj, which can

be represented as a permutation of (βj − 3) symbols. Given an orientation of edges in Ijv , each edge
reduces the number of free symbols in the permutation by at 1, giving us an upper bound of∣∣Λv

∣∣ ≤ (β1 − 2−
∣∣I1v ∣∣)!2|I1v |

(
s−1∏
j=2

(βj − 3−
∣∣Ijv ∣∣)!2|Iv |

)
(βs − 2− |Isv |)!2|Iv |

Let Iv =
⋃s

j=1 I
j
v . Using Sterling’s Approximation, we get

∣∣Λv

∣∣ ≤ ∣∣Λ∣∣ · s∏
j=1

(
2e

βj − 3

)|Ijv|
≤
∣∣Λ∣∣ · e−|Iv| (2.16)

assuming that βj ≥ 2e2 + 3 for all j.
Note that a crude application of the Chernoff bound gives that for each j,

βj ∈ (1± 0.5)σ

with probability at least 1 − e−σ, where s = n
σ
. Then by union bound, we get that the same

expression holds for all j simultaneously with probability at least 1 − ne−σ. This implies that
Equation (2.16) holds with probability at least 1− 1

n2 provided that σ = Ω(log n). In particular,
Equation (2.16) holds with high probability.

On the other hand, observe that number of permutations on βj − 3 symbols that avoid one
particular edge is at most

(βj − 3)!− (βj − 4)! ≤
(
1− 1

βj

)
(βj − 3)!

simply by subtracting number of permutations that include this particular edge. Define δA = 1 if
|A| ≥ 1 and δA = 0 otherwise. Then we have an upper bound∣∣Λv

∣∣ ≤ ∣∣Λ∣∣ · s∏
j=1

(
1−

δOj
v

βj

)
Let Ov =

⋃s
j=1O

j

v. Since βj ≤ 2σ for all j with probability at least 1− 1
n2 , there must be at least∣∣∣Oj

v

∣∣∣( 1
2σ

)2
integers j such that |Oj

v| ≥ 1. Therefore, we get the upper bound:

Λv ≤ Λ ·
(
1− 1

2σ

)|Ov|( 1
2σ )

2

≤ Λ · e−|Ov|/(2σ)3 (2.17)

Now that we have established these bounds, we know that a large Iv or large Ov forces Λv to
be small. Define L =

{
v ∈ L

∣∣ Λv ̸= ∅
}
. Note that Λ =

⋃
v∈L Λv. Now, since Λ itself is large, it

suffices to show that v ∈ L implies that either Iv or Ov is large. Indeed, we have

24



Lemma 39. Let d be a fixed integer. If following conditions hold with correct constants (dependent
on d),

σ = Ω(log n) τ = Ω
(
σ

d
d−1

)
c = O

(
log σ

log log σ

)
Then with probability at least 1−O

(
1
n2

)
, either∣∣Iv∣∣+ ∣∣Ov

∣∣ ≥ t =
n

τ
∀v ∈ L

or else that
Combc(Xn | Iv, Ov) ≤ TSP(Xn)

for large enough n.

Proof. We will show that if
∣∣Iv∣∣ + ∣∣Ob

∣∣ ≤ t = n
τ
, then Combc(Xn | Iv, Ov) ≤ TSP(Xn). This proof

has two components. First, we upper bound TSP(Xn | Iv, Ov) given that Iv, Ov are small. More
precisely, we will show that

TSP(Xn | Iv, Ov) ≤ TSP(Xn) +O
(
n

d−1
d σ

d+1
d τ−1

)
(2.18)

which follows from making local modifications to the optimal tour in Λ. In the second part, we will
bound the value of Combc(Xn | Iv, Ov) given that Iv, Ov are small. In particular, we have:

Combc(Xn | Iv, Ov) ≤ TSP(Xn | Iv, Ov)−O

((
e−O(c log c) − 1

τ
− 1

σ

)
n

d−1
d

)
(2.19)

The proof of the second part it similar to that of Theorem 6.
For the first part, notice that there are at most t integers j such that |Ijv |+ |Oj

v| > 0. We shall
use the term restricted boxes to denote all such boxes Bj. We construct a tour by modifying the
optimal tour in Λ, by replacing the portion of tour by any feasible tour in all the restricted boxes.
Note that if there are no feasible tour in any of the boxes, then Λv = ∅, and hence v /∈ L, which is
a contradiction. Therefore, such a patching always exists.

In the restricted boxes, the total length of the tour can be the worst case length of the tour,
which is βjs

−1/d
√
d. Since with high probability, βj ≤ 2σ for all j, we can conclude that

TSP(Xn | Iv, Ov) ≤ TSP(Xn) + 2σs−
1
d
n

τ
= TSP(Xn) +O

(
n

d−1
d σ

d+1
d τ−1

)
On the other hand, following the proof of Lemma 171, where we ensure that the smaller boxes of

side-length 3D are contained in the boxes of side-length s−1/d, we can find e−O(c log c)n (ε,D)-copies
of the gadget Π3

S(k), scaled by n−1/d (Note that ε and D also gets scaled by a factor n−1/d). Here
ε = Ω(1/c) and D = D2 is the absolute constant specified in Lemma 33.

Observe that Lemma 171 holds only when exp(O(c log c)) = o(n). When the third hypothesis
condition holds with correct constant, that is

c = O

(
log σ

log log σ

)
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ensures that c log c ≤ K log σ for some constant K ≤ 1. This implies

exp(O(c log c)) = O(σK) = o

(
n

2 log n

)
Therefore, Lemma 171 holds not just with high probability, but with probability at least 1− 1

n2 .
We look at the optimal TSP tour which has length TSP(Xn | Iv, Ov). We cannot directly use

Lemmas 29, 31, 33, 34, 155 and 157 on this tour to construct a solution that satisfies Combc, since
the optimal tour in Λ might not by an optimal TSP tour.

But, for any (ε,D)-copy of the gadget S1 which is contained in box Bj, all the results will go
through as long as we can perform the modification used in the proofs of Lemmas 29, 31, 33, 34,
155 and 157 and get a tour that is contained in Λv. These modifications can be made as long as
any of the points in the (ε,D)-copy of the gadget or the points adjacent to these gadget are not

contained in an edge in Iv or Ov, and are not one of the special points x
{1,2,3,4}
j used in definition

of Λ. Therefore, we can make these modifications on all but O(s+ t) gadgets! Therefore, we can
construct a half-integral solution which satisfied Combc constraints and respects the sets Iv and Ov

of value at most

TSP(Xn | Iv, Ov)−O

((
e−O(c log c) − 1

τ
− 1

σ

)
n

d−1
d

)
In particular, this proves Equation (2.19).

The condition τ = Ω(σd/(d−1)) along with Equation (2.18) and lemma 38 implies that

TSP(Xn | Iv, Ov) ≤ TSP(Xn) +O
(
n

d−1
d σ− 1

d(d−1)

)
which again along with τ = Ω(σd/(d−1)) and σ = ω(1) gives us

Combc(Xn | Iv, Ov) ≤ TSP(Xn) + n
d−1
d O

(
σ− 1

d(d−1) − e−O(c log c)
)

We can now choose

c = O

(
log σ

d(d− 1) log log σ

)
= O

(
log σ

log log σ

)
to get that Combc(Xn | Iv, Ov) ≤ TSP(Xn) holds for large enough n.

The result is conditioned on two probabilistic events happening, first one is the event that
βj ∈ (1± 0.5)σ, which happens with probability 1− 1

n2 and the second is that Lemma 171 holds
for Xn, which also happens with probability 1 − 1

n2 . Therefore, overall, this results holds with
probability 1−O

(
1
n2

)
for large enough n.

Proof of Theorems 36 and 37: Now, we are in a position to complete the proofs of these results
by choosing σ and τ appropriately.
If v ∈ L, then Combc(Xn | Iv, Ov) ≥ TSP(Xn) and hence, by the result above, we must have that∣∣Iv∣∣+ ∣∣Ov

∣∣ ≥ n

τ
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Then by Equation (2.16) and Equation (2.17) gives

Λv ≤ Λe−Ω( n
σ3τ

)

which implies that ∣∣L∣∣ ≥ eΩ(
n

σ3τ
)

Observe that for a constant c, choosing σ = K log n and τ = σd/(d−1) gives us that

∣∣L∣∣ ≥ exp

(
Ω

(
n

log n4+ d
d−1

))
= e

Ω
(

n
log5 n

)

Therefore, with probability 1 − O(n−2), the pruned branch and bound tree will have eΩ(n/ log5 n)

leaves for large enough n. This implies that

∞∑
n=1

P
[∣∣L∣∣ ≤ eΩ(n/ log5 n)

]
<∞

Therefore, by Borell-Cantelli Lemma,

P
[
lim sup
n→∞

∣∣L∣∣ ≤ eΩ(n/ log5 n)

]
= 0

which recovers Theorem 36, that is

Theorem 36 (Theorem 3 restated). For any TSP heuristic, any branching strategy and a lower
bound heuristic which is Combc for some constant c, the pruned branch and bound tree will have
eΩ(n/ log5 n) leaves almost surely.

Further, we get the exact same bound on the number of leaves when c = O
(

log logn
log log logn

)
. Similarly,

for any ε > 0 we can set σ = nε and τ = nεd/(d−1)) to get that for any c = O
(

ε logn
log logn

)
we have

∣∣L∣∣ ≥ exp

(
Ω

(
n1−ε

nε(4+ d
d−1)

))
= eΩ(n1−6ε)

with probability at least 1−O(n−2). Now, a similar Borell-Cantelli argument recovers Theorem 37,
that is

Theorem 37 (Theorem 4 restated). Given any ε > 0, For any TSP heuristic, any branching

strategy and a lower bound heuristic which is Combc for c = O
(

ε logn
log logn

)
, the pruned branch and

bound tree will have eΩ(n1−6ε) leaves almost surely.
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Chapter 3

Separation for Partial Euclidean
Functionals

The classic problem of average case analysis on various Euclidean functionals often shows that the
functionals almost surely converge to a value, when the region of plan is appropriately scaled. The
typical formal setting to look at is when you have n points in [0, t]d where t = n1/d or when you have
a Poisson point process at the rate of 1, on the same region, which ensures the expected number of
points to be n. There are various results analysing functional like the Travelling Salesman Tour,
Minimal Spanning Tree, Min Cost Maximum Matching, proving that their value almost surely
converges to various different constants. A general framework for was established by proving that
Subadditive Euclidean Functionals almost surely converge to a constant value in the first setting.

Establishing a separation between these constants has been an problem of interest, especially
since it has implications on the running time of exact algorithms that use solution of one of the
problems as a proxy to the other. The separation between constant for TSP and the Held-Karp
lower bound was of perticular interest, as there was empirical evidence which suggested that the
constants might have the same value. This problem was resolved by who proved that two constants
are infact different, also implying that any exact branch and bound algorithm for TSP that uses
Held-Karp inequalities as a lower bound must in fact have exponential running time, even in the
average case.

3.1 Lower bound on length of large cycles

In this section, we will show a lower bound on length of large cycles which is linear in size of the
cycle. Suppose that there is a large cycle consisting of k points, of length at most δk. First, we will
use Gasoline Lemma [Lov79, Problem 3.21], which we formalize as follows:

Lemma 40 (Gasoline Lemma). Consider a path (x1, . . . , xk) with k vertices. For simplicity of
notation, assume that xi ≡ xj if i = j mod k. Suppose the total length of the path is given by

ℓ =
k∑

i=1

d(xi, xi+1)
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Suppose there are reals a1, . . . ak ∈ R≥0 such that
∑k

i=1 ai ≥ l. Then there exists an index s such
that

j∑
i=1

d(xs+i, xs+i+1) ≤
j∑

i=1

as+i ∀ j, 1 ≤ j ≤ k

Suppose that x1, . . . , xk is a cycle of total length δk. Then by choosing ai = δ for 1 ≤ i ≤ k,
and Lemma 40, there exists an index s such that

j∑
i=1

d(xs+i, xs+i+1) ≤ jδ ∀ j, 1 ≤ j ≤ k. (3.1)

Without loss of generality, we may assume that s = 1. Hence, if such a cycle exists, then there is a
sequence of points x1, . . . , xk such that Equation (3.1) holds for all j ≤ k. We will compute the

expected number of such sequences. Define the region R ∈ (R2)
k
containing of points (x1, . . . , xk)

such that x1 ∈ [0,
√
n]2, and Equation (3.1) holds for all j ≤ k . Using Theorem 198, the expected

number of such sequences is given precisely by computing volume V (R). We can evaluate this
volume using the following expression:

V (R) = n · (2π)k
∫
r1≤δ

∫
r1+r2≤2δ

· · ·
∫
r1+···+rk≤kδ

r1 · · · rkdrk · · · dr1 (3.2)

By AM-GM inequality, observe that

k∏
i=1

ri ≤

(∑k
i=1 ri
k

)k

≤
(
kδ

k

)k

= δk (3.3)

Therefore, we get the upper bound

V (R) ≤ n · (2πδ)k · V (Pk(δ)) (3.4)

where V (S) denotes volume of the set S, and Pk(δ) is the set of sequences r = (r1, . . . , rk) such
that

∑j
i=1 ri ≤ δj. We define s = (s1, . . . , sk) such that sj =

∑j
i=1 ri. Let

Qk(δ) = {s = (s1, . . . , sk), s1 ≤ · · · ≤ sk, 0 ≤ si ≤ iδ}.

The relation between s and r provides a diffeomorphism between Pk(δ) and Qk(δ). Hence it suffices
to compute volume of Qk(δ). Given any permutation π ∈ Sk, and a point s ∈ Rk, we denote by
π(s) the action of π on coordinates of s. Since points in Qk(δ) have non-decreasing coordinates,
for any π1, π2 ∈ Sk, π1Qk(δ) and π2Qk(δ) intersect on region of measure zero, since they can only
intersect on the points that have at least two coordinates which are equal. Therefore,

V (SkQk(δ)) = k! · V (Qk(δ))

where SkQk(δ) =
⋃

π∈Sk
Qk(δ). For any point s ∈ Rk

≥0, define ϕ : Rk
≥0 → Zk

≥0 such that ϕ(s)i =
⌊
si
δ

⌋
.

If s ∈ SkQk(δ), observe that
|{i : ϕ(s)i ≥ k − j}| ≤ j (3.5)
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Therefore, ϕ(s), thought of as a function of coordinate i, that is i 7→ ϕ(s)i is a parking function on
set {0, . . . , k − 1} for all s ∈ SkQk(δ), since eq. (3.5) is exactly the definition of parking functions.
While it will be sufficient for our purposes to bound the number of choices for ϕ(s) by the number
of all functions on {0, 1, . . . , k− 1}, namely kk, we recall the following theorem due to Pyke [Pyk59]
and Konheim and Weiss [KW66]:

Theorem 41. Number of parking functions on set {0, . . . , k − 1} is precisely (k + 1)k−1.

Proof. (Due to Pollack (1974)[FR74; Staa; Stab]) We look at the set of all functions from
{0, . . . , k − 1} to {0, . . . , k}. Given any such function f , we can define an injective function
g, by doing the following: for i = 0, . . . , k − 1, find the smallest m ≥ 0 such that f(i) + m
mod (k+1) is free, that is there is no j < i such that g(j) = f(i) +m mod (k+1). This is always
possible since there are k + 1 possible choice of m, and number of occupied positions can be at
most k. Observe that for each f , there is exactly one index τ(f) such that g−1(τ(f)) = ∅, and f is
a parking function if and only if τ(f) = k. Now, define function fi such that

fi(x) = f(x) + i mod (k + 1)

Then τ(fi) = τ(f) + i mod (k + 1). Note that these translations partition the set of all functions,
and each partition contains a unique parking function, therefore, total number of parking functions
is (k + 1)k/(k + 1) = (k + 1)k−1.

Now, we are in a position to compute SkQk(δ). The mapping ϕ associates exactly a set of size
δk to each parking function. Therefore,

V (SkQk(δ)) = (k + 1)k−1δk

And therefore, we have

V (Pk(δ)) = V (Qk(δ)) =
(k + 1)k−1δk

k!
≤ kkδk

k!
≤ (3δ)k (3.6)

Where second last inequality follows from number of parking functions ((k + 1)k−1) being smaller
than number of all functions (kk), and the last inequality follows from a loose version of sterling’s

formula, k! ≥
(
k
3

)k
. Putting this together with Equation (3.4), we get

V (R) ≤ n(6πδ2)k (3.7)

Let P denote the expected number of paths (x1, . . . , xk) of distinct points such that (x1, . . . , xk)
satisfy Equation (3.1). Then we have

E[P ] ≤ V (R) ≤ n(6πδ2)k

Using Markov’s inequality, we have

P[P ≥ 1] ≤ E[P ] ≤ n
(
6πδ2

)k
. (3.8)

Therefore, if 6πδ2 ≤ 3
4
, then P[P ≥ 1] ≤ ne−k/4. Hence, we get the following theorem:
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Theorem 42. For any ϵ > 0, suppose the cost of optimal TSP tour that visits at least k = εn points
in Xn be denoted by TSPε(Xn). Then ∀ε ∈ R≥0

TSPε(Xn)

k
≥ C with probability 1− e−Ω(εn) (3.9)

for some absolute constant C ≥ (6π)−1/2.

3.2 Upper bound on Average value of

In this section, we will upper bound the per point cost of min-cost ε-matching and ε-two-factor
problems, where are are looking for matching (two-factor) that spans k = εn points among given n
points. In particular, we will prove the following theorem:

Theorem 43. For any ε > 0, suppose the cost of optimal matching and two-factor that covers at
least k = εn points in Xn be denoted by MMε(n) and TFε(n) respectively. Then

lim
ε→0

MMε(Xn)

k
= 0 (3.10)

lim
ε→0

TFε(Xn)

k
= 0 (3.11)

almost surely.

Proof. In order to construct matching or two factor with small cost, we break region [0,
√
n]2 into

squares with side length d. Then we will count the number of squares that contain either 2 points
for matching or 3 points for a two factor.

Suppose there are s squares, Q1, . . . , Qs each of side length d, which cover [0,
√
n]2. Then we

have s = n/d2. Let v denote the volume of each square, that is, v = d2. Let Xi denote the event
that square Qi contains at least 2 points. Since X is generated using a poisson process,

P[Xi = 1] = 1− (1 + v)e−v =

∫ v

0

xe−x dx ≥
∫ v

0

x(1− x) dx =
v2

2
− v3

3
.

For v ≤ 1, we can further lower bound this by v2

6
, getting the following lower bound:

P[Xi = 1] ≥ v2

6
(3.12)

Let X =
∑s

i=1Xi. Then by Chernoff’s inequality,

P
[
X ≤ (1− δ)E[X]

]
≤ exp

(
−δ2E[X]

2

)
. (3.13)

By linearity of expectation,

E[X] ≥ s · v
2

6
=

vn

6
.
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Choosing v = 6ε and δ = 1
2
, we get that X ≥ εn

2
with probability at least 1 − e−Ω(εn). Since

X counts the number of squares with two points, we can pick any two points and pick the edge
between them in the matching. This provides a matching of total weight at most 2−0.5εnd. Since
we choose v = 6ϵ, d =

√
6ε. Therefore, we have

MMε(Xn)

k
=

30.5 · ε1.5n
εn

= O(
√
ε) with probability 1− e−Ω(εn).

Where both O and Ω notation hide absolute constants. This implies the limit in eq. (3.10).
To upper bound the value of optimal two-factor, we follow the same argument but look at the

squares that contain at least 3 points. We can then construct a triangle in each of these squares
which gives us a valid two factor. Let Yi denote the event that Qi contains at least 2 points. Then

P[Yi = 1] = 1−
(
1 + v +

v2

2

)
e−v =

∫ v

0

x2

2
e−x dx ≥

∫
0v

x2

2
(1− x) dx =

v3

6
− v4

8
.

For v ≤ 1, we have the lower bound

P[Yi = 1] ≥ v3

24
(3.14)

Defining Y =
∑s

i=1 Yi, linearity of expectation gives us

E[Y ] ≥ s · v
3

24
=

v2n

24

Choosing v2 = 16ε and δ = 1
2
, we get that Y ≥ εn

3
with probability at least 1− e−Ω(εn). Picking a

triangle from each of these squares provides us a two factor with εn points, with total weight at
most 20.5εnd. Since v2 = 16ε, d = 2ε0.25. Therefore, we have

TFε(Xn)

k
=

20.5ε1.25n

εn
= O( 4

√
ε) with probability 1− ε−Ω(εn).

Again, both O and Ω notation hide absolute constants. This gives us the limit in eq. (3.11).
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Chapter 4

Direct sampling for paths on grid

Analysis of political redistrictings has created a significant impetus for the problem of random
sampling of graph partitions into connected pieces—e.g., into districtings.

The most common approach to this problem in practice is to use a Markov Chain; e.g., Glauber
dynamics, or chains based on cutting spanning trees (e.g., [DDS19; Aut+19; Aut+21]). Rigorous
understanding of mixing behavior is the exception rather than the rule; for example, [MP15]
established rapid mixing of a Markov chain for the special case where both partition classes are
unions of horizontal bars, which in each case meet a common side. No rigorous approach is known,
for example, which can approximately uniformly sample from contiguous 2-partitions even of lattice
graphs like the n× n grid in polynomial time

In this paper we consider a direct approach, where instead of leveraging a Markov chain with
unknown mixing time to generate approximate uniform samples, we use a dynamic programming
algorithm and rejection sampling to exactly sample from self-avoiding walks in the lattice Z2 (which
correspond to partition boundaries) in polynomial expected time. Counting self-avoiding lattice
walks is a significant long-standing challenge; the connective constant—the base of the exponent
in the asymptotic formula for the number of such walks—is not even known for Z2. But we will
be interested in sampling nearly-shortest self avoiding walks, motivated by districting constraints
which discourage the use of large district perimeters relative to area. In particular, we will prove:

Theorem 44. For any C and ε > 0 and for any n1, n2, and n = n1 + n2, there is a randomized
algorithm which runs w.h.p in polynomial time, and produces a uniform sample from the set of
self-avoiding walks in Z2 from (0, 0) to (n1, n2) of length at most

n+ Cn1−ε.

A variant of this algorithm can be used to sample from contiguous 2-partitions of the Aztec
diamond with restricted partition-class perimeter, by sampling short paths between nearly-antipodal
points on the dual of the Aztec diamond. These paths are in bijection with the contiguous 2-
partitions of the Aztec diamond, by mapping a partition to it’s boundary which gives us a path.
This approach generates samples in polynomial time w.h.p. In contrast, we show that the traditional
approach using Markov chains is inefficient:

33



Figure 4.1: Uniformly random self-avoiding walks of length 700 between corners of a 300 × 300
grid, generated with the algorithm from Theorem 44.

Figure 4.2: Uniformly random self-avoiding walks on A30 such that both sides have perimeter of at
most 220.

Theorem 45. For any C and ε > 0, Glauber dynamics has exponential mixing time on contiguous
2-partitions of the Aztec diamond Ak when constrained by perimeter slack Ck1−ε.

Organization of the Paper: The paper is organized in the following manner: Section 4.1 describes
a dynamic programming algorithm (Algorithm 1) to sample walks without short cycles and proves
its correctness. Sections 4.2 and 4.3 show that the algorithm actually returns a self-avoiding path
from (0, 0) to (n1, n2) in the unbounded lattice graph Z2 in polynomial time with high probability,
enabling the random sampling of paths for rejection sampling. Section 4.4 provides the same result
for wide subgraphs of the lattice, the notion of wide subgraph is also defined in this section. The
last section, Section 4.5 is dedicated to proving Theorem 45, and showing that Aztec diamond is a
wide subgraph of the lattice.
Notation: For the rest of the paper, we will typically use letters A,B, . . . for denoting paths from
O = (0, 0) to P = (n1, n2). We will use letters Q,R, . . . to denote points on the grid. Each path A
from O to P of length n+ 2k has two representations, we can describe A by the sequence of moves
a1, . . . , an+2k where ai ∈ L,R, U,D denotes the direction of next step in the path. On the other hand,
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we can also denote path A by the sequence of points that it visits, namely, O = A0, . . . , An+2k = P .
Typically, we will also use B to denote a shortest path, and A to denote a larger path.

We will further let Pk,Wk,W
l
k denote the number of paths (self-avoiding walks), number of walks,

and number of walks without cycles smaller than 2l from O to P of length n+ 2k respectively.

4.1 Dynamic Programming Algorithm

In this section, we will describe the dynamic programming algorithms that counts W l
k, the number

of walks of length n+2k without short cycles, that is, without cycles of length smaller than 2l from
O = (0, 0) to P = (n1, n2) in a subgraph S of the grid Z2. The algorithm memorizes the number of
paths from every point Q ∈ S to P , along with previous 2l steps, which is given by a walk w of
length 2l ending at Q. Let Φl(Q) denote the set of paths ending at Q of length at most 2l.

Algorithm 1 Counting Low Girth Walks

1: DP(Q,P,w, t) = 0 for Q ∈ S, w ∈ Φl(Q),
0 ≤ t ≤ n+ 2k

2: function Walks(Q,P,w, t)
3: if t = 0 then
4: if Q = P then
5: return DP(Q,P,w, t) = 1
6: else
7: return DP(Q,P,w, t) = 0
8: end if
9: end if
10: if DP(Q,P,w, t) ̸= 0 then
11: return DP(Q,P,w, t)
12: end if
13: for d ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}

do
14: if Q+ d ∈ S and d /∈ w then
15: R = Q+ d
16: w′ is the path obtained by ap-

pending R to w and trimming down to
length 2l.

17: DP(Q,P,w, t) +=
Walks(R,P,w′, t− 1)

18: end if
19: end for
20: return DP(Q,P,w, t)
21: end function

Algorithm 2 Sampling Low Girth Walks

1: function Sample Walks(k)
2: w = O
3: for i = 0 to n+ 2k do
4: for Q ∼ w[i] do
5: pQ = DP(Q,w′, n+ 2k − 1− i)
6: where w′ = w[i− 2l+1] · · ·w[i]Q

is path of length 2l ending at Q
7: end for
8: Sample w[i + 1] from Q ∼ w[i] pro-

portional to pQ.
9: end for

10: return w
11: end function

Algorithm 3 Sampling Paths

1: function Sample Paths(k)
2: while w is not a path do
3: w = Sample Walks(k)
4: end while
5: return w
6: end function

Once we have number of these paths, we can sample a walk of length n+ 2k without cycles of

35



length smaller than 2l by starting at O and sampling points in the walk with correct probability
using memoized values obtained by algorithm 1.

Since there are at most 42l paths of length 2l, |Φl(Q)| ≤
∑l

i=0 16
i = 2 · 16l for any point Q.

Therefore, size of the DP table in Algorithm 1 is |S| · 16l, and each entry in this table takes
O(l) time to compute, since deg of each vertex in S is at most 4. Therefore, Algorithm 1 takes
O
(
|S| · l · 16l

)
= O(|S|) time for constant l. Note that these paths are restricted to the set of

points R = {Q |O − (k, k) ≤ Q ≤ P + (k, k)}. Thus, for large S (in particular for S = Z2), we
can restrict the algorithm to S ′ = R∩ S.

Further, once the DP table is computed, Algorithm 2 runs in O(n+ 2k) time. We will prove in
Theorem 60 that for k ≤ Cn1−ε and S = Z2, Algorithm 2 actually returns a path with probability
1 − o(1) for l > 1

ε
. This implies that Algorithm 3 runs in O(n + 2k) time with high probability,

completing the proof of Theorem 44. We will provide a sufficient condition for subgraphs S ⊆ Z2

in Theorem 65 which implies the same probability bound for these specific subgraphs S.

4.2 Number of Paths in a Grid

This section focuses on getting bounds on the number of paths from O = (0, 0) to P = (n1, n2)
in the grid. Recall that paths are in fact self-avoiding walks. Let n = n1 + n2 be the length of a
shortest path from O to P . We will provide some upper and lower bounds on the number of paths
of length n+ 2k from O to P in terms of number of shortest paths from O to P . These upper and
lower bounds are based on constructing extensions of shortest paths.

In general, we will associate a shortest base path to every path from O to P . This association is
described in Definition 52. We will also provide procedures for extending shortest paths to larger
paths, which respects the base path mapping. Then the lower bound on paths of length will follow
by bounding the number of extensions of each shortest path, and upper bound will follow from
bounding the number of paths of length n+ 2k that have a specific given path as the associated
base path.

Let a shortest path B be described by sequence of moves b1, . . . , bn where n = n1 + n2, where
each bi ∈ {U,R} describes the direction of move at ith step. Then we have the following procedure
to extend the path B to a path A from O to P of length n+ 2k.

Definition 46. Given a shortest path B represented by b1, . . . , bn from O = (0, 0) to P = (n1, n2)
where n = n1+n2, and a set M = {i1, . . . , ik} of indices, we define the extended path A = A(B,M)
obtained by performing following replacements for all j = 1, . . . , k:

1. If bij = R, replace it by DRU .
2. If bij = U , replace it by LUR.

For an edge bi, we will also refer to the operation above as bumping the edge. Further, we will say
that an edge bi can be bumped if bumping the edge bi gives us a path.

Figure 4.3 illustrates how Definition 46 behaves when extending shortest paths. It is not true
that for all choices of M the map A(B,M) is a path. But, we will show that for a large choice of
set M , it is a path.
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Figure 4.3: Bumping a shortest path at indices 2, 6, 9

Lemma 47. For any choice of M such that bij−1 = bij for all j, the map A(B,M) gives us a path.

Proof. Let path B be go through the points O = B0 . . . Bn = P . Then for any point Bi = (xi, yi)
if the point X = (xi − 1, yi) is also in the path B then X must be connected to Bi, and hence
Bi−1 = X since otherwise there is a subpath from (xi, yi) to (xi − 1, yi + 1) (or the other way
around) in B, which implies that B is not a shortest path.

In particular, if bi−1 = bi = U then the points to the left of Bi−1 and Bi, that is, the points
(xi−1 − 1, yi−1) and (xi − 1, yi) are not in B. Therefore, if we replace bi by LUR, we change the
portion of path from Bi−1 to Bi to look like

Bi−1 = (xi−1, yi−1)→ (xi−1 − 1, yi−1)→ (xi−1 − 1, yi−1 + 1) = (xi − 1, yi)→ (xi, yi) = Bi

which is a path since newly added points were not in B initially. Similar argument works for DRU
modifications. The modifications of type U → LUR and R→ DRU happen on opposite side of the
path B, and hence don’t intersect. Further, all the modifications of type U → LUR don’t intersect
unless they are adjacent to each other. Therefore, if the set M contains non-adjacent indices, then
we can perform all the modifications simultaneously without creating any loops. Further, observe
that these modifications do not intersect each other if the set M contains non-adjacent indices, and
can be performed simultaneously.

We will use this procedure described in Definition 46 to generate a family of paths of length
n+ 2k. To ensure that there are a lot of choices for M , we need to argue that most shortest paths
from O to P have n

2
− o(n) many places where the hypothesis of Lemma 47 is satisfied. This is

formalized in the next lemma.

Lemma 48. For any point P = (n1, n2) with n1 + n2 = n, a shortest path from O = (0, 0) to P
drawn uniformly at random has at least n

2
−O(

√
−n log ε) places with two consecutive moves in the

same direction with probability 1− ε.

Proof. Let B be a shortest path from O to P . B can be denoted as a sequence of exactly n1 right
moves and exactly n2 up moves. Let us denote this path by b1, . . . , bn where bi ∈ R,U . We can
draw a path uniformly at random by picking uniformly at random from a bag with n1 R symbols
and n2 U symbols without replacement. Let Xi be the indicator random variable for the event that
bi = bi+1. Now, we first observe that

P[Xi | b1, . . . , bi−1] =
p(p− 1)

r(r − 1)
+

q(q − 1)

r(r − 1)
=

p2 + q2 − r

r(r − 1)
≥ 1

2
− 1

2(r − 1)
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where p is number of U symbols left in the bag, q is number of R symbols left in the bag and
r = p + q. Now, we will show that P[Xi |X1, . . . , Xi−1] ≥ 1

2
− 1

n−i−1
. It suffices to show that

P[Xi = 1 | b1, . . . , bi−2, Xi−1] ≥ 1
2
− 1

n−i−1
. We will show this by doing two cases: Xi−1 = 0 and

Xi−1 = 1. In the first case, Xi−1 = 0,

P[Xi = 1 | b1, . . . , bi−2, Xi−1 = 0] =
P[Xi = 1, Xi−1 = 0 | b1, . . . , bi−2]

P[Xi−1 = 0 | b1, . . . , bi−2]

=

pq(q−1)+qp(p−1)
r(r−1)(r−2)

pq+qp
r(r−1)

=
pq(p+ q − 2)

2pq(r − 2)
=

1

2

where p is number of U symbols left, q is the symbol of R symbol left, and r = p+ q. In the second
case, using the same notation, we have

P[Xi = 1 | b1, . . . , bi−2, Xi−1 = 1] =
P[Xi = 1, Xi−1 = 1 | b1, . . . , bi−2]

P[Xi−1 = 1 | b1, . . . , bi−2]

=

p(p−1)(p−2)+q(q−1)(q−2)
r(r−1)(r−2)

p(p−1)+q(q−1)
r(r−1)

=
p(p− 1)(p− 2) + q(q − 1)(q − 2)

(p(p− 1) + q(q − 1))(r − 2)

=
p3 + q3 − 3(p2 + q2) + 2(p+ q)

(p2 + q2 − (p+ q))(r − 2)

=
r3 − 3pqr − 3(r2 − 2pq) + 2r

(r2 − 2pq − r)(r − 2)

=
r3 − 3r2 + 2r − 3pq(r − 2)

(r2 − r − 2pq)(r − 2)

=
r(r − 1)(r − 2)− 3pq(r − 2)

(r2 − r − 2pq)(r − 2)

=
r(r − 1)− 3pq

r(r − 1)− 2pq

Note that this term is maximized when pq is minimized, and is minimized when pq is maximized.
Constrained to the fact that p+ q = r and p, q ≥ 0, we get

1 ≥ r(r − 1)− 3pq

r(r − 1)− 2pq
≥ 4r2 − 4r − 3r2

4r2 − 4r − 2r2
=

r − 4

2(r − 2)
=

1

2
− 1

r − 2

Therefore, in both cases, we have

P[Xi = 1 |X1, . . . , Xi−1] ≥
1

2
− 1

n− i− 1
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Now, we couple variables Xi with variables ei, drawn independently such that P[ei = 1] = 1
2
− 1

n−i−1
.

To begin with, we draw b1 with correct probabilities. Then for each i, we draw fi uniformly at
random from [0, 1]. We set ei = 1 if fi ≤ P[ei = 1] and we set ei = 0 otherwise. Further, if
fi ≤ P[Xi = 1 |X1, X2, . . . , Xi−1], then we set ai+1 such that Xi = 1, otherwise we set ai+1 such
that Xi = 0; note that the status of Xi+1 uniquely determines the choice of ai+1. Therefore,
ei = 1 =⇒ Xi = 1, and hence

∑n−1
i=1 ei ≤

∑n−1
i=1 Xi. Notice that ei are still independent random

variables. Therefore,

P
[∑

Xi ≤ E
[∑

ei

]
− t
]
≤ P

[∑
ei ≤ E

[∑
ei

]
− t
]
≤ exp

(
−2t2

n

)
Where the last inequality follows from Hoeffding’s inequality. Note that

E
[∑

ei

]
=
∑ 1

2
− 1

n− i+ 1
≥ n

2
− 2 log n

Given any ε > 0, and t =
√
−n log ε, we get that

P
[∑

Xi ≤
n

2
− 2 log n−

√
−n log ε

]
≤ ε

This proves the required result.

This allows us to lower bound the number of paths of length n + 2k from O = (0, 0) to
P = (n1, n2) where n1 + n2 = n. Recall that Pk denotes the number of these paths.

Lemma 49. For any k ≤ 0.1n and 1 > ε ≥ 0, we have the lower bound

Pk ≥ (1− ε)P0

(
t− 2k

k

)
where t = n

2
− 2 log n−

√
n log(1/ε). Further, there is n0 = n0(ε), such that for all n ≥ n0,

Pk ≥ (1− ε)P0
(0.49)knk

k!
exp

(
−O
(
k2

n

))
(4.1)

Proof. Consider a path B of length n from O to P . Let B be represented by b1, . . . , bn where
bi ∈ {R,U}. Then using Definition 46 and lemma 47, we can extend B to a path A = A(B,M) of
lenght n+ 2k if we choose M to be a set such that there are no adjacent indices in M and further,
for each i ∈M , bi−1 = bi. There are at least

t =
n

2
− 2 log n−

√
n log(1/ε)

such indices, for at least (1− ε)P0 many paths. For each of these paths, we need to choose a set of
k non-adjacent indices. This can be done in at least

t(t− 3)(t− 6) . . . (t− 3(k − 1))

k!
≥ (t− 2k)(t− 2k − 1) . . . (t− 3k + 1)

k!
=

(
t− 2k

k

)
(4.2)
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many ways, since after picking first index, we lost 3 possible choices for rest of the indices. Further,
observe that any longer path A that is obtained in this way corresponds to exactly one shortest
path B. We can find this path B by looking at patterns LUR and DRU and replacing them by U
and R respectively. If M is choosen satisfying conditions of Lemma 47, then it is clear that every
L in the extended path A is followed by UR and every D in A is followed by RU . Hence, these
replacements can be made unambiguously. Since we can do this for all (1− ε)P0 paths, we get the
lower bound.

Pk ≥ (1− ε)P0

(
t− 2k

k

)
Since 2 log n +

√
n log(1/ε) = o(n), there is n = n(ε) such that for all n ≥ n(ε), 2 log n +√

n log(1/ε) ≤ 0.01n, and hence t ≥ 0.49n. This gives us the lower bound

Pk ≥ (1− ε)P0

(
0.49n− 2k

k

)
Using Equation (D.6), we have

Pk ≥ (1− ε)P0
(0.49)knk

k!
exp

(
−4k2 − k2 + k

0.49n
− 2k(2k + k)

0.49n

)
≥ (1− ε)P0

(0.49)knk

k!
exp

(
−25k2

n

)
=⇒ Pk ≥ (1− ε)P0

(0.49)knk

k!
exp

(
−O
(
k2

n

))
completing the proof of the lemma.

The next task is to extend this result to get similar bounds for extending paths of length n+2k
to paths of length n+ 2k + 2l. We will prove the following:

Lemma 50. For any k, l ≤ 0.1n and 1 > ε ≥ 0, there is n0 = n0(ε) such that for all n ≥ n0(ε),

Pk+l ≥ (1− ε)Pk

(
t− 8k − 3l

l

)(
k + l

l

)−1

where t = n
2
− 2 log n−

√
n log(1/ε) + 2kn log n+ 30k2. Further, there is n1 = n1(ε), such that for

all n ≥ n1,

Pk+1 ≥ (1− ε)Pk
(0.49)lnlk!

(k + l)!
exp

(
−O
(
k(k + l)

n

))
(4.3)

The outline of proof of this lemma will be similar to Lemma 49. Consider a path A of length
n+ 2k from O to P . We want to show that for a large number of sets M = {i1, . . . , ik}, we can
construct the extended path C = A(A,M). To ensure we can find a large number of candidates
for M , we will associate a shortest path to each path A. We define a map B in Definition 52 such
that B(A) gives us such a shortest path. We further associate each the edges of B = B(A) to some
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of the edges of A, and we call these the good edges of A and all other edges of A as bad edges of
A. This mapping is defined in Definition 56. We claim that the set of indices where we cannot do
modifications in the extension procedure defined in Definition 46 corresponds to either a corner of
B or a bad edge of A. Then we can bound the number of corners and bad edges to get the bound
required.

We begin the proof begin by defining lattice boxes to make notation easier, and then use those
to define the map B.

Definition 51. Given points P1, P2 ∈ Z2, such that P1 ≤ P2, we define the lattice box R(P1, P2)
with left bottom corner P1 and right top corner P2 to be the rectangle with sides parallel to the
axis with P1 and P2 as diagonally opposite corners. To be precise,

R(P1, P2) =
{
x ∈ Z2

∣∣ P1 ≤ x ≤ P2

}
We further define boundary of a lattice box (and more generally of any set S ⊆ Z2) to be the set of
vertices v ∈ S such that v has at least one neighbor outside S in the infinite grid graph.

Definition 52. We define the map B as follows. Consider a path A given by points O =
A0, . . . , An+2k = P from O = (0, 0) to P = (n1, n2) with n1, n2 ≥ 0 and n = n1 + n2. We will
build B(A) = B inductively, starting at O = (0, 0). We will do this by constructing a sequence of
points Ri which will all lie in the intersection A ∩B. Let R0 = O. Suppose we have constructed
R0, . . . , Ri.

1. Construct a box Ri = R(Ri, P ) with Ri as the bottom left corner and P as the top right
corner.

2. Find the next point Ri+1 on A, after Ri such that Ri+1 ∈ Ri.
3. Extend B to Ri+1 using the shortest path along the boundary of Ri if Ri+1 ̸= P .
4. If Ri+1 = P , then let Ā be part of A between Ri = (Ri(x), Ri(y)) and P .

• If Ā intersects y = n2 before x = n1, define R̄ = (Ri(x), n2)
• Otherwise define R̄ = (n1, Ri(y)).

Extend B from Ri to R̄ to P .

Lemma 53. The map B in Definition 52 is well defined.

Proof. Given Ri ̸= P , we can always find Ri+1 since P ∈ Ri and P ∈ A, so A eventually intersects
Ri. Therefore, steps (1, 2) in Definition 52 are well defined. For step (3), observe that P is the
only point on boundary of Ri that has two shortest paths from Ri along the boundary. Therefore,
(3) is well defined as long as Ri+1 ̸= P .

For step (4), observe that if Ri is degenerate, then there is a unique path from Ri to P , and
this step is well defined. Suppose Ri is non-degenerate. That is, Ri and P differ at both x and y
coordinates. In this case, Ā cannot intersect both the lines y = n2 and x = n1 simultaneously, and
it must intersect both of them eventually. Hence, step (4) is well defined as well.

We now define the good edge mapping. First, we will start by making a few notational definitions.
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Figure 4.4: Illustrations for Definitions 52 and 56. First image shows a non-shortest path A, second
image is the base path B(A), third image indicates good forward edges in green, and forth image is
the path obtained by bumping at indices 3, 14.

Definition 54. Given a path A from O to P with points O = A0, . . . , An+2k = P , we can represent
it as a sequence of moves, a1 . . . an+2k, where each move is one of the four directions (U,D,L,R).
We say that ith point (Ai) on this path is a corner if ai ̸= ai+1. We further include O and P to be
corner points.

We define last corner point to be the corner point Q ≠ P with highest index. We will also refer
to O as the starting point and to P as the ending point.

Definition 55. Let A be a path of length n+2k from O = (0, 0) to P = (n1, n2), where n = n1+n2.
Let A be given by point O = A0, . . . , An+2k = P . Then, we divide edges of A into two categories.
Any edge going in the directions D or L will be reffered to as a reverse edge, and any edge going in
the direction U and R will be reffered to as a forward edge.

Definition 56. In the setting described in the previous definition, let B = B(A), where B is defined
in Definition 52. Let B be given by O = B1, . . . , Bn = P . We define a good edge mapping to be
any function FA : Z[0,n−1] → Z[0,n+2k−1], where Z[0,t] = Z ∩ [0, t] satisfying

1. FA is injective.
2. For i < j, FA(i) < FA(j).
3. The edges AFA(i)AFA(i)+1 and BiBi+1 are super-parallel, that is

• If edge BiBi+1 = (x, y) → (x, y + 1), the edge AFA(i)AFA(i)+1 = (x̄, y) → (x̄, y + 1) for
some x̄.

• If edge BiBi+1 = (x, y) → (x + 1, y), the edge AFA(i)AFA(i)+1 = (x, ȳ) → (x + 1, ȳ) for
some ȳ.

Given such a mapping F , we will refer to any edge of form AF(i)AF(i)+1 to be a good forward edge,
and any edge that is not a good forward edge as a bad forward edge.

Figure 4.4 illustrates the definitions above. We show that such a mapping exists in the lemma
below.

Lemma 57. Given a map A of length n+ 2k and let B = B(A). Using notation in Definitions 55
and 56, there exists a good edge mapping F satisfying conditions in Definition 56.

Proof. First, it immediately follows from definitions 52 and 54 that all the corners of path B are
contained in the set

{
O = R0, R1, . . . , Rm = P, R̄

}
, since the portions of B in between these points
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are straight lines. Now, we define the mapping F = FA for parts of B between Ri and Ri+1 for
0 ≤ i ≤ m − 2, for each edge BjBj+1 between RiRi+1 in B, we define F(j) = k to be the least
index such that AkAk+1 and BjBj+1 are super-parallel, that is, they satisfy the condition (3) in
Definition 56.

We claim that this is strictly monotonic for each i. Suppose not, then there is an index j
such that such that F(j + 1) ≤ F(j). If F(j + 1) = F(j), then edges BjBj+1 and Bj+1Bj+2 are
super-parallel, which is a contradiction. Without loss of generality, let the points Ri, Bj, Bj+1, Ri+1

share the same x coordinate, that is, let Ri = (x0, y0), Bj = (x0, y1), Bj+1 = (x0, y1 + 1) and
Ri+1 = (x0, y2). Then AF(j+1) = (x1, y1 + 1) for some x1. Then the path from Ri = (x0, y0) to
(x1, y1 + 1) must have an edge of the form (x2, y1)→ (x2, y1 + 1) since y0 ≤ y1. Therefore, there
is an index k < F(j + 1) such that AkAk+1 is super-parallel to the edge BjBj+1, which implies
F(j) < F(j + 1), a contradiction!

If the path between Rm−1 and Rm = P is straight line, we can extend the definition above
when i = A− 1. Otherwise, the point R̄ is well defined. Let Ā be portion of A between Rm−1 and
P . Without loss of generality, let Ā intersect the line y = n2 before the line x = n1 at a point Q.
Suppose Q = (x0, n2), then x0 < n1, otherwise the path from Rm−1 to Q will intersect the line
x = n1. Since Q is also outside R(Rm−1, P ), it follows that x0 < x1 where Ri = (x1, y1).

Now, for all Bj between Rm−1 and R̄, we define F(j) = k where k is the smallest index such
that Ak is between Rm1 and Q such that BjBj+1 and AkAk+1 are super-parallel and for all Bj

between R̄ and P , we define F(j) = k where k is the smallest index such that Ak is between Q
and P such that BjBj+1 and AkAk+1 are super-parallel.

This map is well defined and monotonic since Ā must go from y = y1 to y = n2, and then from
x = x0 to x = n1, and hence edges super parallel to BjBj+1 exists for all Bj between Rm−1 and P .
Further, the map is strictly monotonic by an argument earlier in the proof. This gives us the good
edge mapping that we want.

The next lemma proves that a large number of good edges can be bumped.

Lemma 58. Consider a path A of length n+ 2k. Let B = B be the base path associated with it.
Suppose B has c corners. Then there is a set G of indices of at least n− c− 8k good edges in A
which can be bumped.

Proof. Note that A has exactly n good forward edges, k bad forward edges and k reverse edges.
Now, we transverse A, and for each good forward edge, we check if we can bump the good forward
edge. To be presice, consider a good forward edge S1S2. Without loss of generality, we will assume
that the edge goes in U direction, and is given by (x0, y0)→ (x0, y0 + 1).

Suppose S1S2 is a good forward edge that cannot be bumped. We will associate either
1. a reverse edge
2. a bad forward edge
3. or a corner of B

as the reason why bumping at S1 is blocked. Since S1S2 cannot be bumped, either S3 = (x0− 1, y0)
is in A or S4 = (x0 − 1, y0 + 1) is in A.

First, consider the case when S3 is contained in A. Look at the edge e going out of S3 in A. We
have following cases:
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1. If there is no such edge, then S3 = P . In this case, we say that P blocks bumping at S1.
2. If the edge e is either a reverse edge or a bad forward edge, then we say that this edge blocks

bumping at S1.
3. If the edge e is going in U direction and is a good forward edge, then there is an unique edge

f ∈ B that is obtained by moving e and S1S2 perpendicular to their respective directions.
This contradicts the definition of F .

4. If the edge is going in R direction and is a good forward edge, S3S1S2 are consecutive in A.
Let j be such that Aj = S3, Aj+1 = S1 and Aj+2 = S2. Since these are good forward edges,
there is i such that F(i) = j. Since F is strictly monotonic, (i+ 1) = j + 1. Therefore, Bi+1

is a corner point in B. In this case, we say that the corner point Bi+1 is blocking the bumping
at S1.

Now, suppose S4 is contained in A. Look at the edge e going into S4 in A. We again that 4
cases:

1. If there is no such edge, then S4 = O. In this case, we say that O is blocking bumping at S1.
2. If the edge e is either a reverse edge or a bad forward edge, then we say that this edge is

blocking the bump at S1.
3. If the edge e is going in U direction and is a good forward edge, then it is exactly the same

edge as the one considered in case (3) above.
4. If the edge e is going in R direction, then both e and S1S2 end at S2, which cannot happen

as A is a path.
Each reverse forward edge or backward edge can block at most 4 good forward edges from

bumping, two in each direction, one where it is blocking S3 and one where it is blocking S4. On
the other hand, each corner including O and P can block at most one edge. Therefore, there are at
least n− c− 8k good forward edges which can be bumped, completing the proof.

In order to finish the proof of Lemma 50, we need a bound on number of paths A of length
n + 2k such that the base path B = B(A) has a large number of corners. We will do this by
bounding the number of paths A such that B(A) = B, and then using Lemma 48 to bound number
of paths B with a large number of corners. We will give a rather trivial bound that suffices.

Lemma 59. Given a shortest path B and k ≤ 0.1n, the number of paths A of length n+ 2k such
that B(A) = B is at most

2 · 32k
(
n+ 2k

2k

)
.

Proof. First, we express B as a sequence of directions of length n. Now, from n + 2k positions,
we choose 2k positions, and fill up the rest with the sequence of directions used in B. For the
remaining 2k places, we have at most 3 choices each since we canot leave in the direction we came
from, unless we are picking the starting direction, in which case we might have 4 choices. This
gives an upper bound of

32k−1

(
4

(
n+ 2k − 1

2k − 1

)
+ 3

(
n+ 2k − 1

2k

))
= 32k

(
n+ 2k

2k

)
+ 32k−1

(
n+ 2k − 1

2k − 1

)
since

(
n+2k−1
2k−1

)
= 2k

n+2k

(
n+2k
2k

)
≤ 3
(
n+2k
2k

)
for k ≤ 0.1n, we get the result.
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Now we are in a position to finish the proof of Lemma 50.

Proof. Recall that by Lemma 49, there is n0 = n0(ε) such that for all n ≥ n0,

Pk ≥
1

2
P0

(0.49)knk

k!
exp

(
−25k2

n

)
On the other hand, for any given ε1, we have that the number of paths A such that the base path
B = B(A) has at least n

2
+ 2 log n+

√
n log(1/ε1) corners is upper bounded by

2ε1P03
2k

(
n+ 2k

2k

)
≤ 2ε1P0

32kn2k

(2k)!
exp

(
8k2 − 4k2 + 2k

n

)
≤ 2ε1P0

32kn2k

(2k)!
exp

(
5k2

n

)
= T

Hence, if we choose ε1 such that

ε1 ≤
ε

4
· (0.49)

k(2k)!

32knkk!
exp

(
−30k2

n

)
or equivalently, if

log(1/ε1) ≥ log(1/ε) + log 4 + k log n+ 4k log 3− k log k +
30k2

n

It follows that there are at most εPk paths A of length n+ 2k such that B has at most

n

2
+ 2 log n+

√
n log(1/ε) + 2nk log n+ 30k2

corners, when k ≤ 0.1n and n ≥ 81. Therefore, in this setting, every path A has at least t− 8k
good edges which can be bumped where

t =
n

2
− 2 log n−

√
n log(1/ε) + 2kn log n+ 30k2

Note that every edge that is bumped can prevent at most 3 new edges from being bumped.
For example, if we bump and edge that looks like (x0, y0) → (x0, y0 + 1) it can stop the edges
(x0, y0 − 1) → (x0, y0), (x0, y0 + 1) → (x0, y0 + 2) and (x0 − 2, y0 + 2) → (x0 − 1, y0 + 2) from
bumping, which it initially did not. Therefore, we can choose set M of l edges which can be bumped
simultaneously in

t(t− 4)(t− 8) · · · (t− 4(l − 1))

l!
≥ (t− 3l) · · · (t− 4l + 1)

l!
=

(
t− 3l

l

)
many ways. Further, each path of length n+ 2k + 2l can have k + l bumps, and can potentially be
obtained in

(
k+l
k

)
many different paths of length l. This gives us the lower bound

Pk+l ≥ (1− ε)Pk

(
t− 8k − 3l

l

)(
k + l

k

)−1
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as required. Note that for k ≤ n
(logn)2

, there exists n(ε) such that for all n ≥ n(ε), t ≥ 0.49n. Using

Equation (D.6), we get the simplified lower bound:

Pk+l ≥ (1− ε)Pk
(0.49)lnlk!

(k + l)!
exp

(
−2(8k + 3l)l − l2 + l

0.49n
− 2l(8k + 3l)

0.49n

)
≥ (1− ε)Pk

(0.49)lnlk!

(k + l)!
exp

(
−32(kl + l2)

0.49n

)
≥ (1− ε)Pk

(0.49)lnlk!

(k + l)!
exp

(
−70(kl + l2)

n

)
≥ (1− ε)Pk

(0.49)lnlk!

(k + l)!
exp

(
−O
(
(kl + l2)

n

))

4.3 Number of Low Girth Walks in the Grid

In this section, we will use the bounds obtained in the section above to compare the number of
paths from O = (0, 0) to P = (n1, n2) to the number of walks from O to P that do not have cycles
of length less than 2l. For the sake of notation, let W l

k denote the number of walks from O to P
that do not have cycles of length less than 2l. Then we have the following:

Theorem 60. Given constants C, δ, α ≥ 0, there exists n(C, δ, α), such that for all n ≥ n(C, δ, α),
and for all k, l such that k ≤ Cn1−δ and lδ > 1 + 2α,

Pk ≤ W l
k ≤

(
1 + 16n−α

)
Pk. (4.4)

Proof. We will show this by induction on k. Note that result holds for 0 ≤ k < l since in this
setting, W l

k = Pk. Suppose by induction hypothesis, W l
k̄
≤ (1 + 8n−α)Pk̄ for 0 ≤ k̄ < k. Since

every walk of length n + 2k with no cycles of length smaller than 2l is either or path or can be
decomposed into a cycle of length t ≥ 2ℓ and a walk of length n+ 2k − t with no cycles of length
smaller than 2l, we get the following bound:

W l
k ≤ Pk +

k−l∑
t=0

W l
t16

k−t(n+ 2t) ≤ Pk

k−l∑
t=0

(
1 + 8n−α

)
· 2 · Pt16

k−tn.

Here 16t is a simple upper bound on the number of cycles of length 16t through a fixed point. Note
that for t ≤ Cn1−δ, n+ 2t ≤ 2n. Now, using Lemma 50 with ε = 0.5, we have

Pt16
k−tn

Pk

≤ 2 · k!
t!
· 16k−tn

nk−t(0.49)k−t
exp

(
70(k − t)(k − t+ t)

n

)
≤ 2 exp

(
(k − t)(log k + log 16− log n− log(0.49)) +

70(k − t)k

n
+ log n

)
≤ 2 exp

(
(k − t)((1− δ) log n+ logC − log n+ log 40) +

70k(k − t)

n
+ log n

)
.
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Let k − t = l + r, and let l be an integer constant such that lδ > 1, then we can upper bound the
summation as below:

W l
k

Pk

≤ 1 +
k−l∑
r=0

(
1 + 8n−α

)
· 4 · exp

(
(1− lδ) log n+ C1l +−rδ log n+ C1r +

50k(l + r)

n

)

≤ 1 + 4
(
1 + 8n−α

)
exp

(
(1− lδ) log n+ C1l + 50lCn−δ

)( k−l∑
r=0

exp
(
r
(
−δ log n+ C1 + 50Cn−δ

)))

≤ 1 + 4
(
1 + 8n−α

)
exp

(
−α log n

)( ∞∑
r=0

exp(−rC2 log n)

)
,

where these equations hold with constants C1 = log 40C and C2 =
δ
2
for n ≥ n1(C, δ). Simplifying,

we get the upper bound:

W l
k

Pk

≤ 1 + 4
(
1 + 8n−α

)
n−α 1

1− n−C2

≤ 1 + 16
(
n−α

)
,

where the last inequality holds for n ≥ n2(α), so that 8n−α, n−C2 ≤ 0.5. Therefore, for n ≥
n(C, δ, α) = max(n1(C, δ), n2(α)), we get the result.

4.4 Subgraphs of the Lattice

In this section, we do the same analysis for number of paths in induced subgraphs of the lattice Z2.
To ensure that the sampling procedure works efficiently, we will prove the analogues of Lemmas 49
and 50 and theorem 60 where we restrict ourselves to paths bounded in some set S ⊆ Z2. First, let
us setup some notation:

Notation. For this section, let S ⊆ Z2 be an induced subset of lattice. Let O,P be two points in S.
Without loss of generality, we will assume that O = (0, 0) and P = (n1, n2) ≥ O. Let n = n1 + n2

denote the length of shortest path from n1 to n2 in Z2. Let Pk denote the number of paths (self
avoiding walk) from O to P of length n+ 2k that are contained in S Let W l

k denote the number
of walks from O to P of length n + 2k that do not have cycles of length smaller than l and are
contained in S.

Now, we make a few definitions which are helpful in the analysis

Definition 61. Given set S ⊆ Z2, we define the boundary of S, denoted by ∂S as the set of points
Q ∈ S such that at least on neighbor of Q is outside S.

Definition 62. Given an induced subgraph S ⊆ Z2 and points O,P ∈ S, we say that S is
(k, s, β)-wide if at least (1 − β) fraction of paths of length n + 2k from O to P contained in S
intersect the boundary ∂S of S in at most s points.
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To give some trivial examples, every set S is (k, s, 1) wide for all k, s and on the other hand,
every set S is (k, n + 2k, β)-wide for all k, β. We are now ready to state and prove variants of
Lemmas 49 and 50 that hold for bounded subgraphs of the lattice Z2.

Lemma 63. Given an induced subgraph S ⊆ Z2 and points O,P in S such that S is (0, s, β)-wide,
and numbers k ∈ Z and ε ∈ R, ε, k > 0, we have the lower bound on number of paths from O to P
contained in S:

Pk ≥ (1− ε− β)

(
t− 2s− 2k

k

)
where t = n

2
− 2 log n−

√
n log(1/ε). Further, there is n0 = n0(ε) such that for all n ≥ n0,

Pk ≥ (1− ε− β)P0
(0.49)knk

k!
exp

(
−O
(
k(k + s)

n

))
(4.5)

Proof. The proof is almost the same as Lemma 49, except one major change, we need to ensure
that the constructed paths A(B,M) using Definition 46 stays inside set S. We can bump a path
B at index i if the point Bi and Bi + 1 are not on the boundary ∂S. Further, there are at least
(1 − ε − β)P0 shortest paths that have at most n

2
+ 2 log n +

√
n log(1/ε) corners and at most s

points that are on the boundary. For these paths, there are at least n
2
− 2 log n−

√
n log(1/ε)− 2s

indices which can be bumped while keeping the path inside set S. Using Equation (4.2), we get the
lower bound:

Pk ≥ (1− ε− β)

(
t− 2s− 2k

k

)
for

t = n
2
− 2 log n−

√
n log(1/ε).

Since t = n
2
− o(n) there is n0 = n0(ε) such that for all n ≥ n0, t ≥ 0.49n. This gives us the lower

bound, due to computation similar to Lemma 49.

Pk ≥ (1− ε− β)P0
(0.49)knk

k!
exp

(
−2(2s+ 2k)k − k2 + k

0.49n
− 2k(2k + k + 2s)

0.49n

)
≥ (1− ε)P0

(0.49)knk

k!
exp

(
−25k(k + s)

n

)
=⇒ Pk ≥ (1− ε)P0

(0.49)knk

k!
exp

(
−O
(
k(k + s)

n

))
completing the proof of the lemma.

Lemma 64. Given an induced subgraph S ⊆ Z2 and points O,P in S such that S is (k, s, β)-wide
and (0, s, β)-wide, and numbers k ∈ Z and ε ∈ R, ε, k > 0, then there is n0 = n0(ε) such that we
have the lower bound on number of paths from O to P contained in S for n ≥ n0(ε):

Pk+l ≥ (1− ε− β)

(
t− 2s− 8k − 3l

l

)
48



where t = n
2
−2 log n−

√
n log(1/ε) + 2kn log n+ 30k2. Further, if k, s ≤ n

(logn)2
, there is n1 = n1(ε)

such that for all n ≥ n1,

Pk+1 ≥ (1− ε− β)Pk
(0.49)lnlk!

(k + l)!
exp

(
−O
(
l(k + s+ l)

n

))
(4.6)

Proof. The proof of this lemma is similar to Lemma 50, and we will only mention the key differenecs.
First, observe that if B = B(A) has c corners, then there are at least n− c− 8k indices in A that
can be bumped. Among these, there are at most 2s indices where the points Ai or Ai+1 are on
boundary. Further, choice of ε1 in the proof of Lemma 50 changes to satsify

log(1/ε1) ≥ log(1/ε) + log 4 + k log n+ 4k log 3− k log k +
30k(k + s)

n

Therefore, there are at most εPk paths A of length n+ 2k such that B has at most

n
2
+ 2 log n+

√
n log(1/ε) + 2nk log n+ 30k(k + s)

corners, there are at most βPk paths A of length n+ 2k that may have more that s points on the
boundary ∂S. This gives us that at least (1− ε− β)Pk paths of length n+ 2k can be bumped at
t− 2s− 8k positions for

t = n
2
− 2 log n−

√
n log(1/ε) + 2nk log n+ 30k(k + s)

For k, s ≤ n
(logn)2

, t = n
2
− o(n), implying that there is n1 = n1(ε) such that t ≥ 0.49n. Using

Equation (D.6) and computations similar to Lemma 50, we get the lower bound:

Pk+l ≥ (1− ε− β)Pk
(0.49)lnlk!

(k + l)!
exp

(
−2(8k + 3l + 2s)l − l2 + l

0.49n
− 2l(8k + 3l + 2s)

0.49n

)
≥ (1− ε− β)Pk

(0.49)lnlk!

(k + l)!
exp

(
−70l(k + l + s)

n

)
This gives us the proposed bound, finishing the proof.

Next step is to prove that variant of Theorem 60 holds for induced subgraph S of the lattice
provided that the set S is satisfies certain properties.

Theorem 65. Given constants C, δ, α ≥ 0, a subgraph S ⊆ Z2, and a function s = s(k) such
that S is (k, s(k), β)-wide where β ≤ 0.25 and s(k) ≤ Cn(1−δ) for all k ≤ Cn(1−δ), there exists
n0 = n0(C, δ, α) such that for all n ≥ n0, k ≤ Cn(1−δ) and l ≥ 0 such that lδ > 1 + 2α,

Pk ≤ W l
k ≤ (1 + 32n−α)Pk (4.7)

Proof. The proof is similar to the proof of Theorem 60. The recursive bound still holds, that is,

W l
k ≤ Pk +

k−l∑
t=0

W l
t16

k−t(n+ 2t) ≤ Pk

k−l∑
t=0

(
1 + 8n−α

)
· 2 · Pt16

k−tn
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Figure 4.5: The large dots show the vertex sets of the the Aztec diamonds A1, A2, A3, and A4,
which are subsets of the dual lattice Z′. The small dots show the vertex sets of the corresponding
A′

1, A
′
2, A

′
3 and A′

4, which are subsets of the integer lattice Z = Z2. In the last case, a path Pω in
A′

4 corresponding to a partition ω of A4 is shown.

since we are restricting all the paths and walks to be restricted to set S. Using Lemma 64 with
ε = 0.5, we get

Pt16
k−tn

Pk

≤ 4 · k!
t!
· 16k−tn

nk−t(0.49)k−t
exp

(
70(k − t)(k − t+ t+ s)

n

)
≤ 4 exp

(
(k − t)((1− δ) log n+ logC − log n+ log 40) +

70(k + s)(k − t)

n
+ log n

)
,

which follows from computations in Theorem 60. The last expression holds for C1 = log 40C and
C2 =

δ
2
for n ≥ n1(C, δ). Following the steps in Theorem 60 to evaluate the summation, we get the

upper bound

W l
k ≤ 1 + 8

(
1 + 32n−α

)
n−α 1

1− n−C2
≤ 1 + 32n−α,

where the last inequality holds for n ≥ n2(α) chosen such that 16n−α, n−C2 ≤ 0.5. Therefore, for
n ≥ n(C, δ, α) = max(n1(C, δ), n2(α)), we get the result.

4.5 The Aztec Diamond

We let Z denote the planar graph of the integer lattice Z2 and let Z′ be its planar dual, with
vertices using half-integer coordinates.

We define the Aztec Diamond graph Ak to be the subgraph of Z′ induced by the set

V (Ak) = {(x, y) ∈ Z2 + (1
2
, 1
2
) | |x|+ |y| ≤ k}, (4.8)

and define A′
k to be the subgraph of Z induced by the set

V (A′
k) = {(x, y) ∈ Z2 | |x|+ |y| ≤ k}; (4.9)

see Figure 4.5. We define the boundary ∂A′
k to be those vertices of A′

k (x, y) with |x|+ |y| = k.
We consider as a toy example the problem of randomly dividing the Aztec diamond into two

contiguous pieces S1, S2, whose boundaries are both nearly as small as possible. Here we use the
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edge-boundary of Si, which is the number of edges between Si and Z′ \Si. Note that this is the same
has the length of the closed walk in Z enclosing Si. We collect the following simple observations
about these sets and their boundaries:

Observation 66. Ak has 8k boundary edges.

Observation 67. Every shortest path in A′
k between antipodal points on ∂A′

k has length 2k.

Observation 68. For x ≥ 0, the (unique) shortest path between points (x, y1) and (x,−y1) of ∂A′
k

has length 2k − 2x.

In particular, there is no partition of Ak into two contiguous partition classes such that both
have boundary size less than 6k. With this motivation, we define Ω = ΩC,ε,k to be the partitions
of Ak into two contiguous pieces, each with boundary sizes at most 6k + Ck1−ε, and consider the
problem of uniform sampling from Ω. We will show that this problem can be solved in polynomial
time with our approach, but also that Glauber dynamics on this state space has exponential mixing
time. Observe that we can equivalently view Ω as set of paths in A′

k between points of ∂A′
k, and

for any partition ω ∈ Ω we write Pω for this corresponding path.
Writing ω ∼ ω′ for ω, ω′ ∈ Ω whenever (viewed as partitions) ω, ω′ agree except on a single

vertex of Ak, we define the Glauber dynamics for Ω to be the Markov chain which transitions from
ω to a uniformly randomly chosen neighbor ω′. Recall that we define the conductance by

Φ = min
π(S)≤ 1

2

Q(S, S̄)

π(S)
(4.10)

where
Q(S, S̄) =

∑
ω∈S
ω′∈S̄

π(ω)P (ω, ω′) ≤ π(∂S),

where ∂S is the set of all ω ∈ S for which there exists an ω′ ∈ S̄ for which P (ω, ω′) > 0.
The mixing time tmix of the Markov chain with transition matrix P is defined as the minimum

t such that the total variation distance between vP t and the stationary distribution π is ≤ 1
4
, for

all initial probability vectors v. With these definitions we have

tmix ≥
1

4Φ
(4.11)

(e.g. see [LPW06], Chapter 7) and so to show the mixing time is exponentially large it suffices to
show that the conductance Φ is exponentially small.

To this end, we define S ⊆ Ω to be the set of ω for which the endpoints (x1, y1) and (x2, y2) of
Pω satisfy

x1 ≤ x2 y1 ≤ y2. (4.12)

Our goal is now to show that |S| is large while |∂S| is small. For simplicity we consider the
case where k is even but the odd case can be analyzed similarly.
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To bound S from below it will suffice to consider just the partitions whose boundary path in
A′

k is a shortest path from the point (−k
2
,−k

2
) to the point (k

2
, k
2
); note that such a path for the

case where k = 4 is shown in Figure 4.5 There are
(
2k
k

)
such paths and so we have lower bound

|S| ≥
(
2k

k

)
= Ω

(
22k√
k

)
. (4.13)

To bound |∂S| from above We will make use of the following count of walks in the lattice:

Lemma 69. For any point P = (n1, n2) such that n1+n2 = n, the number of walks from O = (0, 0)
to P of length n+ 2t is given by (

n+ 2t

t

)(
n+ 2t

n1 + t

)
Proof. Let Wt denote number of such walks. Note that any such path can be denoted as a
sequence of symbols U,D,L,R which denote moves in the corresponding directions. For a direction
Z ∈ {U,D,L,R}, let nZ denote number of symbols signifying the direction that appear in the
walk; then the walks from O to P are in bijection with the sequences over {U,D,L,R} of length
n+ 2t for which nU − nD = n1 and nR − nL = n2. Note then that nL + nD = t, nU + nL = n1 + t,
and nR + nD = n2 + t. There is a bijection from the set of these sequences s to pairs of subsets
(Xs, Ys) ⊆ [n+ 2t] where |Xs| = t and |Ys| = n1 + t as follows. Given such a sequence s, we can
let Xs be the set of indices with symbols L or D, while Ys is the set of indices with symbols U or
L. The sequence s is recovered from the sets Xs and Ys by assigning the symbol U to indices in
Xs \ Ys, the symbol L to indices in Xs ∩ Ys, the symbol D to those in Ys \Xs, and the symbol R to
indices in neither Xs nor Ys.

Now the boundary ∂S of S thus consists of paths which satisfy either x1 = x2 or y1 = y2.
Observation 68, together with the condition that the total length of a closed walk enclosing each
partition class is at most 6k +O(k1−ε), implies that in these cases, we must have |yi| = O(k1−ε) in
the case where x1 = x2 or |xi| = O(k1−ε) in the case where y1 = y2. In particular, we have without
loss of generality that x1 = x2, and y2 = y1 + 2k −O(k1−ε). In particular, letting ℓω = y2 − y1, we
have that the path Pω has length ℓω +O(ℓ1−ε

ω ). Now by Lemma 69, the number of choices for such
walks (for fixed xi, yi, for which there are only polynomially many choices) is(

ℓω +O(ℓ1−ε
ω )

O(ℓ1−ε
ω )

)2

≤ 2O(ℓ1−ε
ω ) (4.14)

for 0 ≤ ε ≤ 1. Together, (4.14) and (4.13) imply that

Φ =
2O(ℓ1−ε

ω )

22k/
√
k
≲

1/4

2εk
,

and so the mixing time tmix satisfies
tmix ≥ 2εk, (4.15)

with respect to the fixed parameter ε > 0. This gives the following theorem:
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Theorem 70 (Theorem 45 restated). Glauber Dynamics on contiguous 2-partitions of Ak with
boundary of length at most 6k + Ck(1−ϵ) has exponential mixing time.

On the other hand, we claim that we can sample the partitions ω ∈ Ω efficiently using
Algorithm 3, by applying it to each pair of points on the boundary A′

k, to generate the path Pω.
To show this, we will argue that the set A′

k has the correct width property with endpoints of Pω.
Formally,

Lemma 71. Let ω ∈ Ω be a partition of Ak. Let Pω be corresponding path in A′
k with endpoints

P1, P2. Then A′
k is (ℓ, 16ℓ+ 4Ck(1−ϵ), 0)-wide with respect to points P1, P2 for all ℓ.

Proof. Let Pi = (xi, yi) for i = 1, 2. Without loss of generality, let (x2, y2) ≥ (0, 0). Let Q =
(−x2,−y2) be the point anti-podal to P2 in ∂A′

k. We will break the proof into three cases, based
on which quadrant P1 is in.

Suppose P1 is in third quadrant. Then the distance between P1 and P2 is exactly 2k. Therefore,
P2 is at most Ck(1−ϵ) distance from Q. The lattice box R(P1, P2) has at most

2|x1 + x2|+ 2|y1 + y2|

points in ∂A′
k. This is exactly the distance between P1 and Q. Therefore, a shortest path from P1

to P2 can intersect ∂A′
k at at most 2Ck(1−ϵ) many points. It follows that a path of length 2k + 2ℓ

is contained in R(P1 − (ℓ, ℓ), P2 + (ℓ, ℓ)), which contains at most 16ℓ + 2Ck(1−ϵ) points in ∂A′
k,

implying that any path of length 2k + 2ℓ can intersect ∂A′
k in at most 16ℓ+ 4Ck(1−ϵ).

Suppose P1 is in the second quadrant. Then the distance between P1 and P2 is

x2 − x1 + |y2 − y1| = x2 − x1 +max(y1, y2)−min(y1, y2) ≥ 2k − 2min(y1, y2)

Further, length of the lower boundary of Ak between P1 and P2 is at least 4k + y1 + y2, and hence
boundary of the lower partition is at least 6k + |y2 − y1|, which implies that

|y2 − y1| ≤ Ck(1−ϵ)

The lattice box R(P1, P2) contains at most 2|y2 − y1|+ 4 points on the boundary ∂A′
k. By similar

argument to above, we can conclude that any path of length 2ℓ larger than the shortest path is
contained in a slightly bigger lattice box, and can intersect the boundary ∂A′

k in at most

2|y2 − y1|+ 16ℓ+ 4 ≤ 16ℓ+ 4Ck(1−ϵ)

points.
The case when P1 is in the fourth quadrant is handled similarly to the case when P1 is in the

second quadrant. This proves that in all cases, the Aztec Diamond is (ℓ, 16ℓ+4Ck(1−ϵ), 0)-wide.

This lemma implies that for ℓ ≤ Ck(1−ϵ), and s(l) = 20Ck(1−ϵ), the set A′
k satisfies the hypothesis

of Theorem 65 for all points P1, P2 that are endpoints of Pω for some ω ∈ Ω. Hence, for each pair
of points P1, P2 ∈ ∂A′

k, we can compute W λ
ℓ (P1, P2) for all ℓ ≤ Ck(1−ϵ), where λϵ > 1. This allows

us to uniformly sample Pω, for ω ∈ Ω, with rejection sampling, using the following algorithm:
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Algorithm 4 Partition Sampling

1: Compute DP(Q,P,w, t) for all Q ∈ A′
k, P ∈ ∂A′

k, w ∈ Φλ, 0 ≤ t ≤ 2k + Ck1−ε using
Algorithm 1

2: while Pω is not a path do
3: Sample P1, P2, t proportional to DP(Q,P, {O}, t)
4: Sample Pω from P1 to P2 of length t using Algorithm 2
5: end while
6: return Pω
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Chapter 5

Pitfalls of using Gaussian as a noise
distribution in NCE

Noise contrastive estimation (NCE), introduced in [GH10; GH12], is one of several popular ap-
proaches for learning probability density functions parameterized up to a constant of proportionality,
i.e. p(x) ∝ exp(Eθ(x)), for some parametric family {Eθ}θ. A recent incarnation of this paradigm
is, for example, energy-based models (EBMs), which have achieved near-state-of-the-art results on
many image generation tasks [DM19; SE19]. The main idea in NCE is to set up a self-supervised
learning (SSL) task, in which we train a classifier to distinguish between samples from the data
distribution P∗ and a known, easy-to-sample distribution Q, often called the “noise” or “contrast”
distribution. It can be shown that for a large choice of losses for the classification problem, the
optimal classifier model is a (simple) function of the density ratio p∗/q, so an estimate for p∗ can
be extracted from a good classifier. Moreover, this strategy can be implemented while avoiding
calculation of the partition function, which is necessary when using maximum likelihood to learn
p∗.

The noise distribution q is the most significant “hyperparameter” in NCE training, with both
strong empirical [RXG20] and theoretical [Liu+21] evidence that a poor choice of q can result in
poor algorithmic behavior. [CGH22] show that even the optimal q for finite number of samples can
have an unexpected form (e.g., it is not equal to the true data distribution p∗). Since q needs to be
a distribution that one can efficiently draw samples from, as well as write an expression for the
probability density function, the choices are somewhat limited.

A particularly common way to pick q is as a Gaussian that matches the mean and covariance
of the input data [GH12; RXG20]. Our main contribution in this paper is to formally show that
such a choice can result in an objective that is statistically poorly behaved, even for relatively
simple data distributions. We show that even if p∗ is a product distribution and a member of a very
simple exponential family, the Hessian of the NCE loss, when using a Gaussian noise distribution q
with matching mean and covariance has exponentially small (in the ambient dimension) spectral
norm. As a consequence, the optimization landscape around the optimum will be exponentially
flat, making gradient-based optimization challenging. As the main result of the paper, we show
the asymptotic sample efficiency of the NCE objective will be exponentially bad in the ambient
dimension.
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5.1 Overview of Results

Let P∗ be a distribution in a parametric family {Pθ}θ∈Θ. We wish to estimate P∗ via Pθ for some
θ∗ ∈ Θ by solving a noise contrastive estimation task. To set up the task, we also need to choose a
noise distribution Q, with the constraint that we can draw samples from it efficiently, and we can
evaluate the probability density function efficiently. We will use pθ, p∗, q to denote the probability
density functions (pdfs) of Pθ, P∗, and Q. For a data distribution P∗ and noise distribution Q, the
NCE loss of a distribution Pθ is defined as follows:

Definition 72 (NCE Loss). The NCE loss of Pθ w.r.t. data distribution P∗ and noise Q is

L(Pθ) = −
1

2
EP∗ log

pθ
pθ + q

− 1

2
EQ log

q

pθ + q
. (5.1)

Moreover, the empirical version of the NCE loss when given i.i.d. samples (x1, . . . , xn) ∼ P n
∗ and

(y1, . . . , yn) ∼ Qn is given by

Ln(θ) =
1

n

n∑
i=1

−1

2
log

pθ(xi)

pθ(xi) + q(xi)
+

1

n

n∑
i=1

−1

2
log

q(yi)

pθ(yi) + q(yi)
. (5.2)

By a slight abuse of notation, we will use L(θ), L(pθ) and L(Pθ) interchangeably.

The NCE loss can be interpreted as the binary cross-entropy loss for the classification task of
distinguishing the data samples from the noise samples. To avoid calculating the partition function,
one considers it as an additional parameter, namely we consider an augmented vector of parameters
θ̃ = (θ, c) and let pθ̃(x) = exp(Eθ(x) − c). The crucial property of the NCE loss is that it has a
unique minimizer:

Lemma 73 ([GH12]). The NCE objective in Definition 72 is uniquely minimized at θ = θ∗ and
c = log(

∫
x
exp(Eθ∗(x))dx) provided that the support of Q contains that of P∗.

We will be focusing on the Hessian of the loss L, as the crucial object governing both the
algorithmic and statistical difficulty of the resulting objective. We will show the following two main
results:

Theorem 74 (Exponentially flat Hessian). For d > 0 large enough, there exists a distribution
P∗ = Pθ∗ over Rd such that

• EP∗ [x] = 0 and EP∗ [xx
⊤] = Id.

• P∗ is a product distribution, namely p∗(x1, x2, . . . , xd) =
∏d

i=1 p
∗(xi).

• The NCE loss when using q = N (0, Id) as the noise distribution has the property that

∥∇2L(θ∗)∥2 ≤ exp (−Ω(d)) .

We remark the above example of a problematic distribution P ∗ is extremely simple. Namely,
P ∗ is a product distribution, with 0 mean and identity covariance. It actually is also the case that
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P ∗ is log-concave—which is typically thought of as an “easy” class of distributions to learn due to
the fact that log-concave distributions are unimodal.

The fact that the Hessian is exponentially flat near the optimum means that gradient-descent
based optimization without additional tricks (e.g., gradient normalization, second order methods
like Newton’s method) will fail. (See, e.g., Theorem 4.1 and 4.2 in Liu et al. [Liu+21].) For us, this
will be merely an intermediate result. We will address a more fundamental issue of the sample
complexity of NCE, which is independent of the optimization algorithm used. Namely, we will
show that without a large number of samples, the best minimizer of the empirical NCE might not
be close to the target distribution. Proving this will require the development of some technical
machinery.

More precisely, we use the result above to show that the asymptotic statistical complexity,
using the above choice of P ∗, Q, is exponentially bad in the dimension. This substantially clarifies
results in Gutmann and Hyvärinen [GH12], who provide an expression for the asymptotic statistical
complexity in terms of P ∗, Q (Theorem 3, Gutmann and Hyvärinen [GH12]), but from which it’s
very difficult to glean quantitatively how bad the dependence on dimension can be for a particular
choice of P ∗, Q. Unlike the landscape issues that [Liu+21] point out, the statistical issues are
impossible to fix with a better optimization algorithm: they are fundamental limitations of the
NCE loss.

Theorem 75 (Asymptotic Statistical Complexity). Let d > 0 be sufficiently large and Q = N (0, Id).
Let θ̂n be the optimizer for the empirical NCE loss Ln(θ) with the data distribution P∗ given by
Theorem 74 above and noise distribution Q. Then, as n→∞, the mean-squared error satisfies

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
=

exp(Ω(d))

n
.

5.2 Exponentially flat Hessian: Proof of Theorem 74

The proof of Theorem 74 consists of three ingredients. First, in Section 5.2.1, we will compute an
algebraically convenient upper bound for the spectral norm of the Hessian of the loss (eq. (5.1)).
We will restrict our attention to the case when {Pθ} belongs to an exponential family. The upper
bound will be in terms of the total variation distance TV(P∗, Q) and the Fisher information matrix
of the sufficient statistics at θ∗. Here, P∗ denotes the true data distribution and Q denotes the
noise distribution.

Then, in Section 5.2.2, we construct a distribution P ∗ for which the TV distance between
P ∗ and Q is large. We do this by “tensorizing” a univariate distribution. Namely, we construct
a univariate distribution with mean 0 and variance 1 that is at a constant TV distance from a
standard univariate Gaussian. Then, we use the fact that the Hellinger distance tensorizes, along
with the relationship between TV and Hellinger distance, to show that TV (P ∗, Q) ≥ 1−δd for some
constant δ < 1. (See [Was20] for a detailed review of distance measures.) Section 5.2.3 bounds the
Fisher information matrix term, completing all the components required to establish Theorem 74.
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5.2.1 Bounding the Hessian in terms of TV distance

Suppose {Pθ} is an exponential family of distributions, that is pθ(x) = exp(θ⊤T (x)), where T (x) is
a known function. Then, a straightforward calculation (see e.g., Appendix A in [Liu+21]) shows
that the gradient and the Hessian of the NCE loss (eq. (5.1)) with respect to θ have the following
forms:

∇θpθ(x) = pθ(x) · T (x), (5.3)

∇θL(pθ) =
1

2

∫
x

q

pθ + q
(pθ − p∗)T (x)dx, (5.4)

∇2
θL(pθ) =

1

2

∫
x

(p∗ + q)pθq

(pθ + q)2
T (x)T (x)⊤dx. (5.5)

For θ = θ∗ and pθ = p∗, we have

∇2
θL(pθ∗) =

1

2

∫
x

p∗q

p∗ + q
T (x)T (x)⊤dx ⪯ 1

2

∫
x

min(p∗, q)T (x)T (x)
⊤dx (5.6)

The second line holds since p∗q
p∗+q

= min(p∗, q) · max(p∗,q)
p∗+q

≤ min(p∗, q). Applying the matrix version of

the Cauchy-Schwarz inequality (Lemma 199, Section D.3) to eq. (5.6) with two parts min(p∗(x),q(x))√
p∗(x)

and T (x)T (x)⊤
√

p∗(x), we obtain

∥∇2
θL(P∗)∥2 ≤

∥∥∇2
θL(P∗)

∥∥
F
≤ 1

2

(∫
x

min(p∗, q)
2

p∗

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

≤ 1

2

(∫
x

min(p∗, q)dx

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

=⇒
∥∥∇2

θL(P∗)
∥∥
2
≤ 1

2

(
1− TV(P∗, Q)

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

. (5.7)

We bound the two terms in the product above separately. The first term is small when P∗ and
Q are significantly different. The second term is an upper bound of the Frobenius norm of the
Fisher matrix at P∗. We will construct P∗ such that the first term dominates, giving us the upper
bound required.

5.2.2 Constructing the hard distribution P∗

The hard distribution P∗ over Rd will have the property that EP∗ [x] = 0, EP∗ [xx
⊤] = Id, but will

still have large TV distance from the standard Gaussian Q = N (0, Id). This distribution will
simply be a product distribution—the following lemma formalizes our main trick of tensorization
to construct a distribution having large TV distance with the Gaussian.

Lemma 76. Let d > 0 be given. Let Q = N (0, Id) be the standard Gaussian in Rd. Then, for
some δ < 1, there exists a log-concave distribution P (also over Rd) with mean 0 and covariance Id
satisfying TV(P,Q) ≥ 1− δd.
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Proof. Let Q̂ denote the standard normal distribution over R. Let P̂ be any other distribution over
R with mean 0 and variance 1 that satisfies ρ(P̂ , Q̂) = δ < 1, where ρ(P̂ , Q̂) =

∫
x

√
p̂q̂ dx is the

Bhattacharya coefficient. Since ρ tensorizes [Was20], we have that ρ(P̂ d, Q̂d) = ρ(P̂ , Q̂)d for any
d > 1. We can then write the Hellinger distance between P,Q as

H2(P,Q) := 1−
∫
x

√
pq dx = 2(1− ρ(P̂ , Q̂)d). (5.8)

Further, we also know that

1

2
H2(P̂ d, Q̂d) ≤ TV(P̂ d, Q̂d) =⇒ 1− ρ(P̂ , Q̂)d ≤ TV(P̂ d, Q̂d) =⇒ 1− δd ≤ TV(P̂ d, Q̂d).

Setting P = P̂ d and noting that Q̂d = Q = N (0, Id), we have TV(P,Q) ≥ 1 − δd. Finally, if the
chosen P̂ is a log-concave distribution, then so is P̂ d, since the product of log-concave distributions
is log-concave, which completes the proof.

We will now explicitly define the distribution P∗ that we will work with for rest of the paper.

Definition 77. Consider the exponential family
{
pθ(x) = exp

(
θ⊤T (x)

)}
θ∈Rd+1 given by the suffi-

cient statistics T (x) = (x4
1, . . . , x

4
d, 1). Let P∗ = P̂ d where P̂ is the distribution on R with density

function p̂ given by

p̂(x) ∝ exp

(
−x4

σ4

)
.

We will set the constant of proportionality C and σ appropriately to ensure that P̂ has mean 0 and
variance 1. Note that P∗ = Pθ∗ for θ∗ = −

(
1
σ4 , . . . ,

1
σ4 , logC

)
.

Since d2 log p̂
dx2 = −12x2

σ4 ≤ 0, p̂ is log-concave. Further, symmetry of p̂ around the origin gives

E[P̂ ] = 0, and the choice of σ ensures that Var[P̂ ] = 1. The normalizing constant C satisfies

C =

∫ ∞

−∞
e−

x4

σ4 dx = 2

∫ ∞

0

e−
x4

σ4 dx.

Substituting t = x4

σ4 , dt =
4x3

σ4 dx = 4t3/4

σ
dx gives

C =
σ

2

∫ ∞

0

t−3/4e−tdt =
σ

2
Γ

(
1

4

)
= 2σΓ

(
5

4

)
.

where Γ(z) is the gamma function defined as Γ(z)
∫∞
0

xz−1e−xdx. The variance is given by

Var
[
P̂
]
=

1

C

∫ ∞

−∞
x2e−

x4

σ4 dx =
2

C

∫ ∞

0

x2e−
x4

σ4 dx.

The same substitution as above gives

Var(P̂ ) =
1

2C

∫ ∞

0

t1/2t−3/4σ3e−tdt =
σ3

2C

∫ ∞

0

t−1/4e−tdt =
σ3

2C
Γ

(
3

4

)
=

σ2

4

Γ(3/4)

Γ(5/4)
.
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Thus, setting σ =
√

4Γ(5/4)
Γ(3/4)

results in Var[P̂ ] = 1. Correspondingly, we have C = 4Γ(5/4)3/2√
Γ(3/4)

.

For this choice of P̂ , the Bhattacharya coefficient ρ(P̂ , Q̂) is given by:

ρ(P̂ , Q̂) =

∫ ∞

−∞

√
p̂(x)q̂(x)dx =

1√
C
√
2π

∫ ∞

−∞
exp

(
−x2

4
− x4

2σ4

)
dx ≈ 0.9905 ≤ 0.991 < 1.

Thus, in the proof of Lemma 76, we can use this choice of P̂ , and we have that for δ = 0.991 and
P∗ = P̂ d, TV(P∗, Q) ≥ 1− δd, as required.

5.2.3 Bounding the Fisher information matrix

In this subsection, we bound the second factor in eq. (5.7), which is an upper bound on the
Frobenius norm of the Fisher information matrix at θ∗.

Lemma 78. For some constant M > 0, we have∫
x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx ≤ d2M, (5.9)

Proof. Recall that T (x) = (x4
1, . . . , x

4
d, 1). Then,∥∥T (x)T (x)⊤∥∥2
F
=
∑
i

x16
i +

∑
i ̸=j

x8
ix

8
j + 2

∑
i

x4
i + 1. (5.10)

Therefore, by linearity of expectation, and using the fact that P∗ is a product distribution,∫
x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx = d · EP̂

[
x16
]
+ d(d− 1) ·

(
EP̂

[
x8
])2

+ 2d · EP̂

[
x4
]
+ 1 ≤ d2M,

for an appropriate choice of constant M . This constant exists since all the expectations above are
bounded owing to the fact that the exponential density p̂ dominates in the integrals.

5.2.4 Putting things together

For P∗ defined as above, and Q = N (0, Id), Lemma 76 ensures that 1 − TV(P∗, Q) ≤ δd, for
δ = 0.991. From Lemma 78, we have that∫

x

∥∥T (x)T (x)T∥∥2
F
p∗(x)dx ≤ d2M.

Substituting these bounds in eq. (5.7), we get that∥∥∇2
θL(P∗)

∥∥
2
≤ 1

2
δd/2d

√
M = exp(−Ω(d)).

By construction, p∗ is a product distribution with Ep∗ [x] = 0 and Ep∗

[
xx⊤] = Id, which completes

the proof of the theorem.
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5.3 Proof of Theorem 75

We will bound the error of the optimizer θ̂n of the empirical NCE loss (eq. (5.2)) using the bias-
variance decomposition of MSE. To do this, we will reason about the random variable

√
n(θ̂n − θ∗);

let Σ be its covariance matrix. Since θ̂n is an unbiased estimate of θ∗, the MSE decomposes as

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
=

1

n
Tr(Σ). (5.11)

The proof of Theorem 75 proceeds as follows. In Section 5.3.1, we show that the random variable√
n(θ̂n − θ∗) is asymptotically normal with mean 0 and covariance matrix Σ given by

Σ = ∇2
θL(θ∗)

−1Var
[√

n∇θL
n(θ∗)

]
∇2

θL(θ∗)
−1. (5.12)

We prove that the Hessian ∇2
θL(θ∗) is invertible in Section D.5, so that the above expression is

well-defined. Since Σ ⪰ 0 (it is a covariance matrix), to get a lower bound on Tr(Σ), it suffices
to get a lower bound on the largest eigenvalue of Σ. Looking at the factors on the right hand
side of eq. (5.12), we note first that Theorem 74 ensures an exponential lower bound on all
eigenvalues of ∇2

θL(θ∗)
−1. The bulk of the proof towards lower bounding the largest eigenvalue

of Σ consists of lower bounding Var
[
v⊤ ·
√
n∇θL

n(θ∗)
]
), the directional variance of

√
n∇θL

n(θ∗)
along a suitably chosen direction v in terms of v⊤∇2

θL(θ∗)v. In Section 5.3.2 and Section 5.3.3, we
use anti-concentration bounds to prove such variance lower bounds.

5.3.1 Gaussian limit of
√
n(θ̂n − θ∗)

To begin, we will show that
√
n(θ̂n − θ∗) behaves as a Gaussian random variable as n→∞. Recall

that the empirical NCE loss is given by eq. (5.2):

Ln(θ) =
1

n

n∑
i=1

−1

2
ln

pθ(xi)

pθ(xi) + q(xi)
+

1

n

n∑
i=1

−1

2
ln

q(yi)

pθ(yi) + q(yi)
,

where xi ∼ P∗ and yi ∼ Q are i.i.d. Let θ̂n be the optimizer for Ln. Then, by the Taylor expansion
of ∇θL

n around θ∗, we have

√
n
(
θ̂n − θ∗

)
= −∇2

θL
n(θ∗)

−1 ·
√
n∇θL

n(θ∗)−
√
n ·O

(∥∥∥θ̂n − θ∗

∥∥∥2) (5.13)

by [GH12], who also show in their Theorem 2 that θ̂n is a consistent estimator of θ∗; hence, as

n → ∞,
∥∥∥θ̂n − θ∗

∥∥∥2 → 0. Gutmann and Hyvärinen [GH12, Lemma 12] also assert1 that the

Hessian of the empirical NCE loss (eq. (5.2)) at θ∗ converges in probability to the Hessian of

the true NCE loss (definition 72) at θ∗, i.e., ∇2
θL

n(θ∗)
−1 P−→ ∇2

θL(θ∗)
−1. On the other hand, by

the Central Limit Theorem,
√
n∇θL

n(θ∗) converges to a Gaussian with mean E[
√
n∇θL

n(θ∗)] =

1Translating notation: Td = n, JTd
(θ) = −2Ln(θ) and setting ν = 1 gives Iν = 2∇2L(θ∗) as in eq. (5.6).
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√
n∇θL(θ

∗) = 0, and covariance Var[
√
n∇θL

n(θ∗)]. With these considerations, we conclude that
the random variable

√
n(θ̂n − θ∗) in eq. (5.13) is asymptotically a Gaussian with mean 0 and

covariance Σ = ∇2
θL(θ∗)

−1Var[
√
n∇θL

n(θ∗)]∇2
θL(θ∗)

−1, as defined in eq. (5.12).
Next, we introduce some quantities which will be useful in the subsequent calculations. As

we already have a handle on the spectrum of ∇2
θL(θ∗) from Theorem 74, the main object of our

focus in eq. (5.12) is the term Var[
√
n∇θL

n(θ∗)]. In particular, since we are concerned with the
directional variance of Σ, we will reason about Var

[
v⊤ ·
√
n∇θL

n(θ∗)
]
for a fixed vector of ones, i.e.,

v = 1d+1. This vector has the property that for all x, v⊤T (x) ≥ 1, as all non-constant coordinates
of T are non-negative, and the remaining coordinate is 1. Note that

∇θL
n(θ∗) = −

1

2n

n∑
i=1

q(xi)T (xi)

p∗(xi) + q(xi)
+

1

2n

n∑
i=1

p∗(yi)T (yi)

p∗(yi) + q(yi)

where xi ∼ P∗ and yi ∼ Q. Writing out the variance term explicitly, we have

Var
[
v⊤ ·
√
n∇θL

n(θ∗)
]
= n · 1

4n
Varx∼p∗

[
q(x) · v⊤T (x)
p∗(x) + q(x)

]
+ n · 1

4n
Vary∼q

[
p∗(y) · v⊤T (y)
p∗(y) + q(y)

]

(using linearity and independence)

=
1

4
Varx∼p∗

[
q(x) · v⊤T (x)
p∗(x) + q(x)

]
︸ ︷︷ ︸

A(x)

+
1

4
Vary∼q

[
p∗(y) · v⊤T (y)
p∗(y) + q(y)

]
︸ ︷︷ ︸

B(y)

. (5.14)

Define A(x) = q(x)·v⊤T (x)
p∗(x)+q(x)

= R1(x)
1+R1(x)

v⊤T (x) where R1(x) = q(x)
p∗(x)

and B(y) = p∗(y)·v⊤T (y)
p∗(y)+q(y)

=
R2(y)

1+R2(y)
v⊤T (y) where R2(y) =

p∗(y)
q(y)

. To show that Varx∼p∗ [A(x)] and Vary∼q[B(y)] are large, we

will need anti-concentration bounds on R1(x) and R2(y).

5.3.2 Anti-concentration of R1(x), R2(y)

Next, we show that R1 and R2 satisfy (quantitative) anti-concentration. We show this by a relatively
straightforward application of the Berry-Esseen Theorem, and the proof is given in Section D.4.
Precisely, we show:

Lemma 79. Let d > 0 be sufficiently large. Let p = p̂d and q = q̂d be any product distributions,

and define R(x) = q(x)
p(x)

. Suppose we have the following third moment bound: Ex∼p̂

[(
log q̂

p̂

)3]
<∞.

Then, for any ϵ, there exist constants α = α(p̂, q̂, ϵ), µ = µ(p̂, q̂, ϵ) < 0 such that

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]
≥ 1

2
− ϵ and Px∼p

[
R(x) ≥ exp

(
µd+ α

√
d
)]
≥ 1

2
− ϵ.

Instantiating Lemma 79 for the pair (p∗, q) gives us the anti-concentration result for R1, while
instantiating it for the reversed pair (q, p∗) gives us the anti-concentration result for R2. We can
verify that the third moment condition holds in both instantiations, since in both the cases, log(q̂/p̂)
is a polynomial. Crucially, we will also utilize the fact that the constant µ is negative (as it equals
−KL(p̂||q̂)). We are now ready to bound the variance of A(x) and B(y).
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5.3.3 Bounding the variance of A(x), B(y)

Recall that A(x) = R1(x)·v⊤T (x)
1+R1(x)

and B(y) = R2(y)·v⊤T (y)
1+R2(y)

. Let µ, α be the constants given by

Lemma 79 for p∗, q, ϵ. Further, let L1 = exp
(
µd− α

√
d
)
and L2 = exp

(
µd+ α

√
d
)
. Since the

mapping x 7→ x
1+x

is monotonically increasing in x,

Px∼p∗ [R1(x) ≤ L1] = Px∼p∗

[
R1(x)

1 +R1(x)
≤ L1

1 + L1

]
≥ 1

2
− ϵ (5.15)

Px∼p∗ [R1(x) ≥ L2] = Px∼p∗

[
R1(x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ. (5.16)

Let Tup be such that

Px∼p∗

[
∥T (x)∥ ≤ Tup

]
≥ 7

8
and Px∼q

[
∥T (x)∥ ≤ Tup

]
≥ 7

8
. (5.17)

In Section D.6, we show that some Tup = O(σ2
√
d) suffices for this to hold. Then, from eq. (5.15),

we have

Px∼p∗

[
R1(x)

1 +R1(x)
≤ L1

1 + L1

]
≥ 1

2
− ϵ

=⇒ Px∼p∗

[
R1(x) · v⊤T (x)

1 +R1(x)
≤ L1

√
d+ 1∥T (x)∥
1 + L1

]
≥ 1

2
− ϵ (Cauchy-Schwarz)

=⇒ Px∼p∗

[(
R1(x) · v⊤T (x)

1 +R1(x)
≤ L1

√
d+ 1∥T (x)∥
1 + Li1

)
∧
(
∥T (x)∥ ≤ Tup

)]
≥ 3

8
− ϵ

(union bound with eq. (5.17))

=⇒ Px∼p∗

[
R1(x)v

⊤T (x)

1 +R1(x)
≤
√
d+ 1L1Tup

1 + L1

]
≥ 3

8
− ϵ

=⇒ Px∼p∗

[
A(x) ≤

√
d+ 1L1Tup

1 + L1

]
≥ 1

4
,

for ϵ ≤ 1
8
. On the other hand, recall also that v satisfies v⊤T (x) ≥ 1 for all x. Therefore, we have

Px∼p∗

[
R1(x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ

=⇒ Px∼p∗

[
R1(x) · v⊤T (x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ =⇒ Px∼p∗

[
A(x) ≥ L2

1 + L2

]
≥ 1

4
.

Now, consider the event A1 =
{
A(x) ∈

[
1
2
Ex∼p∗ [A(x)],

3
2
Ex∼p∗ [A(x)]

]}
. If this event were to intersect

both the events A2 =
{
A(x) ≤

√
d+1L1Tup

1+L1

}
and A3 =

{
A(x) ≥ L2

1+L2

}
, then we would have

1

2
Ex∼p∗ [A(x)] ≤

√
d+ 1L1Tup

1 + L1

and
3

2
Ex∼p∗ [A(x)] ≥

L2

1 + L2

=⇒ L2

L1

· 1

Tup

√
d+ 1

· L1 + 1

L2 + 1
≤ 3.
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We will show that this cannot be the case. Recall that µ < 0, which means that L2 = exp(µd+
α
√
d) < 1 for sufficiently large d. This means that for sufficiently large d we have:

exp(µd+ α
√
d) < 1

=⇒ exp(µd+ α
√
d)− 2 exp(µd− α

√
d) < 1

=⇒ 1 + exp(µd+ α
√
d) < 2 + 2 exp(µd− α

√
d)

=⇒ 1 + exp(µd− α
√
d)

1 + exp(µd+ α
√
d)

>
1

2

=⇒ L1 + 1

L2 + 1
>

1

2
.

Further, since L2

L1
= exp(2α

√
d) and Tup = O(σ2

√
d), we get that

L2

L1

· 1

Tup

√
d+ 1

· L1 + 1

L2 + 1
>

exp(2α
√
d)

O(σ2d)
· 1
2
> 3,

where the last inequality follows for large enough d since the numerator grows faster than the
denominator. Hence for large enough d, A1 cannot intersect both A2 and A3. If the event A1 is
disjoint from A2, then

Px∼p∗ [A1 ∪ A2] = Px∼p∗ [A1] + Px∼p∗ [A2] ≤ 1

=⇒ Px∼p∗ [A1] ≤ 1− Px∼p∗ [A2]

=⇒ Px∼p∗

[
A(x) ∈

[
1

2
Ex∼p∗ [A(x)],

3

2
Ex∼p∗ [A(x)]

]]
≤ 3

4

=⇒ Px∼p∗

[
|A− Ep∗A| ≥

1

2
Ep∗A

]
≥ 1

4
.

This finally lower-bounds the variance of A as

Varp∗ [A] = E
[
(A− Ep∗A)

2
]
≥ 1

4
(Ep∗A)

2 · P
[
(A− Ep∗A)

2 ≥ 1

4
(Ep∗A)

2

]
≥ 1

16
(Ep∗A)

2.

and thus Ep∗(A
2)− (Ep∗A)

2 = Varp∗ [A] ≥ 1
16
(Ep∗A)

2, so that (Ep∗A)
2 ≤ 16

17
Ep∗(A

2).
Altogether, we get Varp∗ [A] ≥ 1

17
Ep∗(A

2). An analogous argument in the case when A1 is
disjoint with A3 yields the same bound on the variance. Using an identical argument for R2 and B,
we get that for large enough d, Varq[B] ≥ 1

17
Eq(B

2).
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5.3.4 Putting things together

Putting together the lower bounds Varp∗ [A] ≥ 1
17
Ep∗(A

2) and Varq[B] ≥ 1
17
Eq(B

2) we showed in
the previous subsection, and recalling eq. (5.14), we get

Var
[
v⊤ ·
√
n∇θL

n(θ∗)
]
=

1

4
Varp∗ [A] +

1

4
Varp∗ [B] ≥ 1

68

(
Ep∗

[
A2
]
+ Eq

[
B2
])

=
1

68

(∫
x

(
q(x)2p∗(x) + q(x)p∗(x)

2

(p∗(x) + q(x))2

)
v⊤T (x)T (x)⊤v dx

)
=

1

68
v⊤ ·

∫
x

p∗(x)q(x)

p∗(x) + q(x)
T (x)T (x)⊤dx · v =

1

34
v⊤∇2

θL(θ∗)v

(from eq. (5.6)).

Finally, since ∇2
θL(θ∗) is invertible as claimed earlier (Lemma 200, Section D.5), let w be such that

v = ∇2
θL(θ∗)

−1w. Then, recalling the expression for Σ in eq. (5.12), we can conclude that

w⊤Σw = v⊤Var
[√

n∇θL
n(θ∗)

]
v = Var

[
v⊤ ·
√
n∇θL

n(θ∗)
]

≥ 1

34
v⊤∇2

θL(θ∗)v =
1

34
w⊤∇2

θL(θ∗)
−1w, (5.18)

which gives us the desired bound on the MSE, namely

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
≥ 1

n
Tr(Σ) ≥ 1

n
sup
z

z⊤Σz

∥z∥2

≥ 1

n

w⊤Σw

∥w∥2
≥ 1

34n

w⊤∇2
θL(θ∗)

−1w

∥w∥2
≥ 1

34n
inf
z

z⊤∇2
θL(θ∗)

−1z

∥z∥2
≥ exp(Ω(d))

n
,

where the last inequality follows from Theorem 74 and the fact that λmax(∇2
θL(θ∗))

−1 = λmin(∇2
θL(θ∗)

−1).
This concludes the proof of Theorem 75.

5.4 Simulations

Figure 5.1: Log MSE versus
Dimension—Theorem 75 sug-
gests this plot should be lin-
ear, as is observed.

We also verify our results with simulations. Precisely, we study
the MSE for the empirical NCE loss as a function of the ambient
dimension, and recover the dependence from Theorem 75. For
dimension d ∈ {70, 72, . . . , 120}, we generate n = 500 samples from
the distribution P∗ we construct in the theorem. We generate an
equal number of samples from the noise distribution Q = N (0, Id),
and run gradient descent to minimize the empirical NCE loss to
obtain θ̂n. Since we explicitly know what θ∗ is, we can compute the
squared error ∥θ̂n− θ∗∥2. We run 100 trials of this, where we obtain
fresh samples each time from P∗ and Q, and average the squared
errors over the trials to obtain an estimate of the MSE.
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Figure 5.1 shows the plot of logMSE versus dimension - we can
see that the graph is nearly linear. This corroborates the bound in
Theorem 75, which tells us that as n→∞, the MSE scales exponentially with d. This behavior is
robust even when the proportion of noise samples to true data samples is changed to 70:30 (though
our theory only addresses the 50:50 case). Finally, we note that optimizing the empirical NCE loss
becomes numerically unstable with increasing d (due to very large ratios in the loss), which is why
we used comparatively moderate values of d.

5.5 Conclusion

Despite significant interest in alternatives to maximum likelihood—for example NCE (considered
in this paper), score matching, etc.—there is little understanding of what there is to “sacrifice”
with these losses, either algorithmically or statistically. In this paper, we provided formal lower
bounds on the asymptotic sample complexity of NCE, when using a common choice for the noise
distribution Q, a Gaussian with matching mean and covariance. Thus, it is likely that even for
moderately complex distributions in practice, more involved techniques like Gao et al. [Gao+20] and
Rhodes, Xu, and Gutmann [RXG20] will have to be used, in which one learns a noise distribution
Q simultaneously with the NCE minimization or “anneals” the NCE objective. There is very little
theoretical understanding of such techniques, and this seems like a very fruitful direction for future
work.
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Chapter 6

Provable Benefits of Score Matching

Energy-based models are a flexible class of probabilistic models with wide-ranging applications.
They are parameterized by a class of energies Eθ(x) which in turn determines the distribution

pθ(x) =
exp(−Eθ(x))

Zθ

up to a constant of proportionality Zθ that is called the partition function. One of the major
challenges of working with energy-based models is designing efficient algorithms for fitting them to
data. Statistical theory tells us that the maximum likelihood estimator (MLE)—i.e., the parameters
θ which maximize the likelihood—enjoys good statistical properties including consistency and
asymptotic efficiency.

However, there is a major computational impediment to computing the MLE: Both evaluating
the log-likelihood and computing its gradient with respect to θ (i.e., implementing zeroth and
first order oracles, respectively) seem to require computing the partition function, which is often
computationally intractable. More precisely, the gradient of the negative log-likelihood depends
on ∇θ logZθ = Epθ [∇θEθ(x)]. A popular approach is to estimate this quantity by using a Markov
chain to approximately sample from pθ. However in high-dimensional settings, Markov chains often
require many, sometimes even exponentially many, steps to mix.

Score matching [Hyv05] is a popular alternative that sidesteps needing to compute the partition
function of sample from pθ. The idea is to fit the score of the distribution, in the sense that we
want θ such that ∇x log p(x) matches ∇x log pθ(x) for a typical sample from p. This approach
turns out to have many nice properties. It is consistent in the sense that minimizing the objective
function yields provably good estimates for the unknown parameters. Moreover, while the definition
depends on the unknown ∇x log p(x), by applying integration by parts, it is possible to transform
the objective into an equivalent one that can be estimated from samples.

The main question is to bound its statistical performance, especially relative to that of the
maximum likelihood estimator. Recent work by [KHR22] showed that the cost can be quite steep.
They gave explicit examples of distributions that have bad isoperimetric properties (i.e., large
Poincaré constant) and showed how such properties can cause poor statistical performance.

Despite wide usage, there is little rigorous understanding of when score matching helps. This
amounts to finding a general setting where maximizing the likelihood with standard first-order
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optimization is provably hard, and yet score matching is both computationally and statistically
efficient, with only a polynomial loss in sample complexity relative to the MLE. In this work, we
show the first such guarantees, and we do so for a natural class of exponential families defined by
polynomials. As we discuss in Section 6.0.1, our results parallel recent developments in learning
graphical models—where it is known that pseudolikelihood methods allow efficient learning of
distributions that are hard to sample from—and can be viewed as a continuous analogue of such
results.

In general, an exponential family on Rn has the form pθ(x) ∝ h(x) exp(⟨θ, T (x)⟩) where h(x)
is the base measure, θ is the parameter vector, and T (x) is the vector of sufficient statistics.
Exponential families are one of the most classic parametric families of distributions, dating back to
works by [Dar35], [Koo36] and [Pit36]. They have a number of natural properties, including: (1)
The parameters θ are uniquely determined by the expectation of the sufficient statistics Epθ [T ];
(2) The distribution pθ is the maximum entropy distribution, subject to having given values for
Epθ [T ]; (3) They have conjugate priors [Bro86], which allow characterizations of the family for the
posterior of the parameters given data.

For any (odd positive integer) constant d and norm bound B ≥ 1, we study a natural exponential
family Pn,d,B on Rn where

1. The sufficient statistics T (x) ∈ RM−1 consist of all monomials in x1, . . . , xn of degree at least 1
and at most d

(
where M =

(
n+d
d

))
.

2. The base measure is defined as h(x) = exp(−
∑n

i=1 x
d+1
i ).1

3. The parameters θ lie in an l∞-ball: θ ∈ ΘB = {θ ∈ RM−1 : ∥θ∥∞ ≤ B}.

Towards stating our main results, we formally define the maximum likelihood and score
matching objectives, denoting by Ê the empirical average over the training samples drawn from
some p ∈ Pn,d,B:

LMLE(θ) = Êx∼p[log pθ(x)]

LSM(θ) =
1

2
Êx∼p[∥∇ log p(x)−∇ log pθ(X)∥2] +Kp

= Êx∼p

[
Tr∇2 log pθ(x) +

1

2
∥∇ log pθ(x)∥2

]
(6.1)

where Kp is a constant depending only on p and (6.1) follows by integration by parts [Hyv05]. In
the special case of exponential families, (6.1) is a quadratic, and in fact the optimum can be written
in closed form:

argmin
θ

LSM(θ) = −Êx∼p[(JT )x(JT )
T
x ]

−1Êx∼p∆T (x) (6.2)

where (JT )x : (M − 1) × n is the Jacobian of T at the point x, ∆f =
∑

i ∂
2
i f is the Laplacian,

applied coordinate wise to the vector-valued function f .
With this setting in place, we show the following intractability result.

1We note that the choice of base measure is for convenience in ensuring tail bounds necessary in our proof.
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Theorem 80 (Informal, computational lower bound). Unless RP = NP, there is no poly(n,N)-
time algorithm that evaluates LMLE(θ) and ∇LMLE(θ) given θ ∈ ΘB and arbitrary samples
x1, . . . , xN ∈ Rn, for d = 7, B = poly(n). Thus, optimizing the MLE loss using a zeroth-order or
first-order method is computationally intractable.

The main idea of the proof is to construct a polynomial FC(x) which has roots exactly at
the satisfying assignments of a given 3-SAT formula C. We then argue that exp(−γFC(x)), for
sufficiently large γ > 0, concentrates near the satisfying assignments. Finally, we show sampling
from this distribution or approximating logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector
corresponding to the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.

Our next result shows that MLE, though computationally intractable to compute via imple-
menting zeroth or first order oracles, has (asymptotic) sample complexity poly(n,B) (for constant
d).

Theorem 81 (Informal, efficiency of MLE). The MLE estimator θ̂MLE = argmaxθ LMLE(θ) has
asymptotic sample complexity polynomial in n. That is, for all sufficiently large N it holds with
probability at least 0.99 (over N samples drawn from pθ∗) that:

∥θ̂MLE − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
.

The main proof technique for this is an anticoncentration bound of low-degree polynomials, for
distributions in our exponential family.

Lastly, we prove that score matching also has polynomial (asymptotic) statistical complexity.

Theorem 82 (Informal, efficiency of SM). The score matching estimator θ̂SM = argmaxθ LSM(θ)
also has asymptotic sample complexity at most polynomial in n. That is, for all sufficiently large N
it holds with probability at least 0.99 (over N samples drawn from pθ∗) that:

∥θ̂SM − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
. (6.3)

The main ingredient in this result is a bound on the restricted Poincaré constant—namely, the
Poincaré constant, when restricted to functions that are linear in the sufficient statistics T . We
bound this quantity for the exponential family we consider in terms of the condition number of
the Fisher matrix of the distribution, which we believe is a result of independent interest. With
this tool in hand, we can use the framework of [KHR22], which relates the asymptotic sample
complexity of score matching to the asymptotic sample complexity of maximum likelihood, in terms
of the restricted Poincaré constant of the distribution.

6.0.1 Discussion and related work

Score matching: Score matching was proposed by [Hyv05], who also gave conditions under
which it is consistent and asymptotically normal. Asymptotic normality is also proven for various
kernelized variants of score matching in [Bar+19]. [KHR22] prove that the statistical sample
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complexity of score matching is not much worse than the sample complexity of maximum likelihood
when the distribution satisfies a (restricted) Poincaré inequality. While we leverage machinery
from [KHR22], their work only bounds the sample complexity of score matching by a quantity
polynomial in the ambient dimension for a specific distribution in a specific bimodal exponential
family. By contrast, we can handle an entire class of exponential families with low-degree sufficient
statistics.

Poincaré vs Restricted Poincaré: We note that while Poincaré inequalities are directly related
to isoperimetry and mixing of Markov chains, sample efficiency of score matching only depends on
the Poincaré inequality holding for a restricted class of functions, namely, functions linear in the
sufficient statistics. Hence, hardness of sampling only implies sample complexity lower bounds in
cases where the family is expressive enough—indeed, the key to exponential lower bounds for score
matching in [KHR22] is augmenting the sufficient statistics with a function defined by a bad cut.
This gap means that we can hope to have good sample complexity for score matching even in cases
where sampling is hard—which we take advantage of in this work.

Learning exponential families: Despite the fact that exponential families are both classical and
ubiquitous, both in statistics and machine learning, there is relatively little understanding about the
computational-statistical tradeoffs to learn them from data, that is, what sample complexity can be
achieved with a computationally efficient algorithm. [Ren+21] consider a version of the “interaction
screening” estimator, a close relative of pseudolikelihood, but do not prove anything about the
statistical complexity of this estimator. [SSW21] consider a related estimator, and analyze it under
various low-rank and sparsity assumptions of reshapings of the sufficient statistics into a tensor.
Unfortunately, these assumptions are somewhat involved, and it’s unclear if they are needed for
designing computationally and statistically efficient algorithms.

Discrete exponential families (Ising models): Ising models have the form pJ(x) ∝ exp
(∑

i∼j Jij
xixj +

∑
i Jixi

)
where ∼ denotes adjacency in some (unknown) graph, and Jij, Ji denote the corre-

sponding pairwise and singleton potentials. [Bre15] gave an efficient algorithm for learning any Ising
model over a graph with constant degree (and l∞-bounds on the coefficients); see also the more
recent work [Dag+21]. In contrast, it is a classic result [AB09] that approximating the partition
function of members in this family is NP-hard.

Similarly, the exponential family we consider is such that it contains members for which
sampling and approximating their partition function is intractable (the main ingredient in the
proof of Theorem 80). Nevertheless, by Theorem 6.3, we can learn the parameters for members in
this family computationally efficiently, and with sample complexity comparable to the optimal one
(achieved by maximum likelihood). This also parallels other developments in Ising models [BGS14;
Mon15], where it is known that restricting the type of learning algorithm (e.g., requiring it to work
with sufficient statistics only) can make a tractable problem become intractable.

The parallels can be drawn even on an algorithmic level: a follow up work to [Bre15] by [Vuf+16]
showed that similar results can be shown in the Ising model setting by using the “screening
estimator”, a close relative of the classical pseudolikelihood estimator [Bes77] which tries to learn a
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distribution by matching the conditional probability of singletons, and thereby avoids having to
evaluate a partition function. Since conditional probabilities of singletons capture changes in a
single coordinate, they can be viewed as a kind of “discrete gradient”—a further analogy to score
matching in the continuous setting.2

6.1 Preliminaries

We consider the following exponential family. Fix positive integers n, d,B ∈ N where d is odd. Let
h(x) = exp(−

∑n
i=1 x

d+1
i ), and let T (x) ∈ RM−1 be the vector of monomials in x1, . . . , xn of degree

at least 1 and at most d (so that M =
(
n+d
d

)
). Define Θ ⊆ RM−1 by Θ = {θ ∈ RM−1 : ∥θ∥∞ ≤ B}.

For any θ ∈ Θ define pθ : Rn → [0,∞) by

pθ(x) :=
h(x) exp(⟨θ, T (x)⟩)

Zθ

where Zθ =
∫
Rn h(x) exp(⟨θ, T (x)⟩) dx is the normalizing constant. Then we consider the family

Pn,d,B := (pθ)θ∈ΘB
. Throughout, we will assume that B ≥ 1.

Polynomial notation: Let R[x1, . . . , xn]≤d denote the space of polynomials in x1, . . . , xn of
degree at most d. We can write any such polynomial f as f(x) =

∑
|d|≤d adxd where d denotes a

degree function d : [n]→ N, and |d| =
∑n

i=1 d(i), and we write xd to denote
∏n

i=1 x
d(i)
i . Note that

every d with 1 ≤ |d| ≤ d corresponds to an index of T , i.e. T (x)d = xd.
Let ∥·∥mon denote the ℓ2 norm of a polynomial in the monomial basis; that is, ∥

∑
d adxd∥mon =

(
∑

d a
2
d)

1/2
. For any function f : Rn → R, let ∥f∥2L2([−1,1]n) = Ex∼Unif([−1,1]n)f(x)

2.

Statistical efficiency of MLE: For any θ ∈ RM−1, the Fisher information matrix of pθ with
respect to the sufficient statistics T (x) is defined as

I(θ) := Ex∼pθ [T (x)T (x)
⊤]− Ex∼pθ [T (x)]Ex∼pθ [T (x)]

⊤.

It is well-known that for any exponential family with no affine dependencies among the sufficient
statistics (see e.g., Theorem 4.6 in [Van00]), it holds that for any θ∗ ∈ RM−1, given N independent
samples x(1), . . . , x(N) ∼ pθ∗ , the estimator θ̂MLE = θ̂MLE(x

(1), . . . , x(N)) satisfies

√
N
(
θ̂MLE − θ∗

)
→ N (0, I(θ∗)−1).

Statistical efficiency of score matching: Our analysis of the statistical efficiency of score
matching is based on a result due to [KHR22]. We state a requisite definition followed by the result.

2In fact, ratio matching, proposed in [Hyv07] as a discrete analogue of score matching, relies on exactly this
intuition.
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Definition 83 (Restricted Poincaré for exponential families). The restricted Poincaré constant of
p ∈ Pn,d,B is the smallest CP > 0 such that for all w ∈ RM−1, it holds that

Varp(⟨w, T (x)⟩) ≤ CPEx∼p∥∇x⟨w, T (x)⟩∥22.

Theorem 84 ([KHR22]). Under certain regularity conditions (see Lemma 180), for any pθ∗
with restricted Poincaré constant CP and with λmin(I(θ∗)) > 0, given N independent samples
x(1), . . . , x(N) ∼ pθ∗, the estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗)→ N (0,Γ)

where Γ satisfies

∥Γ∥op ≤
2C2

P (∥θ∥
2
2Ex∼pθ∗∥(JT )(x)∥

4
op + Ex∼pθ∗∥∆T (x)∥22)

λmin(I(θ∗))2

where (JT )(x)i = ∇xTi(x) and ∆T (x) = Tr∇2
xT (x).

6.2 Hardness of Implementing Optimization Oracles for

Pn,7,poly(n)

In this section we prove NP-hardness of implementing approximate zeroth-order and first-order
optimization oracles for maximum likelihood in the exponential family Pn,7,Cn2 log(n) (for a sufficiently
large constant C) as defined in Section 6.1; we also show that approximate sampling from this
family is NP-hard. See Theorems 89, 91, and 94 respectively. All of the hardness results proceed by
reduction from 3-SAT and use the same construction.

The idea is that for any formula C on n variables, we can construct a non-negative polynomial
FC of degree at most 6 in variables x1, . . . , xn, which has roots exactly at the points of the hypercube
H := {−1, 1}n ⊆ Rn that correspond to satisfying assignments (under the bijection that xi = 1
corresponds to True and xi = −1 corresponds to False). Intuitively, the distribution with density
proportional to exp(−γFC(x)) will, for sufficiently large γ > 0, concentrate on the satisfying
assignments. It is then straightforward to see that sampling from this distribution or efficiently
computing either logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector corresponding to
the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.

The remainder of this section makes the above intuition precise; important details include (1)
incorporating the base measure h(x) = exp(−

∑n
i=1 x

8
i ) into the density function, and (2) showing

that a polynomially-large temperature γ suffices.

Definition 85 (Clause/formula polynomials). Given a 3-clause formula of the form C = x̃i∨ x̃j∨ x̃k

where x̃i = xi or x̃i = ¬xi, we construct a polynomial HC ∈ R[x1, . . . , xn]≤6 defined by

HC(x) = fi(xi)
2fj(xj)

2fk(xk)
2
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where

fi(t) =

{
(t+ 1) if xi is negated in C

(t− 1) otherwise
.

For example, if C = x1 ∨ x2 ∨ ¬x3, then HC = (x1 − 1)2(x2 − 1)2(x3 + 1)2. Further, given a 3-SAT
formula C = C1 ∧ · · · ∧ Cm on m clauses3, we define the polynomial

HC(x) = HC1(x) + · · ·+HCm(x).

It can be seen that any x ∈ H corresponds to a satisfying assignment for C if and only if
HC(x) = 0. Note that there are possibly points outside H which satisfy HC(x) = 0. To avoid these
solutions, we introduce another polynomial:

Definition 86 (Hypercube polynomial). We define G : Rn → R by G(x) =
∑n

i=1(1− x2
i )

2.

Note that G(x) ≥ 0 for all x, and the roots of G(x) are precisely the vertices of H. Therefore
for any α, β > 0, the roots (in Rn) of the polynomial FC(x) = αHC(x) + βG(x) are precisely the
vertices of H that correspond to satisfying assignments for C.

Definition 87. Let C be a 3-CNF formula with n variables and m clauses. Let α, β > 0. Then we
define a distribution PC,α,β with density function

pC,α,β(x) :=
h(x) exp(−αHC(x)− βG(x))

ZC,α,β

where ZC,α,β =
∫
Rn h(x) exp(−αHC(x)− βG(x)) dx.

This distribution lies in the exponential family Pn,d,B, for d = 7 and B = Ω(β+mα) (Lemma 174).
Thus, if θ(C, α, β) is the parameter vector that induces PC,α,β, then it suffices to show that (a)
approximating logZθ(C,α,β), (b) approximating ∇θ logZθ(C,α,β), and (c) sampling from PC,α,β are
NP-hard (under randomized reductions).

Additional notation. Given a point v ∈ H, let O(v) := {x ∈ Rn : xivi ≥ 0;∀i ∈ [n]} denote the
octant containing v, and let Br(v) := {x ∈ Rn : ∥x− v∥∞ ≤ r} denote the ball of radius r with
respect to ℓ∞ norm.

6.2.1 Hardness of approximating logZC,α,β

In order to prove (a), we bound the mass of PC,α,β in each orthant of Rn. In particular, we show
that for α = Ω(n) and β = Ω(m logm), any orthant corresponding to a satisfying assignment
has exponentially larger contribution to ZC,α,β than any orthant corresponding to an unsatisfying
assignment (Lemma 175). A consequence is that the partition function ZC,α,β is exponentially larger
when the formula C is satisfiable than when it isn’t:

3It suffices to work with m = O(n), see Theorem 173.
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Lemma 88. Fix n,m ∈ N and let α ≥ 2(n+ 1) and β ≥ 6480m log(13n
√
m). There is a constant

A = A(n,m, α, β) so that the following hold for every 3-CNF formula C with n variables and m
clauses:

• If C is unsatisfiable, then ZC,α,β ≤ A

• If C is satisfiable, then ZC,α,β ≥ (2/e)nA.

Proof. If C is unsatisfiable, then by the second part of Lemma 175, we have

Z = Z
∑
w∈H

Pr
x∼p

(x ∈ O(w)) ≤ 2ne−α

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Aunsat.

On the other hand, if C is satisfiable, then by the first part of Lemma 175 with r = 1/
√
162m,

Z ≥ Z Pr
x∼p

(x ∈ Br(v)) ≥ e−1−α/2

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Asat.

Since α ≥ 2(n+ 1), we get
Aunsat ≤ (2/e)nAsat

as claimed.

But then approximating ZC,α,β allows distinguishing a satisfiable formula from an unsatisfiable
formula, which is NP-hard. This implies the following theorem:

Theorem 89. Fix n ∈ N and let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP,
there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs an
approximation of logZθ with additive error less than n log 1.16.

Proof. First, observe that the following problem is NP-hard (under randomized reductions): given
two 3-CNF formulas C, C ′ each with n variables and at most 10n clauses, where it is promised that
exactly one of the formulas is satisfiable, determine which of the formulas is satisfiable. Indeed,
this follows from Theorem 173: given a 3-CNF formula C with n variables, at most 5n clauses, and
at most one satisfying assignment, consider adjoining either the clause xi or the clause ¬xi to C.
If C has a satisfying assignment v∗, then exactly one of the resulting formulas is satisfiable, and
determining which one is satisfiable identifies v∗i . Repeating this procedure for all i ∈ [n] yields an
assignment v, which satisfies C if and only if C is satisfiable.

For each n ∈ N define α = 2(n+ 1) and β = 64800n log(13n
√
10n). Let B > 0 be chosen later.

Suppose that there is a poly(n)-time algorithm which, given θ ∈ ΘB, computes an approximation
of logZθ with additive error less than n log 1.16. Then given two formulas C and C ′ with n variables
and at most 10n clauses each, we can compute θ = θ(C, α, β) and θ′ = θ(C ′, α, β). By Lemma 174,
we have θ, θ′ ∈ ΘB so long as B ≥ Cn2 for a sufficiently large constant C. Hence by assumption we
can compute approximations Z̃θ and Z̃θ′ of Zθ and Zθ′ respectively, with multiplicative error less
than 1.16n. However, by Lemma 88 and the assumption that exactly one of C and C ′ is satisfiable,
we know that Z̃θ > Z̃θ′ if and only if C is satisfiable. Thus, NP = RP.
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6.2.2 Hardness of approximating ∇θ logZθ(C,α,β)

Note that ∇θ logZθ = Ex∼pθ [T (x)], so in particular approximating the gradient yields an approxi-
mation to the mean Ex∼pθ [x]. Since PC,α,β is concentrated in orthants corresponding to satisfying
assignments of C, we would intuitively expect that if C has exactly one satisfying assignment
v∗, then sign(Epθ [x]) corresponds to this assignment. Formally, we show that if α = Θ(n) and
β = Ω(mn logm), then Ex∼pC,α,β

[v∗i xi] ≥ 1/20 for all i ∈ [n]:

Lemma 90. Let C be a 3-CNF formula with m clauses and n variables, and exactly one satisfying
assignment v∗ ∈ H. Let α = 4n and β ≥ 25920mn log(102n

√
mn), and define p := pC,α,β and

Z := ZC,α,β. Then Ex∼p[v
∗
i xi] ≥ 1/20 for all i ∈ [n].

Proof. Without loss of generality take i = 1 and v∗i = 1. Set r = 1/(
√
648mn), α = 4n, and

β ≥ 40r−2 log(4n/r). We want to show that Ex∼p[x1] ≥ 1/20. We can write

E[x1] = E[x11[x ∈ Br(v
∗)]] + E[x11[x ∈ O(v∗) \Br(v

∗)]] +
∑

v∈H\{v∗}

E[x11[x ∈ O(v)]]

≥ (1− r) Pr[x ∈ Br(v
∗)]− 2n max

v∈H\{v∗}
E[|x1|1[x ∈ O(v)]] (6.4)

since x1 ≥ 1− r for x ∈ Br(v
∗) and x1 ≥ 0 for x ∈ O(v∗). Now observe that on the one hand,

Pr(x ∈ Br(v
∗)) ≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x∗ − βg(x)) dx

)n

(6.5)

by Lemma 175. On the other hand, for any v ∈ H \ {v∗},

E[|x1|1[x ∈ O(v)]] =
1

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

x exp(−x8 − βg(x)) dx

)(∫ ∞

0

exp(−x8 − βg(x)) dx

)n−1

≤ 2e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

(6.6)

where the second inequality is by Lemma 177 with k = 1. Combining (6.5) and (6.6) with (6.4), we
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have

E[x1] ≥
(1− r)e−1−81mαr2 − 2n+1e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

∫
O(v∗)

exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

=
1

10
Pr[x ∈ O(v∗)]

≥ 1

20

where the second inequality is by choice of α and r; the third inequality is by nonnegativity of H(x);
and the fourth inequality is by Lemma 93 and uniqueness of the satisfying assignment v∗.

Since solving a formula with a unique satisfying assignment is still NP-hard, we get the following
theorem:

Theorem 91. Fix n ∈ N and let B ≥ Cn2 log(n) for a sufficiently large constant C. Unless
RP = NP, there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs
an approximation of ∇θ logZθ with additive error (in an l∞ sense) less than 1/20.

Proof. Suppose that such an algorithm exists. Set α = 4n and β = 129600n2 log(102n2
√
5). Given a

3-CNF formula C with n variables, at most 5n clauses, and exactly one satisfying assignment v∗ ∈ H,
we can compute θ = θ(C, α, β). Let E ∈ Rn be the algorithm’s estimate of∇θ logZθ = Ex∼pC,α,β

T (x).

Then
∥∥E − Ex∼pC,α,β

T (x)
∥∥
∞ < 1/20. But by Lemma 90, for each i ∈ [n], the i-th entry of

Ex∼pC,α,β
T (x), which corresponds to the monomial xi, has sign v∗i and magnitude at least 1/20.

Thus, sign(Ei) = v∗i . So we can compute v∗ in polynomial time. By Theorem 173, it follows that
NP = RP.

With the above two theorems in hand, we are ready to present the formal version of Theorem 80;
the proof is immediate from the definition of LMLE(θ).

Corollary 92. Fix n,N ∈ N and let B ≥ Cn2 log n for a sufficiently large constant C. Unless
RP = NP, there is no poly(n,N)-time algorithm which takes as input an arbitrary θ ∈ ΘB, and an
arbitrary sample x1, . . . , xN ∈ Rn, and outputs an approximation of LMLE(θ) up to additive error
of n log 1.16, or ∇θLMLE(θ) up to an additive error of 1/20.

Proof. Recall that log pθ(x) = log h(x) + ⟨θ, T (x)⟩ − logZθ. Therefore LMLE(θ) = Ê log h(x) +

⟨θ, ÊT (x)⟩ − logZθ and ∇θLMLE(θ) = ÊT (x)−∇θ logZθ. Note that we can compute Ê log h(x)

and ÊT (x) exactly. It follows that if we can approximate LMLE(θ) up to an additive error of
n log 1.16 , then we can compute logZθ up to an additive error of n log 1.16. Similarly, if we can
compute ∇θLMLE(θ) up to an additive error of 1/20, then we can compute ∇θ logZθ up to an
additive error of 1/20. This contradicts Theorems 89 and 91 respectively, completing the proof.
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6.2.3 Hardness of approximate sampling

We show that for α = Ω(n) and β = Ω(m logm), the likelihood that x ∼ PC,α,β lies in an orthant
corresponding to a satisfying assignment for C is at least 1/2 (Lemma 93). Hardness of approximate
sampling follows immediately (Theorem 94). Hence, although we show that score matching can
efficiently estimate θ∗ from samples produced by nature, knowing θ∗ isn’t enough to efficiently
generate samples from the distribution.

Lemma 93. Let C be a satisfiable instance of 3-SAT with m clauses and n variables. Let α, β > 0
satisfy α ≥ 2(n+ 1) and β ≥ 6480m log(13n

√
m). Set p := pC,α,β and Z := ZC,α,β. If V ⊆ H is the

set of satisfiable assignments for C, then∑
v∈V

Pr
x∼p

(x ∈ O(v)) ≥ 1

2
.

Proof. Let v ∈ H be any assignment that satisfies C, and let w ∈ H be any assignment that does
not satisfy C. By Lemma 175 with r = 1/

√
162m, we have

Pr
x∼pC

(x ∈ O(v)) ≥ Pr
x∼pC

(x ∈ Br(v))

≥ e−1−α/2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

≥ e−1+α/2 Pr(x ∈ O(w)).

Since we chose α sufficiently large that e−1+α/2 ≥ 2n, we get that

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)).

Hence, ∑
v∈V

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)) = 1−
∑
v∈V

Pr
x∼pC

(x ∈ O(v)).

The lemma statement follows.

Theorem 94. Let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP, there is no
algorithm which takes as input an arbitrary θ ∈ ΘB and outputs a sample from a distribution Q
with TV(Pθ, Q) ≤ 1/3 in poly(n) time.

Proof. Suppose that such an algorithm exists. For each n ∈ N define α = 2(n + 1) and β =
32400n log(13n

√
5n). Given a 3-CNF formula C with n variables and at most 5n clauses, we can

compute θ = θ(C, α, β). By Lemma 174 we have θ ∈ ΘB so long as B ≥ Cn2 for a sufficiently
large constant C. Thus, by assumption we can generate a a sample from a distribution Q with
TV(PC,α,β, Q) ≤ 1/3. But by Lemma 93, we have Prx∼PC,α,β

[sign(x) satisfies C] ≥ 1/2. Thus,
Prx∼Q[sign(x) satisfies C] ≥ 1/6. It follows that we can find a satisfying assignment with O(1)
invocations of the sampling algorithm in expectation. By Theorem 173 we get NP = RP.
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6.3 Statistical Efficiency of Maximum Likelihood

In this section we prove Theorem 81 by showing that for any θ ∈ ΘB, we can lower bound the
smallest eigenvalue of the Fisher information matrix I(θ). Concretely, we show:

Theorem 95. For any θ ∈ ΘB, it holds that

λmin(I(θ)) ≥ (nB)−O(d3).

As a corollary, given N samples from pθ, it holds as N →∞ that
√
N(θ̂MLE − θ)→ N(0,ΓMLE)

where ∥ΓMLE∥op ≤ (nB)O(d3). Moreover, for sufficiently large N , with probability at least 0.99 it

holds that
∥∥∥θ̂MLE − θ

∥∥∥2
2
≤ (nB)O(d3)/N .

Once we have the bound on λmin(I(θ)), the first corollary follows from standard bounds for
MLE (Section 6.1), and the second corollary follows from Markov’s inequality (see e.g., Remark 4 in
[KHR22]). Lower-bounding λmin(I(θ)) itself requires lower-bounding the variance of any polynomial
(with respect to pθ) in terms of its coefficients. The proof consists of three parts. First, we show
that the norm of a polynomial in the monomial basis is upper-bounded in terms of its L2 norm on
[−1, 1]n:

Lemma 96. For f ∈ R[x1, . . . , xn]≤d, we have ∥f∥2mon ≤
(
n+d
d

)
(4e)d ∥f∥2L2([−1,1]n) .

The key idea behind this proof is to work with the basis of (tensorized) Legendre polynomials,
which is orthonormal with respect to the L2 norm. Once we write the polynomial with respect to
this basis, the L2 norm equals the Euclidean norm of the coefficients. Given this observation, all
that remains is to bound the coefficients after the change-of-basis. The formal proof is given below.

Proof of Lemma 96. We use the fact that the Legendre polynomials

Lk(x) =
1

2k

k∑
j=0

(
k

j

)2

(x− 1)k−j(x+ 1)j,

for integers 0 ≤ k ≤ d, form an orthogonal basis for the vector space R[x]≤d with respect to L2[−1, 1]
(see e.g. [Koe98]). We consider the normalized versions L̂k =

√
2k+1
2

Lk, so that
∥∥∥L̂k

∥∥∥
L2[−1,1]

= 1.

By tensorization, the set of products of Legendre polynomials

L̂d(x) =
n∏

i=1

L̂d(i)(xi),

as d ranges over degree functions with |d| ≤ d, form an orthonormal basis for R[x1, . . . , xn]≤d with
respect to L2([−1, 1]n).

Using the formula for Lk, we obtain that the sum of absolute values of coefficients of Lk (in the

monomial basis) is at most 1
2k

∑k
j=0

(
k
j

)2
2k = 2k. By the bound ∥·∥2 ≤ ∥·∥1 and the definition of L̂k,∥∥∥L̂k

∥∥∥2
mon
≤ 2k + 1

2
∥Lk∥2mon ≤

2k + 1

2
22k
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and hence for any degree function d with |d| ≤ d,∥∥∥L̂d

∥∥∥2
mon

=
n∏

i=1

∥∥∥L̂d(i)

∥∥∥2
mon
≤

n∏
i=1

2d(i) + 1

2
22d(i)

≤
n∏

i=1

ed(i)22d(i) ≤ (4e)d.

Consider any polynomial f ∈ R[x1, . . . , xn]≤d, and write f =
∑

|d|≤d adL̂d. By orthonormality, it

holds that
∑

|d|≤d a
2
d = ∥f∥2L2([−1,1]n). Thus, by the triangle inequality and Cauchy-Schwarz,

∥p∥2mon =

∥∥∥∥∥∥
∑
|d|≤d

adL̂d

∥∥∥∥∥∥
2

mon

≤
∑
|d|≤d

a2d ·
∑
|d|≤d

∥∥∥L̂d

∥∥∥2
mon

≤ ∥p∥2L2([−1,1]n)

(
n+ d

d

)
(4e)d

as claimed.

Next, we show that if a polynomial f : Rn → R has small variance with respect to p, then there
is some box on which f has small variance with respect to the uniform distribution. This provides
a way of comparing the variance of f with its L2 norm (after an appropriate rescaling).

Lemma 97. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any
f ∈ R[x1, . . . , xn]≤d, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+ 1)MRd(n+B))
such that

Varp(f) ≥
1

2e
VarŨ(f),

where Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}.
In order to prove this result, we pick a random box of radius ϵ (within a large bounding box of

radius R). In expectation, the variance on this box (with respect to p) is not much less than Varp(f).
Moreover, for sufficiently small ϵ, the density function of p on this box has bounded fluctuations,
allowing comparison of Varp(f) and VarŨ(f). This argument is formalized below. First, we require
the following fact that monomials of bounded degree are Lipschitz within a bounding box:

Lemma 98. Fix R > 0. For any degree function d : [n]→ N with |d| ≤ d, and for any u, v ∈ Rn

with ∥u∥∞, ∥v∥∞ ≤ R, it holds that

|ud − vd| ≤ dRd−1∥u− v∥∞.

Proof. Define m(x) = xd =
∏n

i=1 x
d(i)
i . Then

|m(u)−m(v)| ≤ ∥u− v∥∞ sup
x∈BR(0)

∥∇xm(x)∥1

= ∥u− v∥∞ sup
x∈BR(0)

∑
i∈[n]:d(i)>0

αi

n∏
j=1

x
d(i)−1[i=j]
i

≤ ∥u− v∥∞ · dR
d−1
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as claimed.

Proof of Lemma 97. Let f ∈ R[x1, . . . , xn]≤d be a polynomial of degree at most d in x1, . . . , xn.
Define g(x) = f(x)− Ex∼pf(x). Set ϵ = 1/(2(d+ 1)MRd(n+ B)) and let (Wi)i∈I be ℓ∞-balls of
radius ϵ partitioning {x ∈ Rn : ∥x∥∞ ≤ R}. Define random variable X ∼ p|{∥X∥∞ ≤ R} and let
ι ∈ I be the random index so that X ∈ Bι. Then

Varp(f) = Ex∼p[g(x)
2]

≥ 1

2
E[g(X)2]

=
1

2
EιEX [g(X)2|X ∈ Wι]

where the inequality uses guarantee (c) of Lemma 104 that Prx∼p[∥x∥∞ > R] ≤ 1/2.
Thus, there exists some ι∗ ∈ I such that EX [g(X)2|X ∈ Wι∗ ] ≤ 2Varp(f). Let q : Rn → R+ be

the density function of X|X ∈ Wι∗ . Since q(x) ∝ p(x)1[x ∈ Wι∗ ], for any u, v ∈ Wι∗ we have that

q(u)

q(v)
=

p(u)

p(v)
=

h(u) exp(⟨θ, T (u)⟩)
h(v) exp(⟨θ, T (v)⟩)

= exp

(
n∑

i=1

vd+1
i − ud+1

i + ⟨θ, T (u)− T (v)⟩

)
.

Applying Lemma 98, we get that

q(u)

q(v)
≤ exp

(
n(d+ 1)Rd∥u− v∥∞ +MB∥T (u)− T (v)∥∞

)
≤ exp

(
(n+B) ·M(d+ 1)Rd∥u− v∥∞

)
≤ exp(2ϵ(n+B) ·M(d+ 1)Rd)

≤ exp(1)

by choice of ϵ. It follows that if Ũ is the uniform distribution on Wι∗ , then q(x) ≥ e−1Ũ(x) for all
x ∈ Rn. Thus,

Varp(f) ≥
1

2
EX [g(X)2|X ∈ Wι∗ ] ≥

1

2e
Ex∼Ũ [g(x)

2] ≥ 1

2e
VarŨ(g) =

1

2e
VarŨ(f)

as desired.

Together, Lemma 96 and 97 allow us to lower bound the variance Varp(f) in terms of ∥f∥mon.

Lemma 99. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any
f ∈ R[x1, . . . , xn]≤d with f(0) = 0, it holds that

Varp(f) ≥
1

22d(d+ 1)2d(4e)d+1M2d+3R2d2+2d(n+B)2d
∥f∥2mon .
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Proof. By Lemma 97, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+ 1)MRd(n+B))
so that if Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}, then

Varp(f) ≥
1

2e
VarŨ(f).

Define g : Rn → R by g(x) = f(ϵx+ z)− EŨf . Then by Lemma 96,

∥g∥2mon ≤ (4e)dMEx∼Unif([−1,1]n)g(x)
2.

= (4e)dM VarŨ(f)

≤ (4e)d+1M Varp(f).

Write f(x) =
∑

1≤|d|≤d αdxd and g(x) =
∑

1≤|d|≤d βdxd. We know that f(x) = g(ϵ−1(x− z))+EŨf .
Thus, for any nonzero degree function d, we have

αd =
∑
d′≥d
|d′|≤d

ϵ−|d′|(−z)d′−dβd′ .

Thus |αd| ≤ ϵ−dRd∥β∥1 ≤ ϵ−dRd
√
M ∥g∥mon, and so summing over monomials gives

∥f∥2mon ≤M2ϵ−2dR2d ∥g∥2mon ≤ (4e)d+1M3ϵ−2dR2d Varp(f).

Substituting in the choice of ϵ from Lemma 97 completes the proof.

We are now ready to finish the proof of Theorem 95.

Proof of Theorem 95. Fix θ ∈ ΘB. Pick any w ∈ RM and define f(x) = ⟨w, T (x)⟩. By
definition of I(θ), we have Varpθ(f) = w⊤I(θ)w. Moreover, ∥f∥2mon = ∥w∥22. Thus, Lemma 99

gives us that w⊤I(θ)w ≥ (nB)−O(d3)∥w∥22, using that R = 2d+3nBM and M =
(
n+d
d

)
. The bound

λmin(I(θ)) ≥ (nB)−O(d3) follows.

6.4 Statistical Efficiency of Score Matching

In this section we prove Theorem 82. The main technical ingredient is a bound on the restricted
Poincaré constants of distributions in Pn,d,B. For any fixed θ ∈ ΘB, we show (Lemma 102) that CP

can be bounded in terms of the condition number of the Fisher information matrix I(θ).
Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. First, we need to upper bound Varpθ(f). This is

where (the first half of) the condition number appears. Using the crucial fact that the restricted
Poincaré constant only considers functions f that are linear in the sufficient statistics, and the
definition of I(θ), we get the following bound on Varpθ(f) in terms of the coefficient vector w.

Lemma 100. Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. Then

∥w∥22λmin(I(θ)) ≤ Varpθ(f) ≤ ∥w∥
2
2λmax(I(θ)).
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Proof. We have

Varpθ(f) = Ex∼pθ [f(x)
2]− Ex∼pθ [f(x)]

2

= w⊤Ex∼pθ [T (x)T (x)
⊤]w − w⊤Ex∼pθ [T (x)]Ex∼pθ [T (x)]

⊤w

= w⊤I(θ)w,

and since
∥w∥22λmin(I(θ)) ≤ w⊤I(θ)w ≤ ∥w∥22λmax(I(θ),

the lemma statement follows.

Next, we lower bound Ex∼pθ∥∇xf(x)∥22. To do so, we could pick an orthonormal basis and
bound E⟨u,∇xf(x)⟩2 over all directions u in the basis; however, it is unclear how to choose this
basis. Instead, we pick u ∼ N (0, In) randomly, and use the following identity:

Ex∼pθ [∥∇xf(x)∥22] = Ex∼pθEu∼N(0,In)⟨u,∇xf(x)⟩2

For any fixed u, the function g(x) = ⟨u,∇xf(x)⟩ is also a polynomial. If this polynomial had no
constant coefficient, we could immediately lower bound E⟨u,∇xf(x)⟩2 in terms of the remaining
coefficients, as above. Of course, it may have a nonzero constant coefficient, but with some case-work
over the value of the constant, we can still prove the following bound:

Lemma 101. Fix θ, w̃ ∈ RM−1 and c ∈ R, and define g(x) := ⟨w̃, T (x)⟩+ c. Then

Ex∼pθ [g(x)
2] ≥ c2 + ∥w̃∥22

4 + 4∥E[T (x)]∥22
min(1, λmin(I(θ))).

Proof. We have

Ex∼pθ [g(x)
2] = Varpθ(g) + Ex∼pθ [g(x)]

2

= Varpθ(g − c) + (c+ w̃⊤Ex∼pθ [T (x)])
2

≥ ∥w̃∥22λmin(I(θ)) + (c+ w̃⊤Ex∼pθ [T (x)])
2

where the inequality is by Lemma 100. We now distinguish two cases.

Case I. Suppose that |c+ w̃⊤Ex∼pθ [T (x)]| ≥ c/2. Then

Ex∼pθ [g(x)
2] ≥ ∥w̃∥22λmin(I(θ)) +

c2

4
≥ c2 + ∥w̃∥22

4
min(1, λmin(I(θ))).
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Case II. Otherwise, we have |c + w̃⊤Ex∼pθ [T (x)]| < c/2. By the triangle inequality, it follows
that |w̃⊤Ex∼pθ [T (x)]| ≥ c/2, so ∥w̃∥2 ≥ c/(2∥Ex∼pθ [T (x)]∥2). Therefore

c2 + ∥w̃∥22 ≤ (1 + 4∥Ex∼pθ [T (x)]∥
2
2)∥w̃∥

2
2,

from which we get that

Ex∼pθ [g(x)
2] ≥ ∥w̃∥22λmin(I(θ)) ≥

c2 + ∥w̃∥22
1 + 4∥Ex∼pθ [T (x)]∥

2
2

λmin(I(θ))

as claimed.

With Lemma 100 and Lemma 101 in hand (taking g(x) = ⟨u,∇xf(x)⟩ in the latter), all that
remains is to relate the squared monomial norm of ⟨u,∇xf(x)⟩ (in expectation over u) to the
squared monomial norm of f . This crucially uses the choice u ∼ N(0, In). We put together the
pieces in the following lemma.

Lemma 102. Fix θ, w ∈ RM−1. Define f(x) := ⟨w, T (x)⟩. Then

Varpθ(f) ≤ (4 + 4∥Ex∼pθ [T (x)]∥
2
2)

λmax(I(θ))
min(1, λmin(I(θ)))

Ex∼pθ [∥∇xf(x)∥22].

Proof. Since f(x) =
∑

1≤|d|≤d wdxd, we have for any u ∈ Rn that

⟨u,∇xf(x)⟩ =
n∑

i=1

ui

∑
0≤|d|<d

(1 + d(i))wd+{i}xd = c(u) +
∑

1≤|d|<d

w̃(u)dxd

where c(u) :=
∑n

i=1 uiw{i} and w̃(u)d :=
∑n

i=1 ui(1 + d(i))wd+{i}. But now

Ex∼pθ [∥∇xf(x)∥22] = Ex∼pθEu∼N(0,In)⟨u,∇xf(x)⟩2

= Eu∼N(0,In)Ex∼pθ(c(u) + ⟨w̃(u), T (x)⟩)2

≥ Eu∼N(0,In)

c(u)2 + ∥w̃(u)∥22
4 + 4∥Ex∼pθ [T (x)]∥

2
2

min(1, λmin(I(θ))).

where the last inequality is by Lemma 101. Finally,

Eu∼N(0,In)

[
c(u)2 + ∥w̃(u)∥22

]
=

∑
0≤|d|<d

Eu∼N(0,In)

( n∑
i=1

ui(1 + d(i))wd+{i}

)2


=
∑

0≤|d|<d

n∑
i=1

(1 + d(i))2w2
d+{i} ≥ ∥w∥22
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where the second equality is because E[uiuj] = 1[i = j] for all i, j ∈ [n], and the last inequality is
because every term w2

d in ∥w∥22 appears in at least one of the terms of the previous summation
(and has coefficient at least one). Putting everything together gives

Ex∼pθ [∥∇xf(x)∥22] ≥
∥w∥22

4 + 4∥Ex∼pθ [T (x)]∥
2
2

min(1, λmin(I(θ)))

≥ 1

4 + 4∥E[T (x)]∥22

min(1, λmin(I(θ)))
λmax(I(θ))

Varpθ(f)

where the last inequality is by Lemma 100.

Finally, putting together Lemma 102, Theorem 95 (that lower bounds λmin(I(θ))), and
Lemma 104 (that upper bounds λmax(I(θ)) – a straightforward consequence of the distributions in
Pn,d,B having bounded moments), we can prove the following formal version of Theorem 82:

Theorem 103. Fix n, d,B,N ∈ N. Pick any θ∗ ∈ ΘB and let x(1), . . . , x(N) ∼ pθ∗ be independent
samples. Then as N →∞, the score matching estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗)→ N(0,Γ)

where ∥Γ∥op ≤ (nB)O(d3). As a corollary, for all sufficiently large N it holds with probability at least

0.99 that
∥∥∥θ̂SM − θ∗

∥∥∥2
2
≤ (nB)O(d3)/N .

Proof. We apply Theorem 84. By Lemma 180 and the fact that λmin(I(θ
∗)) > 0 (Theorem 95), the

necessary regularity conditions are satisfied so that the score matching estimator is consistent and
asymptotically normal, with asymptotic covariance Γ satisfying

∥Γ∥op ≤
2C2

P (∥θ∥
2
2Ex∼pθ∗∥(JT )(x)∥

4
op + Ex∼pθ∗∥∆T (x)∥22)

λmin(I(θ∗))2
(6.7)

where CP is the restricted Poincaré constant for pθ∗ with respect to linear functions in T (x) (see
Definition 83). By Lemma 102, we have

CP ≤ (4 + 4∥Ex∼pθ [T (x)]∥
2
2)

λmax(I(θ∗))
min(1, λmin(I(θ∗))

≤ (4 + 4B2dM2d+222d(d+1)+1)
B2dM2d+122d(d+1)+1

(nB)−O(d3)
≤ (nB)O(d3)

using parts (a) and (b) of Lemma 104; Theorem 95; and the fact that M =
(
n+d
d

)
. Substituting into

(6.7) and bounding the remaining terms using Lemma 179 and a second application of Theorem 95,
we conclude that ∥Γ∥op ≤ (nB)O(d3) as claimed. The high-probability bound now follows from
Markov’s inequality; see Remark 4 in [KHR22] for details.
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All that remains is to prove the upper bounds on λmax(I(θ)) and ∥Ex∼pθT (x)∥
2
2, which are

encapsulated in parts (a) and (b) of Lemma 104 below (part (c) is used in the proof of Lemma 97).
These bounds follow from the fact that distributions in Pn,d,B have bounded moments (Lemma 178).

Lemma 104 (Largest eigenvalue bound). For any θ ∈ ΘB, it holds that

Ex∼pθT (x)T (x)
⊤ ⪯ B2dM2d+122d(d+1)+1.

We also have the following consequences:

(a) ∥Ex∼pθT (x)∥
2
2 ≤ B2dM2d+222d(d+1)+1,

(b) λmax(I(θ)) ≤ B2dM2d+122d(d+1)+1,

(c) Prx∼pθ [∥x∥∞ > 2d+3nBM ] ≤ 1/2.

Proof. Fix any u, v ∈ [M ]. Then T (x)uT (x)v =
∏n

i=1 x
γi
i for some nonnegative integers γ1, . . . , γn

where d′ :=
∑n

i=1 γi ≤ 2d. Therefore

Ex∼pθT (x)uT (x)v = Ex∼pθ

n∏
i=1

xγi
i ≤

n∏
i=1

(
Ex∼pθx

d′

i

)γi/d′
≤ B2dM2d22d(d+1)+1

by Holder’s inequality and Lemma 178 (with ℓ = 2d). The claimed spectral bound follows. To
prove (a), observe that

∥Ex∼pθT (x)∥
2
2 ≤ Ex∼pθ∥T (x)∥

2
2 = TrEx∼pθT (x)T (x)

⊤ ≤Mλmax(Ex∼pθT (x)T (x)
⊤)

To prove (b), observe that I(θ) ⪯ Ex∼pθT (x)T (x)
⊤. To prove (c), observe that for any i ∈ [n],

Pr
x∼pθ

[|xi| > 2d+3nBM ] ≤ Ex∼pθx
2d
i

(2d+3nBM)2d
≤ 1

2n
.

A union bound over i ∈ [n] completes the proof.

6.5 Conclusion

We have provided a concrete example of an exponential family—namely, exponentials of bounded
degree polynomials—where score matching is significantly more computationally efficient than
maximum likelihood estimation (through optimization with a zero- or first-order oracle), while still
achieving the same sample efficiency up to polynomial factors. While score matching was designed
to be more computationally efficient for exponential families, the determination of statistical
complexity is more challenging, and we give the first separation between these two methods for a
general class of functions.

As we have restricted our attention to the asymptotic behavior of both of the methods, an
interesting future direction is to see how the finite sample complexities differ. One could also give a
more fine-grained comparison between the polynomial dependencies of score matching and MLE,
which we have not attempted to optimize. Finally, it would be interesting to relate our results with
similar results and algorithms for learning Ising and higher-order spin glass models in the discrete
setting, and give a more unified treatment of psueudo-likelihood or score/ratio matching algorithms
in these different settings.
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Chapter 7

An Universal Approximation result for
Normalizing Flows

Normalizing flows [DKB14; RM15] are a class of generative models parametrizing a distribution
in Rd as the pushfoward of a simple distribution (e.g. Gaussian) through an invertible map
gθ : Rd → Rd with trainable parameter θ. The fact that gθ is invertible allows us to write down an
explicit expression for the density of a point x through the change-of-variables formula, namely
pθ(x) = ϕ(g−1

θ (x))det(Dg−1
θ (x)), where ϕ denotes the density of the standard Gaussian. For different

choices of parametric families for gθ, one gets different families of normalizing flows, e.g. affine
coupling flows [DKB14; DSB16; KD18], Gaussianization flows [Men+20], sum-of-squares polynomial
flows [JSY19].

In this paper we focus on affine coupling flows – arguably the family that has been most
successfully scaled up to high resolution datasets [KD18]. The parametrization of gθ is chosen to be
a composition of so-called affine coupling blocks, which are maps f : Rd → Rd, s.t. f(xS, x[d]\S) =
(xS, x[d]\S ⊙ s(xS) + t(xS)), where ⊙ denotes entrywise multiplication and s, t are (typically simple)
neural networks. The choice of parametrization is motivated by the fact that the Jacobian of each
affine block is triangular, so that the determinant can be calculated in linear time.

Despite the empirical success of this architecture, theoretical understanding remains elusive.
The most basic questions revolve around the representational power of such models. Even the
question of universal approximation was only recently answered by three concurrent papers [HDC20;
Zha+20; KMR20]—though in a less-than-satisfactory manner, in light of how normalizing flows are
trained. Namely, [HDC20; Zha+20] show that any (reasonably well-behaved) distribution p, once
padded with zeros and treated as a distribution in Rd+d′ , can be arbitrarily closely approximated by
an affine coupling flow. While such padding can be operationalized as an algorithm by padding the
training image with zeros, it is never done in practice, as it results in an ill-conditioned Jacobian.
This is expected, as the map that always sends the last d′ coordinates to 0 is not injective. [KMR20]
prove universal approximation without padding; however their construction also gives rise to a
poorly conditioned Jacobian: namely, to approximate a distribution p to within accuracy ϵ in the
Wasserstein-1 distance, the Jacobian of the network they construct will have smallest singular value
on the order of ϵ.

Importantly, for all these constructions, the condition number of the resulting affine coupling
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map is poor no matter how nice the underlying distribution it’s trying to approximate is. In other
words, the source of this phenomenon isn’t that the underlying distribution is low-dimensional or
otherwise degenerate. Thus the question arises:

Question: Can well-behaved distributions be approximated by an affine coupling flow with a
well-conditioned Jacobian?

In this paper, we answer the above question in the affirmative for a broad class of distributions
– log-concave distributions – if we pad the input distribution not with zeroes, but with independent
Gaussians. This gives theoretical grounding of an empirical observation in [KMR20] that Gaussian
padding works better than zero-padding, as well as no padding.

The practical relevance of this question is in providing guidance on the type of distributions we
can hope to fit via training using an affine coupling flow. Theoretically, our techniques uncover
some deep connections between affine coupling flows and two other (seeming unrelated) areas of
mathematics: stochastic differential equations (more precisely underdamped Langevin dynamics,
a “momentum” variant of the standard overdamped Langevin dynamics) and dynamical systems
(more precisely, a family of dynamical systems called Hénon-like maps).

7.1 Overview of results

In order to state our main result, we introduce some notation and definitions.

7.1.1 Notation

Definition 105. An affine coupling block is a map f : Rd → Rd, s.t. f(xS, x[d]\S) = (xS, x[d]\S ⊙
s(xS) + t(xS)) for some set of coordinates S, where ⊙ denotes entrywise multiplication and s, t
are trainable (generally non-linear) functions. An affine coupling network is a finite sequence of
affine coupling blocks. Note that the partition (S, [d] \ S), as well as s, t may be different between
blocks. We say that the non-linearities are in a class F (e.g., neural networks, polynomials, etc.) if
s, t ∈ F .

The appeal of affine coupling networks comes from the fact that the Jacobian of each affine
block is triangular, so calculating the determinant is a linear-time operation.

We will be interested in the conditioning of f—that is, an upper bound on the largest singular
value σmax(Df) and lower bound on the smallest singular value σmin(Df) of the Jacobian Df of
f . Note that this is a slight abuse of nomenclature – most of the time, “condition number” refers
to the ratio of the largest and smallest singular value. As training a normalizing flow involves
evaluating det(Df), we in fact want to ensure that neither the smallest nor largest singular values
are extreme.

The class of distributions we will focus on approximating via affine coupling flows is log-concave
distributions:

Definition 106. A distribution p : Rd → R+, p(x) ∝ e−U(x) is log-concave if∇2U(x) = −∇2 ln p(x) ⪰
0.
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Log-concave distributions are typically used to model distributions with Gaussian-like tail
behavior. What we will leverage about this class of distributions is that a special stochastic
differential equation (SDE), called underdamped Langevin dynamics, is well-behaved in an analytic
sense. Finally, we recall the definitions of positive definite matrices and Wasserstein distance, and
introduce a notation for truncated distributions.

Definition 107. We say that a symmetric matrix is positive semidefinite (PSD) if all of its
eigenvalues are non-negative. For symmetric matrices A,B, we write A ⪰ B if and only if A−B is
PSD.

Definition 108. Given two probability measures µ, ν over a metric space (M,d), the Wasserstein-1
distance between them, denoted W1(µ, ν), is defined as

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

d(x, y) dγ(x, y)

where Γ(µ, ν) is the set of couplings, i.e. measures on M ×M with marginals µ, ν respectively. For
two probability distributions p, q, we denote by W1(p, q) the Wasserstein-1 distance between their
associated measures. In this paper, we set M = Rd and d(x, y) = ∥x− y∥2.

Definition 109. Given a distribution q and a compact set C, we denote by q|C the distribution q
truncated to the set C. The truncated measure is defined as q|C(A) = 1

q(C)q(A ∩ C).

7.1.2 Main result

Our main result states that we can approximate any log-concave distribution in Wasserstein-1
distance by a well-conditioned affine-coupling flow network. Precisely, we show:

Theorem 110. Let p(x) : Rd → R+ be of the form p(x) ∝ e−U(x), such that:
1. U ∈ C2, i.e., ∇2U(x) exists and is continuous.
2. ln p satisfies Id ⪯ −∇2 ln p(x) ⪯ κId.

Furthermore, let p0 := p×N (0, Id). Then, for every ϵ > 0, there exists a compact set C ⊂ R2d and
an invertible affine-coupling network f : R2d → R2d with polynomial non-linearities, such that

W1(f#(N (0, I2d)|C), p0) ≤ ϵ.

Furthermore, the map defined by this affine-coupling network f is well conditioned over C, that is,
there are positive constants A(κ), B(κ) = κO(1) such that for any unit vector w,

A(κ) ≤ ∥Dwf(x, v)∥ ≤ B(κ)

for all (x, v) ∈ C, where Dw is the directional derivative in the direction w. In particular, the

condition number of Df(x, v) is bounded by B(κ)
A(κ)

= κO(1) for all (x, v) ∈ C.

We make several remarks regarding the statement of the theorem:
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Remark 111. The Gaussian padding (i.e. setting p0 = p × N (0, Id)) is essential for our proofs.
All the other prior works on the universal approximation properties of normalizing flows (with or
without padding) result in ill-conditioned affine coupling networks. This gives theoretical backing
of empirical observations on the benefits of Gaussian padding in [KMR20].

Remark 112. The choice of non-linearities s, t being polynomials is for the sake of convenience in
our proofs. Using standard universal approximation results, they can also be chosen to be neural
networks with a smooth activation function.

Remark 113. The Jacobian Df has both upper-bounded largest singular value, and lower-bounded
smallest singular value—which of course bounds the determinant det(Df). As remarked in
Section 7.1.1, merely bounding the ratio of the two quantities would not suffice for this. Moreover,
the bound we prove only depends on properties of the distribution (i.e., κ), and does not worsen as
ϵ→ 0, in contrast to [KMR20].

Remark 114. The region C where the pushforward of the Gaussian through f and p0 are close is
introduced solely for technical reasons—essentially, standard results in analysis for approximating
smooth functions by polynomials can only be used if the approximation needs to hold on a compact
set. Note that C can be made arbitrarily large by making ϵ arbitrarily small.

Remark 115. We do not provide an explicit computation of the number of affine coupling blocks in
the constructed network, although a bound of polylog(ϵ)/ϵO(k) can be extracted from our proofs.

Remark 116. Our proof also implies a well-conditioned universal approximation result for other
related normalizing flow models. Lemma 124 proves that the flow map of underdamped Langevin
dynamics is well conditioned for all t ∈ [0, T ]. However, as indicated in [Che+18], underdamped
Langevin dynamics is a continuous normalizing flow, thus the claim applies to such flows as well.
Similarly, the particular affine coupling layers we construct in eq. (7.13) also form a residual block,
so the claim also holds for residual flows [Beh+18].

7.2 Preliminaries

Our techniques leverage tools from stochastic differential equations and dynamical systems. We
briefly survey the relevant results.

7.2.1 Langevin Dynamics

Broadly, Langevin diffusions are families of stochastic differential equations (SDEs) which are most
frequently used as algorithmic tools for sampling from distributions specified up to a constant of
proportionality. They have also recently received a lot of attention as tools for designing generative
models [SE19; Son+20].

In this paper, we will only make use of underdamped Langevin dynamics, a momentum-like
analogue of the more familiar overdamped Langevin dynamics, defined below. Our construction will
involve simulating underdamped Langevin dynamics using affine coupling blocks.
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Definition 117 (Underdamped Langevin Dynamics). Underdamped Langevin dynamics with
potential U and parameters ζ, γ is the pair of SDEs{

dxt = −ζvtdt
dvt = −γζvtdt−∇U(xt)dt+

√
2γ dBt.

(7.1)

The stationary distribution of the SDEs (limiting distribution as t → ∞) is given by p∗(x, v) ∝
e−U(x)− ζ

2
∥v∥2 .

The variable vt can be viewed as a “velocity” variable and xt as a “position” variable – in that
sense, the above SDE is an analogue to momentum methods in optimization.

The convergence of (7.1) can be bounded when the distribution p(x) ∝ exp(−U(x)) satisfies an
analytic condition, namely has a bounded log-Sobolev constant. Though we don’t use the log-Sobolev
constant in any substantive manner in this paper, we include the definition for completeness.

Definition 118. A distribution p : Rd → R+ satisfies a log-Sobolev inequality with constant C > 0
if ∀g : Rd → R, s.t. g2, g2| log g2| ∈ L1(p), we have

Ep[g
2 log g2]− Ep[g

2] logEp[g
2] ≤ 2CEp∥∇g∥2. (7.2)

In the context of Markov diffusions (and in particular, designing sampling algorithms using
diffusions), the interest in this quantity comes as it governs the convergence rate of overdamped
Langevin diffusion in the KL divergence sense. Namely, if pt is the distribution of overdamped
Langevin after time t, one can show

KL(pt||p) ≤ e−CtKL(p0||p).

We will only need the following fact about the log-Sobolev constant:

Fact 119 ([BÉ85; BGL13]). Let the distributions p(x) ∝ exp(−U(x)) be such that U(x) ⪰ λI.
Then, p has log-Sobolev constant bounded by λ.

We will also need the following result characterizing the convergence time of underdamped
Langevin dynamics in terms of the log-Sobolev constant, as shown in [Ma+19]:

Theorem 120 ([Ma+19]). Let p∗(x) ∝ exp(−U(x)) have a log-Sobolev constant bounded by ρ.
Furthermore, for a distribution p : Rd → R+, let

L[p] := KL(p∥p∗) + Ep

[〈
∇δKL(p∥p∗)

δp
, S∇δKL(p∥p∗)

δp

〉]
,

where S is a positive definite matrix given by S = 1
κ

[
1
4
Id×d

1
2
Id×d

1
2
Id×d 2Id×d

]
. If pt is the distribution of

(xt, vt) which evolve according to (7.1), we have

d

dt
L[pt] ≤ −

ρ

10
L[pt] (7.3)

whenever p∗ satisfies a log-Sobolev inequality with constant ρ.

90



We note that the above theorem uses a non-standard Lyapunov function L, which combines KL
divergence with an extra term, since the generator of underdamped Langevin is not self-adjoint—this
makes analyzing the drop in KL divergence difficult. As L is clearly an upper bound on KL(p||p∗),
so it suffices to show L decreases rapidly.

We will also need a less-well-known deterministic form of the updates which is equivalent to
(7.1). Precisely, we convert (7.1) an equivalent ODE (with time-dependent coefficients). The proof
of this fact (via a straightforward comparison of the Fokker-Planck equation) can be found in
[Ma+19].

Theorem 121. Let pt(xt, vt) be the probability distribution of running (7.1) for time t. If started
from (x0, v0) ∼ p0, the probability distribution of the solution (xt, vt) to the ODEs

d

dt

[
xt

vt

]
=

[
O Id
−Id −γId

]
(∇ ln pt −∇ ln p∗) (7.4)

is also pt(xt, vt).

7.2.2 Dynamical systems and Henon maps

We also build on work from dynamical systems, more precisely, a family of maps called Hénon-like
maps [Hén76].

Definition 122 ([Tur02]). A pair of ODEs forms a Hénon-like map if it has the form{
dx
dt

= v
dv
dt

= −x+∇J(x)
(7.5)

for a smooth function J : Rd → R.

This special family of ODEs is a continuous-time generalization of a classical discrete dynamical
system of the same name [Hén76]. The property that is useful for us is that the Euler discretization
of this map can be written as a sequence of affine coupling blocks.

In [Tur02], it was proven that these ODEs are universal approximators in some sense. Namely,
the iterations of this ODE can approximate any symplectic diffeomorphism: a continuous map
which preserves volumes (i.e. the Jacobian of the map is 1). These kinds of diffeomorphisms have
their genesis in Hamiltonian formulations of classical mechanics [AM08].

At first blush, symplectic diffeomorphisms and underdamped Langevin seem to have nothing
to do with each other. The connection comes through the so-called Hamiltonian representation
theorem [Pol12], which states that any symplectic diffeomorphism from C ⊆ R2d → R2d can be
written as the iteration of the following Hamiltonian system of ODEs for some (time-dependent)
Hamiltonian H(x, v, t): {

dx
dt

= d
dv
H(x, v, t)

dv
dt

= − d
dx
H(x, v, t)

(7.6)

In fact, in our theorem, we will use techniques inspired by those in [Tur02], who shows:
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Theorem 123 ([Tur02]). For any function H(x, v, t) : R2d × R≥0 → R which is polynomial in
(x, v), there exists a polynomial V (x, v, t), s.t. the time-τ map of the system{

dx
dt

= ∂
∂v
H(x, v, t)

dv
dt

= − ∂
∂x
H(x, v, t)

(7.7)

is uniformly O(τ 2)-close to the time-2π map of the system{
dx
dt

= v
dvj
dt

= −Ω2
jxj − τ ∂

∂xj
V (x, t)

(7.8)

for some integers {Ωi}di=1.

We will prove a generalization of this theorem that applies to underdamped Langevin dynamics.

7.3 Proof Sketch of Theorem 110

7.3.1 Overview of strategy

We wish to construct an affine coupling network that (approximately) pushes forward a Gaussian
p∗ = N (0, I2d) to the distribution we wish to model with Gaussian padding, i.e. p0 = p×N (0, Id).
Because the inverse of an affine coupling network is an affine coupling network, we can invert the
problem, and instead attempt to map p0 to N(0, I2d).

1

There is a natural map that takes p0 to p
∗ = N(0, I2d), namely, underdamped Langevin dynamics

(7.1). Hence, our proof strategy involves understanding and simulating underdamped Langevin
dynamics with the initial distribution p0 = p×N (0, Id), and the target distribution p∗ = N (0, I2d),
and comprises of two important steps.

First, we show that the flow-map for Langevin is well-conditioned (Lemma 124 below). Here,
by flow-map, we mean the map which assigns each x to its evolution over a certain amount of time
t according to the equations specified by (7.1).

Second, we break the simulation of underdamped Langevin dynamics for a certain time t into
intervals of size τ , and show that the inverse flow-map over each τ -sized interval of time can be
approximated well by a composition of affine-coupling maps (Lemma 129 below). To show this, we
consider a more general system of ODEs than the one in [Tur02] (in particular, a non-Hamiltonian
system), which can be applied to underdamped Langevin dynamics. We then show that the inverse
flow-map of this system of ODEs can be approximated by a sequence of affine-coupling blocks. We
note that for this argument, it is critical that we use underdamped rather than overdamped Langevin
dynamics, as overdamped Langevin dynamics do not have the required form for affine-coupling
blocks.

1As an aside, a similar strategy is taken in practice by recent SDE-based generative models ([Son+20]).
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7.3.2 Underdamped Langevin is well-conditioned

Consider running underdamped Langevin dynamics with stationary distribution p∗ equal to the
standard Gaussian, started at a log-concave distribution with bounded condition number κ. The
following lemma says that the flow map is well-conditioned, with condition number depending
polynomially on κ.

Lemma 124. Consider underdamped Langevin dynamics (7.1) with ζ = 1, friction coefficient
γ < 2 and starting distribution p which satisfies all the assumptions in Theorem 110. Let Tt denote
the flow-map from time 0 to time t induced by (7.4). Then for any x0, v0 ∈ Rd and unit vector w,
the directional derivative of Tt at x0, v0 in direction w satisfies(

1 +
2 + γ

2− γ
(κ− 1)

)−2/γ

≤ ∥DwTt(x0)∥ ≤
(
1 +

2 + γ

2− γ
(κ− 1)

)2/γ

.

Therefore, the condition number of Tt is bounded by
(
1 + 2+γ

2−γ
(κ− 1)

)4/γ
.

We sketch the proof below and include a complete proof in Section B.3.
First, using (7.4) and the chain rule shows that the Jacobian of the flow map at x0, Dt = DTt(x0),

satisfies

d

dt
Dt =

[
O Id
−Id −γId

]
∇2(ln pt − ln p∗)Dt, (7.9)

i.e., it is bounded by the difference of the Hessians of the log-pdfs of the current distribution and
the stationary distribution. We will show that ∇2 ln pt decays exponentially towards ∇2 ln p∗ = I2d.

To accomplish this, consider how ∇2 ln pt evolves if we replace (7.1) by its discretization,

x̃t+η = x̃t + ηṽt

ṽt+η = (1− ηγ)ṽt − ηx̃t + ξt, ξt ∼ N(0, 2γηId).

Note that because the stationary distribution is a Gaussian, ∇U(xt) = xt in (7.1), and the above

equations take a particularly simple form: we apply a linear transformation to

[
x̃t

ṽt

]
, and then

add Gaussian noise, which corresponds to convolving the current distribution by a Gaussian. We
keep track of upper and lower bounds for ∇2 ln pt, and compute how they evolve under this linear
transformation and convolution by a Gaussian. Taking η → 0, we obtain differential equations for
the upper and lower bounds for ∇2 ln pt, which we can solve. A Grönwall argument shows that
these bounds decay exponentially towards ∇2 ln p∗ = I2d. The decay rate can be bounded as a
power of 1

κ
.

From (7.9), we then obtain that the condition number of Dt is bounded by the integral of a
exponentially decaying function, and hence is bounded independent of t. In particular, we may
take t large enough so that pt is ε-close to the stationary distribution. Because the decay rate of
the exponential is 1

κO(1) , the bound is κO(1).
Note that we vitally used the fact that the stationary distribution p is a standard Gaussian, as

our argument requires that ∇2 ln p∗ be constant everywhere.
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7.3.3 ODE approximation by affine-coupling blocks

Next, we analyze a more general version of the Hamiltonian system of ODEs considered in [Tur02],
which we recalled in (7.7). In particular, the system of ODEs we will be considering is:{

dx
dt

= ∂
∂v
H(x, v, t)

dv
dt

= − ∂
∂x
H(x, v, t)− γ ∂

∂v
H(x, v, t)

(7.10)

Note that substituting H(x, v, t) = ln pt(x, v) − ln p∗(x, v) above gives us the underdamped
Langevin dynamics.

The first step is to restrict our considerations to H being a polynomial in x, v, rather than a
general smooth function. Towards this, we recall the notion of closeness in the C1 topology:

Definition 125. Let C ⊆ Rd be a compact set. Let f, g : C → R be two continuously differentiable
functions. Then we say that f, g are uniformly ϵ-close over C in C1 topology if

sup
x∈C

(∥f(x)− g(x)∥+ ∥Df(x)−Dg(x)∥) ≤ ϵ

The following lemma (a generalization of the Stone-Weierstrass Theorem) then establishes that
it suffices to focus on H being polynomial in x, v:

Lemma 126 (Theorem 5, [Pee07]). Let C ⊂ Rd be a compact set. For any C2 function H : Rd → R,
and any ϵ > 0, there is a multivariate polynomial P : Rd → R such that P,H are uniformly ϵ-close
over C in C1 topology.

Focusing on the case of polynomials, Lemma 127 below shows that instead of flowing the pair
of ODEs given by (7.10) over an interval of time τ , we can instead run a different ODE for time
2π, such that the flow-maps corresponding to both these ODEs are O(τ 2)-close.

Lemma 127. Let C ⊂ R2d be a compact set. For any function H(x, v, t) : R2d → R which is
polynomial in (x, v), there exist polynomial functions J, F,G, s.t. the time-(t0 + τ, t0) flow map of
the system {

dx
dt

= ∂
∂v
H(x, v, t)

dv
dt

= − ∂
∂x
H(x, v, t)− γ ∂

∂v
H(x, v, t)

(7.11)

is uniformly O(τ 2)-close over C in C1 topology to the time-2π map of the system{
dx
dt

= v − τF (v, t)⊙ x
dvj
dt

= −Ω2
jxj − τJj(x, t)− τvjGj(x, t)

(7.12)

Here, ⊙ denotes component-wise product, and the constants inside the O(·) depend on C and the
coefficients of H.
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The complete proof of this lemma is included in Appendix B.4; we provide a brief sketch
here. First, we consider the first order (O(τ 2)) approximation of the flow map of a standard
ODE of the form ẏ = Dy (where D is diagonal), and observe that for small τ , we can think of
(7.12) as a perturbed version of such an ODE with an appropriate choice of D. Using standard
ODE perturbation techniques, we can approximately express the time-t evolution of (7.12) up to
first-order in τ , in terms of polynomials F,G, J and trigonometric functions.

Then, we compare this map to the first-order approximation of flowing the pair of ODEs (7.11)
for time τ via Taylor’s theorem. Furthermore, this approximation is a polynomial in (x, v) since H
is a polynomial in (x, v).

The crucial step involves choosing the functional form of F (z, t), J(z, t), G(z, t) suitably, so that
they are polynomials in z with coefficients in terms of sin(Ωt), cos(Ωt). After simplification, both
expressions can be expressed in terms of polynomials in x, v where coefficients can be expressed in
terms of

∫ 2π

0
sinp(Ωs) cosq(Ωs) ds, which either integrate to 0 or a constant. Thus, to ensure that

the two approximations match, we are left with a problem of making two multivariate polynomials
in (x, v) equal.

This final step can of course be written as a linear system of equations. We identify a special
structure in this system, which helps us show that the system is full-rank, and hence has a solution.

Finally, consider discretizing the newly constructed ODE (7.12) into small steps of size η by a
simple Euler schema i.e.,{

xn+1 = xn + η(vn − τF (vn, ηn)⊙ xn)

vn+1,j = vn,j − η(Ω2
jxn,j − τJj(xn, ηn)− τvn,jGj(xn, ηn))

(7.13)

We note that each step above can be written as a composition of two affine coupling blocks given
by (xn, vn) 7→ (xn, vn+1) 7→ (xn+1, vn+1). Namely, the map (xn, vn) 7→ (xn, vn+1) can be written as{

xn = xn

vn+1 = vn ⊙ (1− τ)G(xn, ηn)− η(Ω2 ⊙ xn − τJ(xn, ηn))

This map is an affine coupling block with s(xn) = (1− τ)⊙G(xn, ηn) and t(xn) = −η(Ω2 ⊙ xn −
τJ(xn, ηn)). The map (xn, vn+1) 7→ (xn+1, vn+1) can be written as{

vn+1 = vn+1

xn+1 = xn + η(vn+1 − τF (vn+1, ηn)⊙ xn)

which is an affine coupling block with s(vn+1) = 1− ητF (vn+1, ηn) and t(vn+1) = ηvn+1.
The composition of the two maps above yields an affine coupling network (xn, vn) 7→ (xn+1, vn+1)

precisely as given by Equation (7.13) with non-linearities s, t in each of the blocks given by
polynomials. The following lemma bounds the error resulting from this discretization:

Lemma 128 (Euler’s discretization method). 2 Let C ⊂ R2d be a compact set. Consider discretizing
the time from 0 to t into t

η
steps and performing the update given by (7.13) at each of these steps.

2This result is well known in the C0 topology, we provide an analysis for the C1 bound in Section B.5.1.
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Let the map obtained as a result of discretizing thus be denoted by T ′
t and let the original flow map

be denoted by Tt. Then Tt and T ′
t are uniformly O(η) close over C in C1 topology, and the constants

inside the O(·) depend on C, and bounds on the derivatives of Tt over C.

7.3.4 Simulating by breaking into τ-sized intervals

Let Ts,t denote the time-s, t flow-map of (7.10) from time s to time t. Since the flow maps are
invertible, Ts,t and Tt,s are inverses. We are now ready to state the following lemma which says
that the underdamped Langevin flow-map Tϕ,0 can be written as a composition of affine-couplings
maps:

Lemma 129. Let C ⊂ R2d be a compact set. Suppose that Tϕ,0(x, v) is the time-(ϕ, 0) flow-map of
the ODE’s {

dx
dt

= ∂
∂v
H(x, v, t)

dv
dt

= − ∂
∂x
H(x, v, t)− γ ∂

∂v
H(x, v, t)

(7.14)

where H is C∞. Then for any ϵ1, ϕ ∈ R+, there exists an integer N = N(ϵ1, ϕ, C) and affine-coupling
blocks f1, . . . , fN such that the composition f = fN ◦ · · · ◦ f1 is ϵ1-close to Tϕ,0 in the C1 topology
over C.

The proof of Lemma 129 is in Section B.5. We provide a brief sketch here: from Lemma 126,
we know that it suffices to show the result for a polynomial H. Thereafter, we break the time
for which we want to flow the ODE given by (7.14) into small chunks of length τ . Lemmas 127
and 128 then show that the flow map over this chunk can be written as an affine coupling network.
Composing the affine coupling networks over all the chunks of time gives us the result.

7.3.5 Putting components together

The previous sections established that for any t and any compact set C, there is a affine-coupling
network f with polynomial non-linearities such that Tt,0 and f are uniformly close over C. We will
now pick an appropriate value of t and set C such that W1(f#(p

∗|C), p0) ≤ ϵ where p∗ = N (0, I2d),
which is the required result of Theorem 110. First, using Theorem 120, for

ϕ > −10 log ϵ1 + log 2 + logL[p0]

we have that KL(T0,ϕ#(p0), p
∗) ≤ ϵ21

2
. We use the following transportion cost inequality to convert

this to a Wasserstein bound.

Theorem 130 (Talagrand [Tal96]). The standard Gaussian p on Rd satisfies a transportation cost
inequality: For every distribution q on Rd with finite second moment, W1(p, q)

2 ≤ 2KL(q∥p).

This gives us that W1(T0,ϕ#(p0), p
∗) ≤ ϵ1. A simple argument in Lemma 186 (Section B.5.2)

then gives
W1(p0, Tϕ,0#(p

∗)) = W1(Tϕ,0#(T0,ϕ#(p0)), Tϕ,0#(p
∗)) ≤ Lip(Tϕ,0)ϵ1 (7.15)
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A subsequent argument stated as Lemma 187 in Section B.5.2, shows that if f and Tϕ,0 are
uniformly ϵ1-close in C0 topology on some C, then their pushforwards through p∗|C are indeed close,
i.e.,

W1(Tϕ,0#(p
∗|C), f#(p∗|C)) ≤ ϵ1. (7.16)

Next, we establish a bound on the Wasserstein distance between the standard Gaussian and its
truncation on a compact set, proved in Section B.5.3.

Lemma 131. Let p∗ = N (0, I2d). Then for every δ ∈ R+, there exists a compact set C = B(0, R)
such that W1(p

∗, p∗|C) ≤ δ, where B(0, R) denotes the ball of radius R centered at the origin.

We now choose a compact set C such that Lemma 131 holds for δ = ϵ1. Then Lemma 186 again
implies that

W1(Tϕ,0#(p
∗), Tϕ,0# (p∗|C)) ≤ Lip(Tϕ,0)ϵ1 (7.17)

Equations (7.15), (7.16), (7.17) and the triangle inequality together imply

W1(f#(p
∗|C), p0) ≤ (2Lip(Tϕ,0) + 1)ϵ1 ≤ ϵ

for small enough ε1. We can indeed set ϵ1 small enough so as to satisfy the last inequality above,

because of the global bound Lip(Tϕ,0) ≤
(
1 + 2+γ

2−γ
(κ− 1)

)2/γ
established in Lemma 124. This gives

us the statement of Theorem 110. Note that the final value of ϕ depends on ϵ, κ, γ and L[p0].

7.4 Related Work

The landscape of normalizing flow models is rather rich. The inception of the ideas was in [RM15]
and [DKB14], and in recent years, an immense amount of research has been dedicated to developing
different architectures of normalizing flows. The focus of this paper are affine coupling flows,
which were introduced in [DKB14], introduced the idea of using pushforward maps with triangular
Jacobians for computational efficiency. This was further developed in [DSB16] and culminated in
[KD18], who introduced 1x1 convolutions in the affine coupling framework to allow for “trainable”
choices of partitions. We note, there have been variants of normalizing flows in which the Jacobian is
non-triangular, e.g. [Gra+18; DDT19; Beh+18], but these models still don’t scale beyond datasets
the size of CIFAR-10.

In terms of theoretical results, the most closely related works are [HDC20; Zha+20; KMR20].
The former two show universal approximation of affine couplings—albeit if the input is padded with
zeros. This of course results in maps with singular Jacobians, which is why this strategy isn’t used
in practice. [KMR20] show universal approximation without padding—though their constructions
results in a flow model with condition number 1/ϵ to get approximation ϵ in the Wasserstein sense,
regardless of how well-behaved the distribution to be approximated is. Furthemore, [KMR20]
provide some empirical evidence that padding with iid Gaussians (as in our paper) is better than
both zero padding (as in [HDC20; Zha+20]) and no padding on small-scale data.
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7.5 Conclusion

In this paper, we provide the first guarantees on universal approximation with well-conditioned affine
coupling networks. The conditioning of the network is crucial when the networks are trained using
gradient-based optimization of the likelihood. Mathematically, we uncover connections between
stochastic differential equations, dynamical systems and affine coupling flows. Our construction
uses Gaussian padding, which lends support to the empirical observation that this strategy tends to
result in better-conditioned flows [KMR20]. We leave it as an open problem to generalize beyond
log-concave distributions.
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Chapter 8

Robust subspace approximation in
stream

A fundamental problem in large-scale machine learning is that of subspace approximation. Given a
set of n data points {ai}ni=1 in Rd and an integer k, we wish to find a linear subspace S of dimension
k for which

∑
i M(dist(S, ai)) is minimized, where dist(S, x) := miny∈S∥x− y∥2, and M(·) is some

loss function. When M(·) = (·)2, this is the well-studied least squares subspace approximation
problem. The minimizer in this case can be computed exactly by computing the truncated SVD of
the data matrix.

Otherwise M is often chosen from (·)p for some p ≥ 0, or from a class of functions called
M -estimators, with the goal of providing a more robust estimate than least squares in the face of
outliers. Indeed, for p < 2, since one is not squaring the distances to the subspace, one is placing
less emphasis on outliers and therefore capturing more of the remaining data points. For example,
when M is the identity function, we are finding a subspace so as to minimize the sum of distances
to it, which could arguably be more natural than finding a subspace so as to minimize the sum of
squared distances. We can write this problem in the following form:

min
S dim k

∑
i

dist(S, ai) = min
X rank k

∑
i

∥(A− AX)i∗∥2

where A is the matrix in which the i-th row is the vector ai. This is the form of robust subspace
approximation that we study in this work. We will be interested in the approximate version of the
problem for which the goal is to output a k-dimensional subspace S ′ for which with high probability,∑

i

dist(S ′, ai) ≤ (1 + ϵ)
∑
i

dist(S, ai) (8.1)

The particular form with M equal to the identity was introduced to the machine learning community
by Ding et al. [Din+06], though these authors employed heuristic solutions. The series of
work in [DTV11],[Gur+10] and [DV07a; Fel+10a; SV12; CW15a] shows that if M(·) = | · |p
for p ̸= 2, there is no algorithm that outputs a (1 + 1/ poly(d)) approximation to this problem
unless P = NP. However, [CW15a] also show that for any p there is an algorithm that runs

99



in O(nnz(A) + (n + d) poly(k/ϵ) + exp(poly(k/ϵ)) time and outputs a k-dimensional subspace
whose cost is within a (1 + ϵ) factor of the optimal solution cost. This provides a considerable
computational savings since in most applications k ≪ d≪ n. Their work builds upon techniques
developed in [Fel+10b] and [FL11] which give O

(
nd · poly(k/ϵ) + exp

(
(k/ϵ)O(p)

))
time algorithms

for the p ≥ 1 case. These in turn build on the weak coreset construction of [DV07b]. In other
related work [CW15b] give algorithms for performing regression with a variety of M -estimator loss
functions.

Our Contributions. We give the first sketching-based solution to this problem. Namely, we show
it suffices to compute Z ·A, where Z is a d log n poly(kϵ−1)× n random matrix with entries chosen
obliviously to the entries of A. The matrix Z is a block matrix with blocks consisting of independent
Gaussian entries, while other blocks consist of independent Cauchy random variables, and yet
other blocks are sparse matrices with non-zero entries in {−1, 1}. Previously such sketching-based
solutions were known only for M(·) = (·)2. Prior algorithms [DV07a; Fel+10a; SV12; CW15a]
also could not be implemented as single-shot sketching algorithms since they require first making
a pass over the data to obtain a crude approximation, and then using (often adaptive) sampling
methods in future passes to refine to a (1 + ϵ)-approximation. Our sketching-based algorithm,
achieving O(nnz(A)+(n+d) poly(k/ϵ)+exp(poly(k/ϵ)) time, matches the running time of previous
algorithms, but has considerable benefits as described below.

Streaming Model. Since Z is linear and oblivious, one can maintain Z · A in the presence of
insertions and deletions to the entries of A. Indeed, given the update Ai,j ← Ai,j +∆ for some
∆ ∈ R, we simply update the j-th column ZAj in our sketch to ZAj +∆ · Z · ei, where ei is the
i-th standard unit vector. Also, the entries of Z can be represented with limited independence,
and so Z can be stored with a short random seed. Consequently, we obtain the first algorithm
with d log n poly(kϵ−1) memory for this problem in the standard turnstile data stream model
[Mut05]. In this model, A ∈ Rn×d is initially the zero matrix, and we receive a stream of
updates to A where the i-th update is of the form (xi, yi, ci), which means that Axi,yi should
be incremented by ci. We are allowed one pass over the stream, and should output a rank-k
matrix X ′ which is a (1 + ϵ) approximation to the robust subsace estimation problem, namely∑

i∥(A− AX ′)i∗∥2 ≤ (1 + ϵ)minX rank k

∑
i∥(A− AX)i∗∥2. The space complexity of the algorithm

is the total number of words required to store this information during the stream. Here, each word
is O(log(nd)) bits. Our algorithm achieves d log n poly(kϵ−1) memory, and so only logarithmically
depends on n. This is comparable to the memory of streaming algorithms when M(·) = (·)2 [CW09;
Gha+16], which is the only prior case for which streaming algorithms were known.

Distributed Model. Since our algorithm maintains Z · A for an oblivious linear sketch Z,
it is parallelizable, and can be used to solve the problem in the distributed setting in which
there are s machines holding A1, A2, . . . , As, respectively, and A =

∑s
i=1 A

i. This is called the
arbitrary partition model [KVW14]. In this model, we can solve the problem in one round with
s ·d log n poly(kϵ−1) communication by having each machine agree upon (a short seed describing) Z,
and sending ZAi to a central coordinator who computes and runs our algorithm on Z ·A =

∑
i ZA

i.
The arbitrary partition model is stronger than the so-called row partition model, in which the
points (rows of A) are partitioned across machines. For example, if each machine corresponds to
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a shop, the rows of A correspond to customers, the columns of A correspond to items, and Ai
c,d

indicates how many times customer c purchased item d at shop i, then the row partition model
requires customers to make purchases at a single shop. In contrast, in the arbitrary partition model,
customers can purchase items at multiple shops.

8.1 Notation and Terminology

For a matrix A, let Ai∗ denote the i-th row of A, and A∗j denote the j-th column of A.

Definition 132. For a matrix A ∈ Rn×m, let:

∥A∥2,1 ≡
∑
i

∥Ai∗∥2 ∥A∥1,2 ≡
∥∥AT

∥∥
2,1

=
∑
j

∥A∗j∥2

∥A∥F ≡
√∑

i

∥Ai∗∥22 ∥A∥1,1 ≡
∑
i

∥Ai∗∥1 ∥A∥med,1 ≡
∑
j

∥A∗j∥med

where ∥·∥med denotes the function that takes the median of absolute values.

Definition 133 (X∗, ∆∗). Let:

∆∗ ≡ min
X rank k

∥A− AX∥2,1 X∗ ≡ argmin
X rank k

∥A− AX∥2,1

Definition 134. For a matrix A ∈ Rn×d and a target rank k, W is an (α, β)-coreset if its row
space is an α-dimensional subspace of Rd that contains a β-approximation to X∗. Formally:

argmin
X rank k

∥A− AXW∥2,1 ≤ β∆∗

We also use the following notation: [n] denotes the set {1, 2, 3, · · ·n}. [[E]] denotes the indicator
function for event E. nnz(A) denotes the number of non-zero entries of A. A− denotes the
pseudoinverse of A.

8.2 Algorithm Overview

At a high level we follow the framework put forth in [CW15a] which gives the first input sparsity time
algorithm for the robust subspace approximation problem. In their work Clarkson and Woodruff first
find a crude (poly(k), K)-coreset for the problem. They then use a non-adaptive implementation of
a residual sampling technique from [DV07b] to improve the approximation quality but increase the
dimension, yielding a (K poly(k), 1 + ϵ)-coreset. From here they further use dimension reducing
sketches to reduce to an instance with parameters that depend only polynomially on k/ϵ. Finally
they pay a cost exponential only in poly(k/ϵ) to solve the small problem via a black box algorithm
of [BPR94].
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There are several major obstacles to directly porting this technique to the streaming setting. For
one, the construction of the crude approximation subspace uses leverage score sampling matrices
which are non-oblivious and thus not usable in 1-pass turnstile model algorithms. We circumvent
this difficulty in Section 8.3.1 by showing that if T is a sparse poly(k)×n matrix of Cauchy random
variables, the row span of TA contains a rank-k matrix which is a log(d) poly(k) approximation to
the best rank-k matrix under the ∥·∥2,1 norm.

Second, the residual sampling step requires sampling rows of A with respect to probabilities
proportional to their distance to the crude approximation (in our case TA). This is challenging
because one does not know TA until the end of the stream, much less the distances of rows of A to
TA. We handle this in Section 8.3.2 using a row-sampling data structure of [MW10] developed for
regression, which for a matrix B maintains a sketch HB in a stream from which one can extract
samples of rows of B according to probabilities given by their norms. By linearity, it suffices to
maintain HA and TA in parallel in the stream, and apply the sample extraction procedure to
HA · (Id− PTA), where PTA = TA((TA)TTA)−(TA)T is the projection onto the rowspace of TA.
Unfortunately, the extraction procedure only returns noisy perturbations of the original rows which
majorly invalidates the analysis in [CW15a] of the residual sampling. In Section 8.3.2 we give
a novel analysis of non-adaptive noisy residual sampling which we name BootstrapCoreset.
This is one of our key contributions and may be of independent interest. This gives a procedure
for transforming our poly(k)-dimensional space containing a log(d) poly(k) approximation into a
poly(k) log(d)-dimensional space containing a 3/2 factor approximation.

Third, requiring the initial crude approximation to be oblivious yields a coarser log(d) poly(k)
initial approximation than the constant factor approximation of [CW15a]. Thus the dimension of
the subspace after residual sampling is poly(k) log(d). Applying dimension reduction techniques
reduces the problem to instance with poly(k) rows by log(d) poly(k) columns. Here the black box
algorithm of [BPR94] would take time dpoly(k) which is no longer fixed parameter tractable as
desired. Our key insight is that finding the best rank-k matrix under the Frobenius norm, which can
be done efficiently, is a

√
log d log log d poly(k) approximation to the ∥·∥2,1 norm minimizer. From

here we can repeat the residual sampling argument which this time yields a small instance with
poly(k) rows by

√
log d log log d poly(k/ϵ) columns. Sublogarithmic in d makes all the difference

and now enumerating can be done in time (n+ d) poly(k/ϵ) + exp(poly(k/ϵ). All this is done in
parallel in a single pass of the stream.

Lastly, the sketching techniques applied after the residual sampling are not oblivious in [CW15a].
We instead use an obvlious median based embedding in Section 8.4.1, and show that we can still
use the black box algorithm of [BPR94] to find the minimizer under the ∥·∥med,1 norm in Section
8.4.2.

We present our results as two algorithms for the robust subspace approximation problem. The
first runs in fully polynomial time but gives a coarse approximation guarantee, which corresponds
to stopping before repeating the residual sampling a second time. The second algorithm captures
the entire procedure, and uses the first as a subroutine.
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Algorithm 5 CoarseApprox

Input: A ∈ Rn×d as a stream
Output: X ∈ Rd×d such that ∥A− AX∥2,1 ≤

√
log d log log d poly(k)∆∗

1: T ∈ Rpoly(k)×n ← Sparse Cauchy matrix // as in Thm. 137
2: C1 ∈ Rpoly(k)×n ← Sparse Cauchy matrix // as in Thm. 149
3: S1 ∈ Rlog d·poly(k/ϵ)×d ← Count Sketch composed with Gaussian // as in Thm. 146
4: R1 ∈ Rpoly(k/ϵ)×d ← Count Sketch composed with Gaussian // as in Thm. 146
5: G1 ∈ Rlog d·poly(k/ϵ)×log d·poly(k/ϵ) ← Gaussian matrices // as in Thm. 149
6: Compute TA online
7: Compute C1A online
8: UT ∈ Rlog d poly(k)×d ← BootstrapCoreset(A, TA, 1/2) // as in Alg. 7
9: X̂ ∈ Rpoly(k)×log d poly(k) ← argminX rank k

∥∥C1(A− ART
1XUT )ST

1 G1

∥∥
F
// as in Fact 150

10: return RT
1 X̂UT

Theorem 135 (Coarse Approximation in Polynomial Time). Given a matrix A ∈ Rn×d, Algorithm 5
is a one-pass streaming algorithm that with constant probability computes a rank k matrix X ∈ Rd×d

such that:
∥A− AX∥2,1 ≤

√
log d log log d · poly(k) · ∥A− AX∗∥2,1

that runs in space O (d log n poly(k)) and runs in time O(nnz(A) + (n+ d) poly(k).

Proof Sketch We show the following are true in subsequent sections:

1. The row span of TA is a (poly(k), log d ·poly(k))-coreset for A (Section 8.3.1) with probability
24/25.

2. BootstrapCoreset(A, TA, 1/2) is a (log d · poly(k), 3/2)-coreset with probability 99/100
(Section 8.3.2).

3. If:
X̂ = argmin

X rank k

∥∥C1AS
T
1 G1 − C1AR

T
1XUTST

1 G1

∥∥
F

then with probability 47/50:∥∥∥A− ART
1 X̂UT

∥∥∥
2,1
≤ poly(k/ϵ)

√
log d log log d ·∆∗

(Sections 8.3.3 and 8.3.4).

By a union bound, with probability 89/100 all the statements above hold, and the theorem is
proved.
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Algorithm 6 (1 + ϵ)-Approx

Input: A ∈ Rn×d as a stream
Output: X ∈ Rd×d such that ∥A− AX∥2,1 ≤ (1 + ϵ)∆∗

1: X̂ ∈ Rpoly(k)×log d poly(k) ← CoarseApprox(A) // as in Thm. 135
2: C2 ∈ Rpoly(k/ϵ)×n ← Sparse Cauchy matrix // as in Thm. 151
3: S2 ∈ Rlog d·poly(k/ϵ)×d ← Count Sketch composed with Gaussian // as in Thm. 146
4: R2 ∈ Rpoly(k/ϵ)×d ← Count Sketch composed with Gaussian // as in Thm. 146
5: G2 ∈ Rlog d·poly(k/ϵ)×log d·poly(k/ϵ) ← Gaussian matrices // as in Thm. 151
6: Compute C2A online
7: Let V ∈ Rlog dpoly(k)×k be such that X̂ = WV T is the rank-k decomposition of X̂
8: U ′T ∈ Rpoly(k/ϵ)

√
log d log log d×d ← BootstrapCoreset(A, V TUT , ϵ) // as in Alg. 7

9: X̂ ′ ∈ Rpoly(k/ϵ)×poly(k/ϵ)
√
log d log log d ← argminX rank k

∥∥C2(A− ART
2XU ′T )ST

2 G2

∥∥
med,1

//

as in Thm. 154
10: return RT

2 X̂
′U ′T

Theorem 136 ((1 + ϵ)-Approximation). Given a matrix A ∈ Rn×d, Algorithm 6 is a one-pass
streaming algorithm that with constant probability computes a rank k matrix X ∈ Rd×d such that:

∥A− AX∥2,1 ≤ (1 + ϵ)∥A− AX∗∥2,1
that runs in space O (d log(n) poly(k/ϵ)) and runs in time O(nnz(A)+(n+d) poly(k/ϵ)+exp(poly(k/ϵ))).

Proof Sketch We show the following are true in subsequent sections:

1. If V is such that X̂ = WV T , then V T is a (poly(k), poly(k)
√
log d log log d)-coreset with

probability 89/100 (Theorem 135).

2. BootstrapCoreset(A, V TUT , ϵ′) is a (poly(k/ϵ′)
√
log d log log d, (1+ϵ′))-coreset with prob-

ability 99/100 (Reusing Section 8.3.2).

3. If:
X̂ ′ ← argmin

X

∥∥C2(A− ART
2XU ′T )ST

2 G2

∥∥
med,1

then with probability 19/20:∥∥∥A− ART
2 X̂

′UT
∥∥∥
2,1
≤ (1 +O(ϵ′))∆∗

(Reusing Section 8.3.3 and Section 8.4.1).

4. A black box algorithm of [BPR94] computes X̂ ′ to within (1 +O(ϵ′)) (Section 8.4.2).

By a union bound, with probability 83/100 all the statements above hold. Setting ϵ′ appropriately
small as a function of ϵ, the theorem is proved.

We give further proofs and details of these theorems in subsequent sections. Refer to the
supplementary materials for all the details, and for details regarding the streaming implementation.
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8.3 Coarse Approximation

8.3.1 Initial Coreset Construction

We construct a (poly(k), O(log d))-coreset which will serve as our starting point.

Theorem 137. If T ∈ Rpoly(k)×n is a matrix of i.i.d. Cauchy random variables, then the row space
of TA contains a k dimensional subspace with corresponding projection matrix X ′ such that with
probability 24/25:

∥A− AX ′∥2,1 ≤ O(log d) min
X rank k

∥A− AX∥2,1

Proof. In order to deal with the awkward ∥·∥2,1 norm, we make use of a well known theorem due
to Dvoretzky to convert it into an entrywise 1-norm.

Fact 138 (Dvoretzky’s Theorem (Special Case), Section 3.3 of [Ind01]). There exists an appropri-

ately scaled Gaussian Matrix G ∈ Rd× d log(1/ϵ)

ϵ2 such that w.h.p. the following holds for all y ∈ Rd

simultaneously ∥∥yTG∥∥
1
∈ (1± ϵ)

∥∥yT∥∥
2

Applying this to all rows at once: ∥AX − A∥2,1 ∈ (1± ϵ)∥AXG− AG∥1,1.
We also use some existing machinery for input sparsity time ℓ1 subspace embeddings.

Fact 139 (Theorem 4 from [MM12]). For any given D ∈ Rs×t, let Π ∈ Rr×s be a random Sparse
Cauchy matrix with r = O(t5 log5 t) defined as follows: Π = SC where S ∈ Rr×s has each column
uniformly and independently chosen from the r standard basis vectors in Rr, and where C ∈ Rs×s is
a diagonal matrix with diagonal entries chosen independently from the standard Cauchy distribution.
Then with probability 99/100 simultaneously for all x ∈ Rt:

1

O(t2 log2 t)
· ∥Dx∥1 ≤ ∥ΠDx∥1 ≤ O(t log t) · ∥Dx∥1

Fact 140 (Lemma D.25 from [SWZ16]). If Π ∈ Rr×s is a Sparse Cauchy matrix as defined above,
and B ∈ Rs×t is a fixed matrix, then with probability at least 99/100:

∥ΠB∥1 ≤ O(log(rt))∥B∥1

Finally, we also need a couple of structural lemmas which we state here without proof:

Lemma 141 (Lemma 29 from [CW15a]). For a fixed (B,D) pair such that B ∈ Rr×s, D ∈ Rr×t, if
S ∈ Rs/ poly(ϵ)×r is a CountSketch Matrix composed with a matrix of i.i.d. Gaussians (for background
on such sketching matrices, we refer the reader to the monograph [Woo14]), then with probability
99/100 both of the properties below hold:

1. ∥S(BX −D)∥1,2 ≥ (1− ϵ)∥BX −D∥1,2 for any X.

2. If X∗ = argminX rank k∥BX −D∥1,2, then ∥S(BX∗ −D)∥1,2 ≤ (1 + ϵ)∥BX∗ −D∥1,2.
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Clarkson and Woodruff [CW15a] call such an S a lopsided embedding for (B,D) with respect
to the (1, 2)-norm.

Lemma 142 (Lemma 31 from [CW15a]). If R is a lopsided embedding for (AT
k , A

T ), then:

min
X rank k

∥∥ARTX − A
∥∥
2,1
≤ (1 + 3ϵ)∆∗

Let X ′ = argminX

∥∥TARTX − TA
∥∥
2,1
, R ∈ Rd×O(k) as in the lemma above and ϵ = O(1).

Define E1 to be the event that the condition in Dvoretzky’s theorem is satisfied, E2 to be the event
that Fact 139 holds for D = AR, E3 to be the event that Fact 140 holds for B = ARTX∗G− AG,
and E4 to be the event that R satisfies Lemma 142.

E1 holds w.h.p., E2, E3, E4 each separately hold with probability 99/100 (for a suitable choice
of K). By a union bound, they all hold simultaneously with probability at least 24/25. Conditioned
on this happening:∥∥ARTX ′ − A

∥∥
2,1
≤
∥∥ARTX∗ − A

∥∥
2,1

+
∥∥ART (X∗ −X ′)

∥∥
2,1

(1)

≤
∥∥ARTX∗ − A

∥∥
2,1

+ poly(k) ·
∥∥TART (X∗ −X ′)G

∥∥
1,1

(2)

≤ poly(k)
(∥∥ARTX∗ − A

∥∥
2,1

+
∥∥T (ARTX∗ − A)G

∥∥
1,1

+
∥∥T (ARTX ′ − A)G

∥∥
1,1

)
(3)

≤ poly(k)
(∥∥ARTX∗ − A

∥∥
2,1

+ 2
∥∥T (ARTX∗ − A)G

∥∥
1,1

)
(4)

≤ poly(k)
(∥∥ARTX∗ − A

∥∥
2,1

+O(log d)
∥∥(ARTX∗ − A)G

∥∥
1,1

)
(5)

≤ log d · poly(k)
∥∥ARTX∗ − A

∥∥
2,1

(6)

(1) and (3) hold by the triangle inequality, (2) since E1 and E2 hold, (4) by E1 again and since
X ′ is the minimizer of the expression

∥∥TARTX − TA
∥∥
2,1
, (5) since E3 holds, and (6) by E1 again.

X ′ lies in the rowspace of TA, since otherwise there is a rank-k projection Z onto the rows of
TA with ∥TAX ′Z − TAZ∥2,1 = ∥TAX ′Z − TA∥2,1 smaller than ∥TAX ′ − TA∥2,1. Since E4 holds,∥∥ARTX∗ − A

∥∥
2,1
≤ O(1)∆∗ and thus the rowspace of TA contains a log d · poly(k) approximation.

Thus if P is the rowspace of TA as in Theorem 137 then P is a (poly(k), log d · poly(k))-coreset
for A.

8.3.2 Bootstrapping a Coreset

Given a poor coreset for A, we now show how to leverage known results about residual sampling
from [DV07b] and [CW15a] to obtain a better coreset of slightly larger dimension.

Theorem 143. Given P , a (t,K)-coreset for A, Algorithm 7 returns a (t+K poly(k/ϵ), (1 + ϵ))
coreset for A.
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Algorithm 7 BootstrapCoreset

Input: A ∈ Rn×d, P ∈ Rt×d (t,K)-coreset, ϵ ∈ (0, 1)
Output: U ∈ R(t+K poly(k/ϵ))×d (t+K poly(k/ϵ), (1 + ϵ))-coresets

1: In parallel compute {HiA}O(K) poly(k/ϵ)
i=1 online // each Hi as in Lem. 145

2: Q← poly(k/ϵ)O(K) samples from P(A(Id− P )) // as in Lem. 144

3: U ← Orthonormal basis for RowSpan

([
P
Q

])
4: return U

Proof. Consider the following idealized noisy sampling process that samples rows of a matrix B.

Sample a row Bi of B with probability at least
∥Bi∥1
∥B∥1

and add a noise vector E with ∥E∥1 ≤ ν∥B∥1.
Supposing we had such a process P∗(B), we can prove the following lemma.

Lemma 144. If P is a (t,K)-coreset for A, and A′ is a noisy subset of rows of the residual
A(Id− P ) sampled according to P∗(A(Id− P )G), with G an appropriately scaled Gaussian matrix
as in Fact 138, then with probability 99/100, P + Span(A′) is an O(t+K poly(k/ϵ)) dimensional
subspace containing a k-dimensional subspace with corresponding projection matrix X ′ such that:

∥A− AX ′∥2,1 ≤ (1 + ϵ)∆∗

Proof. Our theorem is identical to Theorem 45 from [CW15a], which is in turn an adaptation of
Theorem 9 from [DV07b], except that our sampling procedure produces noisy samples instead of
actual rows of A(Id − P ). We highlight the difference between our proof and the originals, and
refer the reader to the sources for a full description.

Let Hℓ denote the span of the rows of P adjoined with ℓ samples from P∗(A(Id − P )). The
analysis considers k + 1 phases during the construction of Hℓ, where phase j is defined such that
there exists a subspace Xj with:

(i) the dimension of RowSpan(Xj) ∩Hℓ ≥ j.

(ii) and letting δ = ϵ/2k we have: ∥A(Id−Xj)∥2,1 ≤ (1 + δ)j minX rank k∥A− AX∥2,1
In other words, the cost of the solution Xj slowly gets worse with j, but Hℓ recovers more of it.
Note that in phase k, ∥A(Id−Xk)∥2,1 ≤ (1 + ϵ)minX rank k∥A− AX∥2,1, and furthermore Xk ⊆ Hℓ.

Let Yℓ denote the rank-k projection whose row space is that of Xj, but rotated about the
intersection RowSpan(Xj) ∩Hℓ such that it also contains the vector in Hℓ realizing the smallest
nonzero principle angle with Xj. Note that Yℓ satisfies condition (i) for some j′ > j, so it remains
to show that with high probability, with a small number of new samples, condition (ii) is also
satisfied. In particular, we show that if condition (ii) is violated, and thus if:

∥A(Id− Yℓ)∥2,1 > (1 + δ)∥A(Id−Xj)∥2,1
then with probability greater than δ/5K we sample a witness row Ai∗ with the property:∥∥∥Âi∗(Id− Yℓ)

∥∥∥
2
≥ (1 + δ/2)

∥∥∥Âi∗(Id−Xj)
∥∥∥
2
, (8.2)
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where Âℓ′∗ is defined below.
By the Angle Drop Lemma (Lemma 13 of [DV07b]), this witness implies that the smallest

nonzero principle angle between Xj and Hℓ (and so Yℓ) decreases. By the analysis on page 16 of
their paper, once the angle is small enough, Yℓ will satisfy (ii).
P∗ produces a row of A(Id− P ) plus some noise. Call this noisy sample Âℓ′∗ and call the noise

Eℓ′ . After sampling Âℓ′∗, our subspace contains the point Aℓ∗P +Âℓ′∗ = (Id−P )Aℓ′∗+PAℓ′∗+Eℓ′ =
Aℓ′∗ + Eℓ′ .

We condition on P∗ producing errors that satisfy ∥Eℓ′∥2 ≤ ν∥Aℓ′∗(Id− P )∥2, where ν =
δ/(40K).

Let W denote the set of witness rows, that is, set of all i that satisfy (8.2). We want to show
that ∑

i∈W

∥Ai∗(Id− P )∥2 ≥
δ

5K
∥A(Id− P )∥2,1 (8.3)

Suppose that (8.3) is false. The definitions of Xj, Yℓ and Hℓ imply that all elements of Hℓ are closer
to Yℓ than to Xj. Let X̃ℓ be a matrix projecting onto Hℓ.∥∥∥Âi∗(Id− Yℓ)

∥∥∥
2
≤
∥∥∥Âi∗(Id− X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗X̃ℓ(Id− Yℓ)

∥∥∥
2

≤
∥∥∥Âi∗(Id− X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗X̃ℓ(Id−Xj)

∥∥∥
2
≤ 2
∥∥∥Âi∗(Id− X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗X̃ℓ

∥∥∥
2

≤ 2
∥∥∥Âi∗(Id− P )

∥∥∥
2
+
∥∥∥Âi∗(Id−Xj)

∥∥∥
2

The first and third inequalities are the triangle inequality, the second is from distance property
above, and the last since P ∈ Hℓ. We bound i ∈ W using the bound above. For i /∈ W , by

definition
∥∥∥Âi∗(Id− Yℓ)

∥∥∥
2
≤ (1 + δ/2)

∥∥∥Âi∗(Id−Xj)
∥∥∥
2
. Combining both the bounds we have for

all i; ∥∥∥Âi∗(Id− Yℓ)
∥∥∥
2
≤ (1 + δ/2)

∥∥∥Âi∗(Id−Xj)
∥∥∥
2
+ [[i ∈ W ]]

∥∥∥Âi∗(Id− P )
∥∥∥
2

Summing over all i,∥∥∥Â(Id− Yℓ)
∥∥∥
2,1
≤ (1 + δ/2)

∥∥∥Â(Id−Xj)
∥∥∥
2,1

+ 2
∥∥∥ÂW∗(Id− P )

∥∥∥
2[

∥A(Id− Yℓ)∥2,1
− ∥E(Id− Yℓ)∥2,1

]
≤
[

(1 + δ/2)∥A(Id−Xj)∥2,1 + 2∥AW∗(Id− P )∥2,1
+ (1 + δ/2)∥E(Id−Xj)∥2,1 + 2∥E(Id− P )∥2,1

]
∥A(Id− Y ℓ)∥2,1 ≤ (1 +

δ

2
)∥A(Id−Xj)∥2,1 +

2δ

5K
K∥A(Id−Xj)∥2,1 + 4∥E∥2,1 (4)

∥A(Id− Yℓ)∥2,1 ≤ (1 + 9δ/2 + 4ν)∥A(Id−Xj)∥2,1 ≤ (1 + δ)∥A(Id−Xj)∥2,1

Which is a contradiction. (4) follows from the assumption that (8.3) is false. Note that this proof
goes through for any error matrix E satisfying ∥Ei∥ ≤ ν∥Ai∥ for all i. Also, as written in [CW15a],
the proof guarantees success with constant probability. We can repeat the sampling a constant
number of times, keep all samples, and guarantee success with probability 99/100.
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It remains to show such a process P∗ exists, which is nearly Lemma 17 from [SW11].

Lemma 145 (Lemma 17 from [SW11]). There exists an oblivious sketching matrix H ∈ Rd lognpoly( k
ν )×n

and a row sampling process P such that for a given matrix B ∈ Rn×d, P(B) samples the rows of
HB according to a distribution that has total variation distance at most 1/100 from the idealized
noisy sampling process P∗(B) above.

Proof. Consider the algorithms Sampler and Extract from Appendix C of [SW11]. First fix an
appropriate ℓ = O(log n), and sample η uniformly from the interval [1, 2].

Algorithm 8 Sampler

Input: B ∈ Rn×d

Output: HB ∈ Rd lognpoly( k
ν )×d

1: for level j ∈ [ℓ] do
2: Create hash tables H(j) with w = poly(kℓ

ν
) buckets and assign them independent hash

functions hj : [n]→ [w] (each bucket stores a d dimensional vector)
3: for hashtable H(j) do
4: Subsample a set Jj ⊂ [n] where each i ∈ [n] is included with probability pj = min

(
1, C

2j

)
where C = poly(k

ν
)

5: for v ∈ [w] do
6: for k ∈ [d] do

7: H
(j)
v =

∑
i∈Jj χ(hj(i) = v) ·Bi∗

8: end for
9: end for
10: end for
11: end forreturn {H(j)}j as a matrix in Rd logn poly( k

ν )×d

Algorithm 9 Extract

Input: HB ∈ Rd logn poly( k
ν )×d

Output: HB ∈ Rd lognpoly( k
ν )×d

1: F ← ∅
2: for level j ∈ [ℓ] do
3: for bucket v ∈ [w] do

4: if (1− ν) · η∥B∥1,1
2j
≤
∥∥∥H(j)

v

∥∥∥
1
≤ (1 + ν) · 2 · η∥B∥1,1

2j
then

5: return Hj
v with weight 1

pj

6: end if
7: end for
8: end for

Let Lj =
{
Bi∗ : ∥Bi∗∥1 ∈

[
η∥B∥1,1

2j
, 2 · η∥B∥1,1

2j

]}
be the j-th level set of row norms of B.
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By the proof of Lemma 17 in Appendix D of [SW11] (more precisely Claims 18-21), there is a
choice of constant C ′ = poly(kℓ

ν
) such that with probability 99/100 over the choice of η, all of the

following events hold simultaneously for all levels j.

(i) No row i subsampled in the set Jj has the property that ∥Bi∗∥1 ∈
[
(1− 2ν)

η∥B∥1,1
2j

,
η∥B∥1,1

2j

]
or ∥Bi∗∥1 ∈

[
(1− ν) · 2 · η∥B∥1,1

2j
, 2 · η∥B∥1,1

2j

]
(ii) Every row in

⋃
j′≤j+logC′ Lj′ is hashed to a different bucket in H(j).

(iii) The noise Nv,j in every bucket v of H(j) is small, formally:

∥Nv,j∥1 =

∥∥∥∥∥∥
∑
i∈[n]

χ(i ∈
⋃

j′>j+logC′

Jj′) · χ(hj(i) = v) ·Bi∗

∥∥∥∥∥∥
1

≤ ν ·
η∥B∥1,1

2j

(iv) No row in
⋃

j′>ℓBj′ is sampled.

If all the events above hold, the combination of Sampler and Extract exactly perform the
sampling process P∗, since every hash table H(j) samples the level set Lj uniformly with probability
proportional to the 1-norm of the heaviest element in Lj, sends these to distinct buckets, and then
adds small noise.

Combining the two lemmas in this section, it follows that RowSpan(P )+RowSpan(P(A(Id−P )))
is a (t + K poly(k/ϵ))-dimensional subspace containing a (1 + ϵ) approximation to the original
problem. Note that each sketch HA generates one sample, and thus we need K poly(k/ϵ) copies to
generate enough samples for the residual sampling.

8.3.3 Right Dimension Reduction

We show how to reduce the right dimension of our problem. This result is used in both Algorithm
5 and Algorithm 6.

Theorem 146. If U is a (t,K)-coreset, S ∈ Rlog d·poly(k/ϵ)×d is a CountSketch matrix composed
with a matrix of i.i.d. Gaussians, and R ∈ Rd×poly(k/ϵ) is a CountSketch matrix composed with a
Gaussian, then with probability 49/50, if X ′ = argminX

∥∥AST − ARTXUTST
∥∥
2,1

then:∥∥A− ARTX ′UT
∥∥
2,1
≤ (1 +O(ϵ)) min

X rank k

∥∥A− AXUT
∥∥
2,1

Proof. We need a couple lemmas from [CW15a].

Lemma 147 (Lemma 30 from [CW15a]). If S is a lopsided embedding for (B,D), then if X ′′ has the
property that ∥SBX ′′ − SD∥1,2 ≤ κminX∈C∥SBX − SD∥1,2 for some κ, then: ∥BX ′′ −D∥1,2 ≤
κ(1 + 3ϵ)minX∈C∥BX −D∥1,2.
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Lemma 148. If U ∈ Rd×t and R ∈ Rpoly(k/ϵ)×d is a CountSketch matrix composed with a matrix
of i.i.d. Gaussians, then with probability 99/100: minX rank k

∥∥A− ARTXUT
∥∥
2,1
≤ (1 + 3ϵ)∆∗.

Proof. Let V ∗ = argminV rank k

∥∥UV − AT
∥∥
1,2

and let V = V1V2 be its rank factorization. Applying

Lemmas 141 and 147, R is a lopsided embedding for (UV1, A
T ) with probability 99/100. If

Y = argminY rank k

∥∥R(UV1Y − AT )
∥∥
1,2

then:∥∥UV1Y − AT
∥∥
2,1
≤ (1 + 3ϵ)

∥∥UV ∗ − AT
∥∥
1,2
≤ (1 + 3ϵ)∆∗

But Y = (RUV1)
−RAT , and taking transposes this means that:

min
X rank k

∥∥A− ARTXUT
∥∥
2,1
≤
∥∥A− ART ((RUV1)

−)TV T
1 UT

∥∥
2,1
≤ (1 + 3ϵ)∆∗

From the last lemma, a solution to minX rank k

∥∥A− ARTXUT
∥∥
2,1

will yield a (1 + ϵ) · O(K)-

approximate solution to the original problem. Lemma 148 holds with probability 99/100. Applying
Lemma 141, with probability 99/100, an S ∈ Rd×log d poly(k) CountSketch composed with a Gaussian
is a lopsided embedding for (U,AT ). Union bounding over these events, and applying Lemma 147
with C as the set of matrices in RowSpan(RAT ) proves the claim with probability 49/50.

8.3.4 Left Dimension Reduction

We show how to reduce the left dimension of our problem. Together with results from Section 8.3.3,
this preserves the solution to X∗ to within a coarse

√
log d log log d · poly(k/ϵ) factor.

Theorem 149. If C ∈ Rpoly(k/ϵ)×n is a Sparse Cauchy matrix, and G ∈ Rpoly(k/ϵ)×poly(k/ϵ) is a
matrix of appropriately scaled i.i.d. Gaussians (as in Fact 138), and

X̂ = argmin
X rank k

∥∥CASTG− CARTXUTSTG
∥∥
F

then with probability 24/25:
∥∥∥AST − ART X̂UTST

∥∥∥
2,1
≤
√
log d log log d · poly(k/ϵ) ·∆∗

Proof. Define E1 to be the event that the condition in Dvoretzky’s theorem is satisfied, E2 to
be the event that Fact 139 holds for D = AR, and E3 to be the event that Fact 140 holds for
B = (AST − ARTX∗UTST )G.

E1 holds w.h.p., E2, E3 each separately hold with probability 99/100 (for a suitable choice of
K). By a union bound, they all hold simultaneously with probability at least 24/25. Conditioned
on this happening:
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∥∥∥AST − ART X̂UTST
∥∥∥
2,1
≤
∥∥AST − ARTX∗UTST

∥∥
2,1

+
∥∥∥AR(X∗ − X̂)UTST

∥∥∥
2,1

(1)

≤
∥∥AST − ARTX∗UTST

∥∥
2,1

+ poly(k/ϵ)
∥∥∥CAR(X∗ − X̂)UTSTG

∥∥∥
1,1

(2)

≤ poly(k/ϵ)

 ∥∥AST − ARTX∗UTST
∥∥
2,1

+
∥∥C(A− ARTX∗UT )STG

∥∥
1,1

+
∥∥∥C(A− ART X̂UT )STG

∥∥∥
1,1

 (3)

≤ poly(k/ϵ)

[ ∥∥AST − ARTX∗UTST
∥∥
2,1

+
∥∥C(AST − ARTX∗UTST )G

∥∥
1,1

+
√
log d

∥∥∥C(A− ART X̂UT )STG
∥∥∥
F

]
(4)

≤ poly(k/ϵ)
[∥∥AST − ARTX∗UTST

∥∥
2,1

+
√

log d
∥∥C(AST − ARTX∗UTST )G

∥∥
1,1

]
(5)

≤ poly(k/ϵ)

[ ∥∥AST − ARTX∗UTST
∥∥
2,1

+
√
log d log log d

∥∥(AST − ARTX∗UTST )G
∥∥
1,1

]
(6)

≤
√
log d log log d poly(k/ϵ)

∥∥AST − ARTX∗UTST
∥∥
2,1

(7)

(1) and (3) hold by triangle inequality, (2) since E1 and E2 hold, (4) comes from the relationship be-
tween the 1-norm and 2-norm, (5) since X̂ is the minimizer of the expression

∥∥C(A− CARTXUT )STG
∥∥
F

and p-norms decrease with p, (6) since E3 holds, and (7) by E1 again.

The rank constrained Frobenius norm minimization problem above has a closed form solution.

Fact 150. For a matrix M , let UMΣMV T
M be the SVD of M . Then:

argmin
X rank k

∥Y − ZXW∥F = Z−[UZU
T
Z Y VWV T

W ]kW
−

8.4 (1 + ϵ)-Approximation

8.4.1 Left Dimension Reduction

The following median based embedding allows us to reduce the left dimension of our problem.
Together with results from Section 8.3.3, this preserves the solution to X∗ to within a (1 +O(ϵ))
factor.

Theorem 151. If C ∈ Rpoly(k/ϵ)×n is a Sparse Cauchy matrix, and G ∈ Rpoly(k/ϵ)×poly(k/ϵ) is a
matrix of appropriately scaled i.i.d. Gaussians (as in Fact 138), and:

X̂ = argmin
X rank k

∥∥CASTG− CARTXUTSTG
∥∥
med,1

then with probability 99/100:∥∥ASTG− ARTX ′UTSTG
∥∥
1,1
≤ (1 + ϵ) min

X rank k

∥∥ASTG− AUXRTSTG
∥∥
1,1
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Proof. The following fact is known:

Fact 152 (Lemma F.1 from [Bac+16]). Let L be a t dimensional subspace of Rs. Let C ∈ Rm×s

be a matrix with m = O
(

1
ϵ2
t log t

ϵ

)
and i.i.d. standard Cauchy entries. With probability 99/100,

for all x ∈ L we have
(1− ϵ)∥x∥1 ≤ ∥Cx∥med ≤ (1 + ϵ)∥x∥1

The theorem statement is simply the lemma applied to L = ColSpan
(
[AST | ART ]

)
.

8.4.2 Solving Small Instances

Given problems of the form X̂ = argminX rank k∥Y − ZXW∥med,1, we leverage an algorithm for
checking the feasibility of a system of polynomial inequalities as a black box.

Lemma 153. [BPR94] Given a set K = {β1, · · · , βs} of polynomials of degree d in k variables
with coefficients in R, the problem of deciding whether there exist X1, · · ·Xk ∈ R for which
βi(X1, · · · , Xk) ≥ 0 for all i ∈ [s] can be solved deterministically with (sd)O(k) arithmetic operations
over R.

Theorem 154. Fix any ϵ ∈ (0, 1) and k ∈ [0,min(m1,m2)]. Let Y ∈ Rm′×m′′
, Z ∈ Rm′×m1, and

W ∈ Rm2×m′′
be any matrices. Let C ∈ Rpoly(m′/ϵ)×m′

be a matrix of i.i.d. Cauchy random variables,
and G ∈ Rm′′×poly(m′′/ϵ) be a matrix of scaled i.i.d. Gaussian random variables. Then conditioned
on C satisfying Theorem 152 for [Y | Z] and G satisfying the condition of Fact 138, a rank-k
projection matrix X can be found that minimizes ∥C(Y − ZXW )G∥med,1 up to a (1 + ϵ)-factor in

time poly(m′m′′/ϵ)O(mk+m′), where m = max(m1,m2).

Proof. We write X = PQ, where P is m1 × k and Q is k ×m2, to ensure that X is rank ≤ k.
Guess a permutation πj for each column j of C(ZXW − Y )G and define constraints enforcing

the permutation. Since the (i, j)-th entry of the matrix is
∑

k,ℓ(CZ)ikXkℓ(WG)ℓj − (CY G)ij these

constraints are of the form ((C(ZXW − Y )G)πj(i)j)
2 ≤ ((C(ZXW − Y )G)πj(i+1)j)

2. Then define
the median of the j-th column to be:

Mj =
(
|(C(ZXW − Y )G)πj(⌊m′′/2⌋)j|+ |(C(ZXW − Y )G)πj(⌈m′′/2⌉)j|

)
/2

Thus we have mk + poly(m′′/ϵ) variables in our polynomial inequality system, O(mk) variables
to describe P and Q, and poly(m′′/ϵ) variables to describe the column medians Mj. We have
poly(m′m′′/ϵ) constraints, each involving polynomials of O(1) degree. By Lemma 153, checking
the feasibility of this system takes time poly(m′m′′/ϵ)O(mk)+poly(m′′/ϵ).

We can minimize the objective
∑

j Mj using binary search. This requires a lower bound on the
objective value, which we can get by noting from Theorem 152 that:

min
X
∥CZXWG− CY G∥med,1 ≥ (1− ϵ)min

X
∥ZXW − Y ∥1,1 ≥ (1− ϵ)min

X
∥ZXW − Y ∥2,1

By the proof of Theorem 51 in [CW15a], the right hand side is lower bounded by 1
poly(d)

(σk+1(Y ))1/2

(where σk+1(Y ) is the k+1st singular value of Y ), which itself is lower bounded by
(

1
exp(poly(m′m′′))

)k
.

Thus we can do binary search in poly(m′m′′/ϵ) steps.
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Finally, since there are m′′ ·m′! possible permutation guesses, the entire procedure takes time
poly(m′m′′/ϵ)O(mk)+poly(m′m′′/ϵ).

We remark that if we set m = log log d
√
log d and m′,m′′ = poly(k/ϵ), as we do in our

algorithm, we can write our overall runtime as O(nnz(A) + (n + d) poly(k/ϵ) + exp(poly(k/ϵ))).
If poly(k/ϵ) ≤

√
log d/ log log d, then this final step is captured in the (n + d) poly(k/ϵ) term.

Otherwise this step is captured in the exp(poly(k/ϵ)) term.

8.5 Experiments

In this section we empirically demonstrate the effectiveness of Algorithm 5 compared to the
truncated SVD. We experiment on both real and synthetic data sets. Since the algorithm is
randomized, we run it 20 times and take the best performing run.

For the real data, we use two data sets. In Figure 8.1a we run on the FIDAP data set1, which
is a 27 × 27 matrix with 279 real asymmetric non-zero entries. In Figure 8.1b we use the KOS
blog entries matrix2, which represents word frequencies in blogs, and is 3430× 6906 with 353160
non-zero entries.

For the synthetic data, we use four example matrices all of dimension 100× 10. In Figure 8.1c,
we use a random ±1 matrix. In Figure 8.1d we use a random sparse matrix generated as follows:
set each entry to 0 with probability 0.95, and otherwise assign it a uniformly random entry from
[0, 1]. In Figure 8.1e we use a Rank-3 matrix with additional large outlier noise. First we sample U
random 100 × 3 matrix and V random 3 × 10 matrix. Then we create a random sparse matrix
W as before but with probability 0.99 and scaled by a factor of 100. We use UV +W . Finally in
Figure 8.1f we create a simple Rank-2 matrix with a large outlier. The first row is 100 followed by
all zeros. All subsequent rows are 0 followed by all ones.

While the approximation guarantee of Algorithm 5 is weak, we find that it performs well against
the SVD baseline in practice on several of our examples, namely when the data has large outliers
rows. The final example in particular serves as a good demonstration of the robustness of the
(2,1)-norm to outliers in comparison to the Frobenius norm. When k = 1, the truncated SVD
which is the Frobenius norm minimizer recovers the first row of large magnitude, whereas our
algorithm recovers the subsequent rows. Note that both our algorithm and the SVD recover the
matrix exactly when k is greater than or equal to rank. For example this means that the matrix in
Figure 8.1e has rank 8.

1https://math.nist.gov/MatrixMarket/data/SPARSKIT/fidap/fidap005.html
2https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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(a) Fidap Matrix (b) Kos Matrix

(c) Random ±1 Matrix (d) Random Sparse Matrix

(e) Random Rank-3 Matrix Plus Large Outliers (f) Large Outlier Rank-2 Matrix

Figure 8.1: Comparison of Algorithm 5 on real and synthetic examples.
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Appendix A

Properties of gadgets

A.1 Quantitative Bounds for Properties of Gadgets

This section will provide quantitative bounds to some properties of (ε,D)-copies of a gadget T . We
will give bounds on ε and D in order to satisfy Observation 9, and a slightly stronger version of it.
First, we set up some notation. Given a sets S ⊆ V ⊆ R2 and an Hamiltonian path P on V , we
say that S is connected to V \ S through a pair of edges e1, e2 in P if e1, e2 ∈ δ(S, V \ S), and e1
and e2 are connected in P through a path completely contained in S.

Lemma 155. Let S be a gadget with diameter d, and let P be an optimal Hamiltonian path through
V . Given ε > 0 and θ > 0, there is D ≥ D(ε, θ, d) such that if S1 is any (ε,D)-copy of the gadget
S such that there are two or more pairs of edges joining S1 to V \ Sε,D in P then the angle between
any connecting pair of edges is at least π − θ. In particular,

D(ε, θ, d) =
6d+ 12ε

1− cos θ
(A.1)

suffices.

Proof. Suppose e1, e2 is a pair of edges connecting S1 to V \ S1. Let ei = {pi, xi} where xi ∈ S1,
pi /∈ S1 for i = 1, 2. First, we make a precise definition of the angle between these two edges using
the cosine formula.

Definition 156. The angle between −−→x1p1 and −−→x2p2 denoted by ∡(−−→x1p1,
−−→x2p2) is the angle ϕ ∈ [0, π]

such that

cos(ϕ) =
⟨x1p1, x2p2⟩
∥x1p1∥ · ∥x2p2∥

Let ϕ = ∡(−−→x1p1,
−−→x2p2). Let f1, f2 be any other pair of edges connecting S1 to V \ S1. Let

fi = {qi, yi} where yi ∈ S1, qi /∈ S1 for i = 1, 2. Since P is optimal Hamiltonian path, short-cutting
p1, p2 must give a longer path. To be precise, the path Q obtained by deleting edges e1, e2, y1z
where z ̸= q1, and adding edges p1p2, y1x1, x2z, is longer than the path P . In particular, we must
have

ℓ(p1p2) + 2d+ 4ε ≥ ℓ(p1x1) + ℓ(p2x2) (A.2)
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Let p′2 be a point such that x1y1p2p
′
2 is a parallelogram. Therefore, ℓ(p1p2) ≤ ℓ(p1p

′
2) + d + 2ε.

Hence, it must hold that
ℓ(p1p

′
2) + 3d+ 6ε ≥ ℓ(p1x1) + ℓ(p2x2) (A.3)

Let a = ℓ(p1x1), b = ℓ(p2x2), c = ℓ(p1p
′
2). Then by definition of ϕ,

c2 = a2 + b2 − 2ab cosϕ

Using this, we get

ℓ(p1x1) + ℓ(p2x2)− ℓ(p1p
′
2) =

(a+ b)2 − c2

a+ b+ c

≥ (a+ b)2 − c2

2(a+ b)
Since a+ b ≤ c

=
2ab(1 + cosϕ)

2(a+ b)
=

ab(1− cosϕ)

a+ b

Since S1 is an (ε,D) copy of S, a, b ≥ D. Under this condition ab
a+b

is minimized at a = b = D,

implying that ℓ(p1x1) + ℓ(p2x2)− ℓ(p1p
′
2) ≥

D(1+cosϕ)
2

. Hence, for Equation (A.3) to hold, we must
have

3d+ 6ε ≥ D(1 + cosϕ)

2

In particular, if

D ≥ 6d+ 12ε

1− cos θ

then 1 + cosϕ ≤ 1 − cos θ =⇒ ϕ ≥ π − θ, which completes the proof giving us the bound in
Equation (A.1).

Lemma 157. Let S be a gadget with diameter d, and let P be an optimal Hamiltonian path through
V . Given ε > 0 and π

4
≥ θ > 0, there is D ≥ D(ε, θ, d) such that if S1 is any (ε,D)-copy of the

gadget S then there are at most 2 pairs of edges joining S1 to V \ S1. Further, all the four edges
joining S1 to V \ S1 make an acute angle of at most 2θ with each other. In particular,

D(ε, θ, d) =
6d+ 12ε

1− cos θ
(A.4)

suffices.

Proof. Let e1, e2 be a pair of edges joining S1 to V \S1 such that ei = {xi, pi} where xi ∈ S1, pi /∈ S1

for i = 1, 2. Let f1, f2 be a pair of edges joining S1 to V \ S1 such that fi = {yi, qi} where
yi ∈ S1, qi /∈ S1 for i = 1, 2. Further, let p2 and q1 be through portion of P that does not contain
x2.

Since P is an optimal Hamiltonian path, the Hamiltonian path Q obtained by deleting edges
p1x1, q1y1 and adding edges x1y1, p1q1, must by as long. Therefore, we must have

d ≥ ℓ(p1x1) + ℓ(q1y1)− ℓ(x1y1)
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By the computations in Lemma 155, for D ≥ 6d+12ε
1−cos θ

, this hold only if ∡(−−→x1p1,
−−→y1q1) ≥ π − θ. This

observation combined with Lemma 155 implies that all four edges e1, e2, f1, f2 make an acute angle
of at most 2θ with each other (This holds even if they are not coplanar!).

Now, assume that there is another pair of edges g1, g2 joining S1 to V \S1, such that gi = {zi, ri}
where zi ∈ S1, ri /∈ S1 for i = 1, 2 and q2 and r1 are connected through portion of P that does not
contain y2. Then we have

∡(−−→x1p1,
−−→y1q1) ≥ π − θ

∡(−−→y1q1,−−→r1z1) ≥ π − θ

∡(−−→x1p1,
−−→r1z1) ≥ π − θ

This leads to contradiction, since first two equations imply −−−→x1, p1 and −−→r1z1 are on the same side of
hyperplane ⟨v, q1 − y1⟩ = 0. But, the third equation implies otherwise!

A.2 Properties of Hamiltonian Paths in the Gadgets

In this section, we will provide proofs of various geometrical lemma regarding properties of the
gadgets in this section. These include proofs of Lemmas 29, 31 and 33.

A.2.1 Proof of Lemma 29

Let us begin by recall definition of Π(t, h, w) and ΠS = Π(S, t, h, w) (Definitions 28 and 30):

Definition 28. We define the gadget Π(t, h, w) for t ∈ Z≥0 and h,w ∈ R≥0, given by points
π1 =

(
−w

2
, 0
)
, π2 =

(
w
2
, 0
)
, π3 =

(
−w

2
, h
)
, π4 =

(
w
2
, h
)
and points v1, . . . , vt which are evenly spaced

along (0, 0), (0, h), with v1 = (0, 0) and vt = (0, h). We will refer to sets {π1π2} and {π3π4} as
shorter sides of the gadget, and sets {π1π3} and {π2π4} as longer sides of the gadget.

Definition 30. We construct the gadget Π(S(k), t, h, w) by replacing points in C by copies of S(k)
centered at each point πi ∈ C. We let Si denote the copy centered at πi.

Now we are ready to provide proofs of lemmas in Section 2.2.3.

Lemma 29. Let p, q be two points on the opposite sides of the horizontal line y = h
2
such that

dist({x, y},Π(t, h, w)) ≥ D.

Let P be a shortest Hamiltonian path from p to q in Π(t, h, w)∪ {p, q}. Suppose all of the following
inequalities hold:

D ≥ h2+w2

4w
h ≥ 2w t ≥ 16h

w

Then for at least two i ∈ 1, 2, 3, 4 we have that neither neighbor v1i , v
2
i of πi on P is not in {p, q}

and moreover, v1i , v
2
i are two points in {v1, . . . , vt} closest to πi.

Proof. We begin with a few observations:
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Observation 158. If P ′ = avi1 . . . vikπi is a contiguous segment in P , then either i1 < . . . < ik or
ik < . . . < i1.

Suppose not. Let j1, . . . , jk be a sorting of i1, . . . , ik in increasing order. Then j1 and jk appear
somewhere in P ′. Suppose j1 appears before jk. For notational convenience, let ℓ(a1 . . . aj) denote
the length of the path a1, . . . aj.

ℓ(avi1 . . . vikπi) ≥ ℓ(avi1) + ℓ(vi1vj1) + ℓ(vj1vjk) + ℓ(vjkvik) + ℓ(vikπi)

≥ ℓ(avj1) + ℓ(vj1vjk) + ℓ(vjkπi) Triangle Inequality

≥ ℓ(avj1 . . . vjkπi)

Similarly, in the case when jk appears before j1, we get

ℓ(avi1 . . . vikπi) ≥ ℓ(avjk . . . vj1πi)

Observation 159. If P ′ = avi1 . . . vikb, then we can assume that i1 . . . ik is a continuous subset of
[t].

First, we can by Observation 158 assume i1, . . . , ik are sorted either in increasing order or decreasing
order. Without loss of generality, let i1 < ik. Further, let p be an index such that i1 < p < ik
that is not contained in the set {i1, . . . , ik}. Then we can insert vp into vi1 . . . vik without changing
the total length of the portion P ′. On the other hand, shortcut through vp in P whenever vp was
present may decrease the total length. Thus, this replacement can only get us a shorter path.
Using the two observations, we can assume that the shortest Hamiltonian path P looks like this:
pvi1vj1c1vi2vj2c2 . . . c4vi5vj5q Where by vi1vj1 we mean the path containing all the vertices between
vi1 and vj1 . Let C = {π1, π2, π3, π4} denote the set of four corners.

Observation 160. Let p such that dist(p,Π(t, h, w)) ≥ D, and let vi, vj be any points in {v1, . . . , vt}.
Then if D ≥ h2+w2

4w
and h ≥ 2w then

ℓ(pvi) + ℓ(vjc) ≥ dist(p, C) + w

4
(A.5)

for c ∈ {π1, π2, π3, π4}.

Suppose p = (x1, y1) ∈ R2. We will prove the result by working on different cases based on
(x1, y1).

Case 161. y1 ≥ h: Without loss of generality, assume that x1 ≥ 0. Then ℓ(pvi) ≥ ℓ(pvt) and
ℓ(vjc) ≥ w

2
= ℓ(vtπ3). Therefore, by triangle inequality,

ℓ(pvi) + ℓ(vjc) ≥ ℓ(pvt) + ℓ(vtπ3) =
w

2
+ ℓ(pvt)

If ℓ(pvt) ≥ ℓ(pπ3), we get the result in this case. Therefore, we can assume that x ≤ w
4
. Since

ℓ(pvt) ≥ (y1 − h), we it suffices to show that(
ȳ1 +

w

2
− w

4

)2
≥ dist(p, C)2 = ȳ21 +

(
x− w

2

)2
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where ȳ1 = y1 − h. Since 0 ≤ x1 ≤ w
4
, it suffices to show that(

ȳ1 +
w

4

)2
≥ ȳ21 +

w2

4

This is satisfied when y′ ≥ 3w
8
. Since dist(p,Π(t, h, w)) ≥ ȳ1, this holds when D ≥ h2+w2

4w
and

h ≥ 2w.

Case 162. y1 ≤ 0: This case holds due to computations similar to Case 161.

Case 163. 0 ≤ y1 ≤ h and x1 > 0: In this case ℓ(xvi) ≥ x1 and ℓ(vjc) ≥ w
2
, therefore, Equation (A.5)

holds if and only if(
x1 +

w

4

)2
≥
(
x1 −

w

2

)2
+ y21 or

(
x1 +

w

4

)2
≥
(
x1 −

w

2

)2
+ (y1 − h)2

We will look at the region where a stronger condition holds, namely

x2
1 ≥

(
x1 −

w

2

)2
+ y21 or x2

1 ≥
(
x1 −

w

2

)2
+ (y1 − h)2

These constraints define region bounded by parabolas, and point of intersection of these two
parabolas is the point furthest away from Π(t, h, w) where both the conditions fail. The point of

intersection of the parabolas is given by p =
(

h2+w2

4w
, h
2

)
. Therefore, Equation (A.5) holds for all

points p satisfying x1 ≥ h2+w2

4w
. Since all points outside both the parabolas satisfy x1 ≥ dist(p, C),

result holds for D = h2+w2

4w
, since

Case 164. 0 ≤ y1 ≤ h and x1 < 0: Following the same computations as in Case 163, we get the
exact same condition on D.

Now we are ready to prove structure of P , but first we need one definition.

Definition 165. Consider any Hamiltonian path P that looks like pvi1vj1c1vi2vj2c2 . . . c4vi5vj5q.
For a subpath p′vivjq

′ of P , where p′, q′ ∈ {p, q, c1, c2, c3, c4}, we define d(p′q′) as follows:
• d(p′q′) = ℓ(p′vi) + ℓ(q′vj) if vivj ̸= ∅
• d(p′q′) = ℓ(p′q′) if vivj = ∅

Observation 160 implies that d(p, c1) ≥ dist(p, C). Further, for 1 ≤ a ≤ 3, we have d(cα, cα+1) ≥
min(h,w) = w, since if viα+1vjα+1 ̸= ∅, ℓ(cαviα+1) + ℓ(vjα+1cα+1) ≥ w

2
+ w

2
= w. There for we have

the lower bound on length of any optimal Hamiltonian path P from p to q:

d(p, c1)+d(c1, c2)+d(c2, c3)+d(c3, c4)+d(c4, q)+
5∑

i=1

l(vi1vj1) ≥ dist(p, C)+dist(q, C)+3w+h

(
1− 4

t

)
Note that since p, q are on different sides of line y = h

2
, the nearest corners from p, q respectively

are different and are not on the same short side of the gadget. Therefore, we can construct a
Hamiltonian path Q such that

ℓ(Q) ≤ dist(p, C) + dist(q, C) + 3w + h
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In the path P , if the path c1c2c3c4 contains two longer sides of the gadget, then we have

ℓ(P ) ≥ dist(p, C) + dist(q, C) + w + 2h

which is longer that Q if h ≥ 2w. Observation 160 further implies that if vi1vj1 ̸= ∅, then

ℓ(P ) ≥ dist(p, C) + dist(q, C) + 3w +
w

4
+ h− 4h

t

Therefore, when w
4
≥ 4h

t
or equivalently t ≥ 16h

w
, vi1vj1 = ∅ and vi5vj5 = ∅. Thus, the shortest

Hamiltonian path P , is determined by choice of viαvjα for α = 2, 3, 4. Suppose without loss of
generality that c1c2 is the shorter side of the gadget given by y = 0. Then the values of iα, jα that
minimize d(c1c2) + d(c2c3) + d(c3c4) are given by i2 = j2 = 0, i3 = 1, j3 = t− 1, i4 = j4 = t. This
completely describes the shortest Hamiltonian path P , and both points c2, c3 satisfy the condition
in the lemma, completing the proof.

A.2.2 Proof of Lemma 31

Lemma 31. Let p, q be two points on the opposite sides of the line y = h
2
such that

dist({p, q},Π(t, h, w)) ≥ D.

Let P be a shortest Hamiltonian path from p to q in Π(S(k), t, h, w) ∪ {p, q}. Suppose all of the
following inequalities hold:

D ≥ h2+w2

4w
h ≥ 2w w ≥ 100 t ≥ 2h

h

t
≤ 4π

k

Then there is a Hamiltonian path Q from p to q in Π(S(k), t, h, w)∪{p, q} such that Q visits each Si

at most once, ℓ(Q) ≤ ℓ(P ) +O(1/k) and for at least two i ∈ 1, 2, 3, 4 we have that neither neighbor
v1i , v

2
i of Si on Q is not in {p, q} and moreover, v1i , v

2
i are two points in {v1, . . . , vt} closest to Si.

Proof. Let πi denote the center of Si. Let S =
⋃4

i=1 Si and C = {π1, . . . , π4}. Note that Observa-

tion 160 holds with when D ≥ h2+w2

4w
with

ℓ(pvi) + dist(vjS) ≥ dist(pS) +
w

4
− 8

Since ℓ(pvi) + ℓ(vjc) ≥ ℓ(pc) + w
4
for center c of the gadget S and dist vjS ≥ ℓ(vjc) − 4 and

ℓ(pc) ≥ dist(pS)− 4. Further, we can extend the path that we obtain in the proof of the previous
lemma by including an Hamiltonian path through Si when the path is supposed to visit πi to get a
Hamiltonian path P1 from p to q with length at most

ℓ(P1) ≤ dist(p,S) + dist(q,S) + 3(w − 8) + h+ 4(10π + 8) + 16 (A.6)

since length of tour in each gadget is 10π + 8, actual distance between two closest gadgets is
w − 8, and since we must enter and exit next in adjacent vertices to extend the tours as defined in
Section 2.2.2, we pay an additional factor of 8. Now, we extend Definition 165 to sets:
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Definition 166. Given a Hamiltonian path P in {p, q}∪Π(S(k), t, h, w) from p to q, which can be
represented as pvi1vj1T1 . . . viuvjuTuviu+1vju+1q where for each i, Ti is a path such that Ti ⊆ Sj for
some j ∈ {1, . . . , 4}. For any two sets R1, R2 ∈ {{p}, {q}, T1, . . . , Tu}, such that there is a subpath
p′vivjq

′ in P , we define d(R1, R2) as follows:
• d(R1R2) = dist(R1vi) + dist(R2vj) if vivj ̸= ∅
• d(R1R2) = dist(R1R2) if vivj = ∅

Observation 167. There is an absolute constant C such that when k ≥ C, then P visits each Si

exactly once.

We can write P as pvi1vj1T1 . . . viuvjuTuviu+1vju+1q, where Ti is a path such that Ti ⊆ Sj

for some j ∈ {1, . . . , 4}. Then we have d(Tα, Tα+1) ≥ w − 8 and d({p}, T1) ≥ dist(p,S) and
({q}, Tu) ≥ dist(q,S). Note that each point in Si must still be connected to some vertex, and sum
of the distances between each vertex and it’s nearest neighbor is 40π. This gives the lower bound:

ℓ(P ) ≥ dist(x, C) + dist(y, C) + (u− 1)(w − 8) + h+ 4

(
10π + 8−O

(
1

k

))
−O

(u
k

)
(A.7)

The additive correction O
(
u
k

)
is to account for double counting. All the vertices in S that are

connected to something outside are counted twice, once in 40π and once in (u− 1)(w− 8). We must
subtract their contribution in the 40π term, which is at most 4π

k
for each vertex. Since number of

these connecting vertices is at most 2u, we get the additive correction factor, with 8π being the
constant hidden in O-notation. Observe that Since P is a shortest Hamiltonian path, it is shorter
than P1, and hence we must have

(u− 4)

(
w − 8− 8π

k

)
− 32π

k
− 16 ≤ 0

It follows that u ≤ 4 if w ≥ 100 for k ≥ 16π. This finishes the proof of Observation 167.
Therefore, P looks like pvi1vj1T1 . . . vi4vj4T4vi5vj5q. If vi1vj1 ̸= ∅ then Observation 160 gives a

better lower bound on ℓ(P ). In particular, it increases the lower bound in Equation (A.7) by w−8
4
.

Comparing this lower bound on ℓ(P ) with upper bound on ℓ(P1) given in Equation (A.6), following
must hold

w − 8

4
− 16−O

(
1

k

)
− 4h

t
≤ 0

This fails to hold when w ≥ 100 and t ≥ 2h for large enough k. Hence, we can conclude that
vi1vj1 = vi5vj5 = ∅. Hence, if h

t
≈ 4π

k
, then we can change P to Q by replacing tour inside T2 and

T3 by the Hamiltonian path described in Section 2.2.2, and connecting it to it’s nearest neighbors
among v1, . . . , vt, which are either {v1, v2} or {vt−1, vt} by choice of t. Note that this replacement
strictly reduces the total cost outside the gadget, and is optimal inside the gadget up to an additive
factor of O(1/k). Therefore, we get the path Q such that

ℓ(Q) ≤ ℓ(P ) +O

(
1

k

)
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A.2.3 Proof of Lemma 33

Lemma 33. Let ε > 0 be positive real. Then there exists constants D1, D2 ≥ 0 such that if P is an
optimal Hamiltonian tour over V , and if ∆1 is any (ε,D2) copy of ∆(D1,ΠS(k)), then there exists
an i ∈ {1, 2, 3} such that P visits Πi exactly once, where Π1,Π2,Π3 are (ε,D1)-copies of ΠS(k)
contained in ∆1, with centers C1, C2, C3 respectively. Further if p, q are neighbors of Ti in P , then

p, q lie on the opposite side of
←→
OCi, where O is the center of ∆1. In particular, the values

D1 =
2000

1− cos π
10

and D2 =
30000(

1− cos π
10

)2 (2.13)

suffice.

Proof. Since we choose ΠS(k) = Π(S(k), 200k
4π

, 200, 100), the diameter of ΠS(k) is at most 300. Let

D1 =
2000

1− cos π
10

be chosen to satisfy conditions of Lemmas 155 and 157 for ΠS(k) and θ = π
10
. Then ∆(D1,ΠS(k))

has diameter at most 5000
1−cos(π/10)

. Let

D2 =
30000(

1− cos π
10

)2
be chosen to satisfy conditions of Lemmas 155 and 157 for ∆(D1,ΠS(k)) and θ = π

10
. It follows that

∆1 and Πi for i = 1, 2, 3 can be visited by P at most twice, and if they are visited by P exactly
twice, then all the four edges exiting the corresponding set are nearly parallel. We will say that
P connects two sets X, Y ⊆ V if and only if P contains an edge going from X to Y . Now, we do
cases based on how many times these sets are visited.

Case 168. Suppose that there is Πi such that P visits Πi twice. Without loss of generality, we will
assume that P visits Π1 twice. Let e1, e2 and f1, f2 be two pairs of edges connecting Π1 to V \ Π1.
If g1 connects Π1 to Π2, and g2 connects Π1 to Π3, where g1, g2 ∈ {e1, e2, f1, f2}, then g1 and g2
have an acute angle of at most π

3
between them. Since π

3
≥ π

5
, this contradicts Lemma 157. Hence,

P connects Π1 to exactly one of Π2,Π3.

Case 168.1. If Π1 is connected to neither Π2,Π3, then P visits ∆1 at least 3 times, twice in Π1,
and once in Π2 ∪ Π3, which is a contradiction to Lemma 157. Without loss of generality, let Π1 be
connected to Π2. Note that if Π2 is not connected to Π3, then P visits ∆1 at least thrice, twice in
Π1 ∪ Π2, and at least once in Π3.

Case 168.2. If P visits Π2 twice, then Π2 cannot be connected to Π3, since it is already connected
to Π1, which is a contradiction.

Case 168.3. If P visits Π2 exactly once, then P must connect Π2 to both Π1,Π3, and since Π1

and Π3 are on opposite sides of
←−→
OC2, i = 2 satisfies all the conditions of the lemma.
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Case 169. Suppose that each of Π1,Π2,Π3 is visited exactly once. Now, we have two cases based
on how many times ∆1 is visited.

Case 169.1. If ∆1 is visited exactly once, then P must visit Π1,Π2,Π3 in some order, covering the
whole set. Suppose this order is Πj1Πj2Πj3 . Then i = j2 satisfies all the conditions of lemma, since

Πj1 and Πj3 are on opposite side of
←−→
OCj2 .

Case 169.2. If ∆1 is visited twice, then let P intersect ∆1 in two contiguous subpaths, say Q1, Q2.
Without loss of generality, suppose that Π1 ⊆ Q1 and Π2,Π3 ⊆ Q2. Let e1, e2 be pair of edges
that connects Π1 to V \ Π1. Let ei = {xi, pi} where pi /∈ Π1, and xi ∈ Π1. By Lemma 155,

∡(−−→x1p1,
−−→x2p2) ∈ π ± π

10
. If possible, let p1, p2 be on the same side of

←−→
OC1. Further, without loss of

generality, let ∡(
−−→
C1O,

−−→
C1p1),∡(

−−→
C1O,

−−→
C1p2) ∈ [0, π]. Let θ1 = ∡(

−−→
C1O,−−→x1p1) and θ2 = ∡(

−−→
C1O,−−→x2p2).

Since p1, p2 are on the same side of
←−→
OC1, we must have

d+D2 sin θ1 ≥ 0 d+D2 sin θ2 ≥ 0

This implies that sin θi ≥ − d
D2

. Since |θ1 − θ2| ∈ π ± π
10
, it implies that

θi ∈
[
−π

9
,
π

9

]
∪
[
π − π

9
, π +

π

9

]
In fact, each of the two intervals contains exactly one θi. Suppose θ1 ∈

[
−π

9
, π
9

]
. Observe that for

any y2 ∈ Π2, ∡(
−−→
C10,

−−→x1y2) ≤ −π
7
and for any y3 ∈ Π3, ∡(

−−→
C10,

−−→x1y3) ≥ π
7
. It follows that for any

y2 ∈ Π2 and y3 ∈ Π3, p1 is contained in ∠y2x1y3. Since ℓ(x1y2), ℓ(x1y3) ≤ D1 + 4d ≤ D2 ≤ ℓ(x1p2),
the edge e1 must intersect edge y2y3. Since Q2 connects Π2,Π3, this implies that e1 intersects and
edge in Q2, implying that P is not planar! But since P is the optimal Hamiltonian path, it must
by planar, contradiction!

This covers all the cases, completing the proof of lemma.

A.2.4 Proof of Lemma 22

Here we provide some more details for the proof of Lemma 22 for sake of completeness.

Lemma 170. Consider the gadget S = S(k) defined in Definition 7 for large enough k. Let p, q ∈ S
be two points on the outer circle. Then the shortest Hamiltonian path from p to q completely
covering S has length at least 10π + 8− 12π

k
.

Proof. For this proof, we will approximate smaller segments along the circles by the arcs, the
difference between them is O(k−3), and since there are O(k) of them, all the computations holds
up to O(k2) error.

Let O1 denote the set of point on the inner circle of S and let O2 denote the set of points on the
inner circle. Let G = {g1 = (−2, 0), g2 = (2, 0)} be the set of gap vertices. Let P be the shortest
Hamiltonian path from p to q in S. To each vertex in S, we associate the length of the edge leaving
that vertex in P as the cost. Cost of each vertex in O1 is at least 2π

k
and cost of each vertex in O2

is at least 4π
k
. Consider the path P1 obtained by deleting G from P . Then the path P must leave
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and enter O2 at least once, and the number of edges in P that contain exactly one vertex in O2 is
even. Let 2t denote number of such edges. Thus, ever such edge costs at least 3− 4π

k
additional

length to the path P1. This gives us the lower bound:

ℓ(P ) ≥ ℓ(P1) ≥ 10π + 2t

(
3− 4π

k

)
For k ≥ 4π

3
, this is an increasing function in t. Further, for k ≥ 4π, value of this function at t = 2

is at least 10π + 8. Therefore all the paths with t ≥ 2 satisfy the required length condition.
Suppose that t = 1, but the original path P leaves O2 more than once. Then, there must be a

gap vertex that has both of it’s neighbors in O2. This implies ℓ(P ) ≥ ℓ(P1) + 4− 4π
k
. Since t = 1,

we have ℓ(P1) ≥ 10π + 6− 8π
k
, we get the bound

ℓ(P ) ≥ 10π + 8− 12π

k

which satisfies the requirement of the theorem. Similarly, if there is a vertex g ∈ G such that both
neighbors of G lie in O1, then this implies ℓ(P ) ≥ ℓ(P1) + 2− 4π

k
. This leads to exactly the same

length bound as above.
Hence, we are left with the case with path P leaves and enters O2 exactly once and both g1 and

g2 have exactly one neighbor in O1 and one in O2. Suppose p1 and q1 are neighbors of g1 and g2
respectively in O1. We claim that any Hamiltonian path Q from p1 to q1 in O1 must have length at
least dist(p1, q1) + 2π − 4π

k
.

Note that line ←→p1q1 divides O1 in two parts, say H1 and H2. For sake of notational convenience,
we will include p1, q1 in both H1 and H2. Let Q be denoted by p1 = v0, . . . , vt = q1. For each i,
define αi to be the point in H1 that is furthest away from p1 and βi to be the point in H2 that is
furthest away from p1. We claim that following holds for each i:

1. vi either equals αi or βi.
2. vi+1 is neighbor of either αi or βi.

We will prove this by induction. First observe that (1) holds for i = 0, since v0 = p1. Assume the
strong induction hypothesis that both (1), (2) holds for all j < i, and (1) holds for i. We will show
that this implies (2) holds for i and (1) holds for i+ 1, completing the induction. Because of the
induction hypothesis, P must have visited all the vertices between p1 and α1, β1 in {v0, . . . , vi},
since the set of visited vertices forms a contiguous segment on the circle. Suppose that vi+1 is not a
neighbor of either αi or βi. Then there is a vertex v such that v and q1 are on the opposite sides
of line ←−−→vivi+1. Since Q must visit v before visiting q1, it must intersect the line ←−−→vivi+1. Since the
segment vivi+1 completely partitions the convex hull of O2 into two parts, any path from v to q1
through the convex hull of O1 must intersect vivi+1, contradicting the planarity of the shortest
path. This implies (2). Further, since all the points between αi and βi are already visited, vi+1 is
outside this segment, which implies that vi+1 is either αi+1 or βi+1.

This proves the claim. The path P must connect H1 \ {p1, q1} and H2 \ {p1, q1}, and hence
it crosses ←→p1q1 at least once. Suppose it crosses the segment more than once. Let vava+1 and
vbvb+1 be the two segments with least indices a, b which cross p1q1. Then va+1 is a neighbor of p1
and vb+1 is a neighbor of va. Let p2 be neighbor of p1 other than va+1. Note that p2 is between
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p1 and va. Consider the path Q1 = p1vb p2vb+1. We claim that this is shorter than the path
Q2 = p1va va+1vbvb+1, where xy denotes the path covering all the points between x and y which are
on the same side of ←→p1q1 as x, y. Note that ℓ(p1va) = p2vb+1 and ℓ(va+1vb) + ℓ(p1va+1) = ℓ(p1vb).
Therefore, it suffices to show that

ℓ(vava+1) + ℓ(vb + vb+1)− ℓ(p1va+1)− ℓ(vbp2) ≥ 0

Let ∠p1Ovb+1 = α 2π
k

and ∠p1Ovb = β 2π
k

where O is center of O1. Then we can express all the
lengths in terms of sines to get

ℓ(vava+1) + ℓ(vb + vb+1)− ℓ(p1va+1)− ℓ(vbp2)

=2 sin

(
α

2
· 2π
k

)
+ 2 sin

(
α + β

2
· 2π
k

)
− 2 sin

(
β + 1

2
· 2π
k

)
− 2 sin

(
1

2
· 2π
k

)
=4 sin

(
2α + β

2k
π

)
cos

(
β

2k
π

)
− 4 sin

(
β + 2

2k
π

)
cos

(
β

2k
π

)
=4 cos

(
β

2k
π

)(
sin

(
2α + β

2k
π

)
− sin

(
β + 2

2k
π

))
=8 cos

(
β

2k
π

)
cos

(
α + β + 1

2k
π

)
sin

(
α− 1

2k
π

)
Since 0 ≤ β ≤ α + β + 1 ≤ k, and α ≥ 1, all the angles in the expression above are between 0 and
π
2
, which proves that this expression is always positive implying that Q1 is shorter than Q2. We

can now replace portion of Q corresponding to Q2 by Q1 to get a shorter path if Q crossed ←→p1q1
more than once. Hence, any optimal Hamiltonian path Q must cross ←→p1q1 exactly once. Therefore,
Q must look like Q = p1q2 p2q1, where q2 is a neighbor of q1 that is on the opposite side of p2. The
points p1p2q1q2 form a cyclic trapezoid, with p1q1 and p2q2 as diagonals. Therefore,

ℓ(Q) ≥ dist(p1q1) + 2π − 4π

k

Note that we are missing the trivial case when p1 and q1 are adjacent, which can be verified to give
the exact same bound.

Hence, portion of path P in between two gap vertices has length ℓ(g1p1)+ℓ(p1q1)+2π− 4π
k
+ℓ(q1g2),

which is at least 4 + 2π − 4π
k
. Combined with the cost of the path outside two gap vertices, which

is at least 8π + 4− 8π
k
, we get the lower bound

ℓ(P ) ≥ 10π + 8− 12π

k
−O(k−2)

as required. Error term of O(k−2) appears from approximating small chords of circle by the
arc-lengths.

In particular, the lemma above gives the lower bound

ℓ(P ) ≥ 10π + 8−O

(
1

k

)
as required in Lemma 22.

126



A.3 Probability bounds for Observation 10

In this section we will provide precise bounds for constant CS
ε,D defined in Observation 10. More

precisely, we will prove the following version of Observation 10:

Lemma 171. Let d be a fixed integer. Let {Y1, Y2, . . .} be a sequence of points drawn uniformly at
random from [0, t]d and Yn = {Y1, . . . , Yn}, where t = n1/d. Given any finite point set S ⊆ Rd with
k points, any ε > 0 and any constant D > 0 such that

1. ε is smaller than distance between any two points in S; and
2. D is larger than the diameter of S
3. exp(O(k log(1/ε))) = o(n)

Yn contains at least Ck
ε,Dn many (ε,D)-copies of S with probability 1− o(1), where

CS
ε,D = exp(−O(k log(1/ε)))

where O-notation hides constants dependent on d and D.
Further, if exp(O(k log(1/ϵ))) ≤ n

δ logn
then the result holds with probability 1− n−δ.

Proof. Divide [0, t]d into boxes of of side length 3D. Let B denote one such box. Consider a copy
of S centered at center of the box B. Let s1, . . . , sk be points in S. For any j, the probability that
Yj at most ε distance from si is

Vd(ε)
n

where Vd(R) denotes volume of a sphere of radius R in Rd.
Given a sequence of points j1, . . . , jk, the probability that Yji is ε-close to si for all i, and there are
no other points inside B is given by(

Vd(ε)

n

)k(
1− (3D)d

n

)n−k

The number of choices for the sequence ji is exactly

n!

(n− k)!
≥
(
1− k

n

)k

nk

Since the events corresponding to all the sequences are disjoint, we can simply add these probabilities!
Recall that log Vd(ε) = O(−d log d+ d log ε), and that 1− x ≥ e−x/(1−x) ≥ e−2x for x ≤ 1

2
. Using

these two identities, and the two probability bounds above, we get a lower bound on probability
that the box B contains an (ε,D)-copy of S:

exp

(
−O
(
dk log d− dk log ε+ (n− k)

(3D)d

n
+

k2

n

))
= exp(−O(k log(1/ε)))

where O hides constants dependent on the gap distance D and dimension d.
There are n

(3D)d
such boxes B. Let these be denoted by B1, . . . , Bs. Let χi be the indicator

random variable for box Bi containing an (ε,D)-copy of S. Let χ =
∑

i χi. Then we have

E[χ] =
∑
i

E[χi] = n exp(−O(k log(1/ε) + d logD)) = n exp(−O(k log(1/ε)))

We will use McDiarmid’s Inequality to get a concentration bound on χ.
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Lemma 172 (McDiarmid’s Inequality). Suppose a function f : Z1 × · · · Zn → R satisfies that for
all i

sup
z′i∈Zi

∣∣f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, zi′ , zi+1, . . . , zn)
∣∣ ≤ ci

then for independent random variables Zi ∼ Zi,

P
[
f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn] ≤ −t

]
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
Note that changing a single point y ∈ Yn changes χ by at most 2. Therefore, we can use

McDiarmid’s Inequality with ci = 2 and for all i and let t = 1
2
E[χ] to get that

P
[
χ <

1

2
E[χ]

]
≤ exp

(
−2n2 exp(−O(k log(1/ε)

4n

)
= exp(−n exp(−O(k log(1/ε)))

Note that when exp(O(k log(1/ε))) = o(n), this probability is o(1), which proves that

χ ≥ n exp(−O(k log(1/ε)))

with probability 1 − o(1). Further, if exp(k log(1/ε)) ≤ n
δ logn

, then the result above holds with

probability 1− 1
nδ .

In particular, for ε = O(1/k), and k ≤ logn
log logn

, we have

exp(k log(1/ε) = exp(k log k) = exp

(
log n

log log n
(log log n− log log log n)

)
=

n

exp
(

logn log log logn
log logn

) = o

(
n

log n

)

since

log log n = o

(
log n log log log n

log log n

)
Note that this falls under the setting in which we use this result in proof of theorem 6.
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Appendix B

Details of

B.1 Technical Details for Section 6.2

Theorem 173 ([VV85; Coo71]). Suppose that there is a randomized poly(n)-time algorithm for
the following problem: given a 3-CNF formula C with n variables and at most 5n clauses, under the
promise that C has at most one satisfying assignment, determine whether C is satisfiable. Then,
NP = RP.

Lemma 174. In the setting of Definition 87, set d := 7 and B := 64mα+2β. Then pC,α,β ∈ Pn,d,B.

Proof. Since αHC(x) + βG(x) is a polynomial in x1, . . . , xn of degree at most 7, there is some
θ = θ(C, α, β) ∈ RM−1 such that ⟨θ, T (x)⟩+ αHC(x) + βG(x) is a constant independent of x. Then
h(x) exp(−αHC(x)−βG(x)) is proportional to h(x) exp(⟨θ, T (x)⟩), so pC,α,β = pθ. Moreover, for any
clause Cj, every monomial of HCj

has coefficient at most 64 in absolute value, so every monomial
of HC has coefficient at most 64m. Similarly, every monomial of G has coefficient at most 2 in
absolute value. Thus, ∥θ∥∞ ≤ 64mα + 2β =: B, so pC,α,β ∈ Pn,d,B.

Given a point v ∈ H, let O(v) := {x ∈ Rn : xivi ≥ 0;∀i ∈ [n]} denote the octant containing v,
and let Br(v) := {x ∈ Rn : ∥x− v∥∞ ≤ r} denote the ball of radius r with respect to ℓ∞ norm.

Lemma 175. Let p := pC,α,β and Z := ZC,α,β for some 3-CNF C with m clauses and n variables,
and some parameters α, β > 0. Let r ∈ (0, 1). If β ≥ 40r−2 log(4n/r), then for any v ∈ H that is a
satisfying assignment for C,

Pr
x∼p

(x ∈ Br(v)) ≥
e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

For any w ∈ H that is not a satisfying assignment for C,

Pr
x∼p

(x ∈ O(w)) ≤ e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.
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Proof. We begin by lower bounding the probability over Br(v). Pick any clause Cℓ included in
C. We claim that HCℓ

(v′) ≤ 81r2 for all v′ ∈ Br(v). Indeed, say that Cℓ = x̃i ∨ x̃j ∨ x̃k. Since v
satisfies Cℓ, at least one of {fi(vi), fj(vj), fk(vk)} must be zero. Without loss of generality, say that
fi(vi) = 0; also observe that |fj(vj)|, |fk(vk)| ≤ 2. It follows that for any v′ ∈ Br(v), |fi(v′i)| ≤ r
and |fj(v′j)|, |fj(v′k)| ≤ 2 + r ≤ 3 (since r ≤ 1). Therefore, we have

HCℓ
(v′) ≤ r2 · (3)2 · (3)2 = 81r2.

Summing over all m possible clauses, we have HC(v
′) ≤ 81mr2 for all v′ ∈ Br(v). Hence,

Pr
x∼p

(x ∈ Br(v)) =
1

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≥ e−81mαr2

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−81mαr2

Z

(∫ 1+r

1−r

exp(−x8 − β(1− x2)2) dx

)n

≥ e−81mαr2

Z

(
1 +

1

n

)−n(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

(B.1)

≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

where the second inequality (B.1) is by Lemma 176. Next, we upper bound the probability over
O(w). Let Cℓ be any clause in C that is not satisfied by w. Say that Cℓ = x̃i∨x̃j∨x̃k. Then |fi(wi)| =
|fj(wj)| = |fk(wk)| = 2. Furthermore, for any w′ ∈ Od(w), we have |fi(w′

i)|, |fj(w′
j)|, |fk(w′

k)| ≥ 1,
and hence HCℓ

(w′) ≥ 1. Since HC′(x) ≥ 0 for all x,C ′, we conclude that HC(w
′) ≥ HCℓ

(w′) ≥ 1 for
all w′ ∈ O(w). In particular, this gives us

Pr
x∼p

(x ∈ O(w)) = 1

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

as claimed.

B.1.1 Integral bounds

Lemma 176. Fix β > 150 and γ ∈ [0, 1]. Define f : R→ R by f(x) = γx8 + β(1− x2)2. Pick any
r ∈ (6/β, 0.04). Then∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr2/8)
+

2 exp(−βr/40)
r

)∫ 1+r

1−r

exp(−f(x)) dx.
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In particular, for any m ∈ N, if β ≥ 40r−2 log(4m/r), then∫ ∞

0

exp(−f(x)) dx ≤
(
1 +

1

m

)∫ 1+r

1−r

exp(−f(x)) dx.

Proof. Set a = 1/
√
2. For any x ∈ [a,∞) we have f ′′(x) = 56γx6− 2β +6βx2 ≥ β > 0 for β > 150.

Thus, f has at most one critical point in [a,∞); call this point t0. Since f
′(x) = 8γx7−4βx(1−x2),

we have f ′(1) = 8γ ≥ 0 and f ′(1−3/β) ≤ 8−4β(1−3/β)(3/β)(2−3/β) < 0. Thus, t0 ∈ (1−3/β, 1].
Set r′ = r − 3/β ≥ r/2. Then∫ 1+r

1−r

exp(−f(x)) dx ≥
∫ t0+r′

t0−r′
exp(−f(x)) dx.

For every t ∈ R define I(t) =
∫ t+r′

t
exp(−f(x)) dx. Since f is β-strongly convex on [a,∞), we have

for any t ≥ t0 that

f(t+ r′)− f(t) ≥ r′f ′(t) +
r′2

2
β ≥ r′2

2
β

where the final inequality is because f ′(t) ≥ 0 for t ∈ [t0,∞). Thus, for any t ≥ t0,

I(t+ r′) =

∫ t+2r′

t+r′
exp(−f(x)) dx =

∫ t+r

t

exp(−f(x+ r′)) dx ≤ exp(−βr′2/2)I(t).

By induction, for any k ∈ N it holds that I(t0 + kr′) ≤ exp(−βkr′2/2)I(t0), so∫ ∞

t0

exp(−f(x)) dx =
∞∑
k=0

I(t0 + kr′) ≤ I(t0)
∞∑
k=0

exp(−βkr′2/2) = I(t0)

1− exp(−βr′2/2)
. (B.2)

Similarly, for any t ∈ [a+ r′, t0], we have

f(t− r′)− f(t) ≥ −r′f ′(t) +
r′2

2
β ≥ r′2

2
β

using β-strong convexity on [a,∞) and the bound f ′(t) ≤ 0 on [a, t0]. Thus, for any t ∈ [a, t0 − r′],

I(t− r′) =

∫ t

t−r′
exp(−f(x)) dx =

∫ t+r′

t

exp(−f(x− r′)) dx ≤ exp(−βr′2/2)I(t),

so by induction, I(t0 − kr′) ≤ exp(−β(k − 1)r′2/2)I(t0 − r′) for any 1 ≤ k ≤ K := ⌊(t0 − a)/r′⌋. It
follows that∫ t0

t0−Kr′
exp(−f(x)) dx =

K∑
k=1

I(t0 − kr′) ≤ I(t0 − r′)
K∑
k=1

exp(−β(k − 1)r′2/2) ≤ I(t0 − r′)

1− exp(−βr′2/2)
.

(B.3)
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Finally, note that t0−(K−1)r′ ≤ a+2r′ ≤ 0.8. For any x ∈ [0, 0.8], we have f ′(x) ≤ 8x7−0.72βx =
x(8x6− 1.44β) ≤ 0, since β > 150. That is, f is non-increasing on [0, t0− (K− 1)r′]. It follows that∫ t0−Kr′

0

exp(−f(x)) dx ≤ t0 −Kr′

r′

∫ t0−(K−1)r′

t0−Kr′
exp(−f(x)) dx

≤ 1

r′
I(t0 −Kr′)

≤ exp(−β(K − 1)r′2/2)

r′
I(t0 − r′).

Since (K − 1)r′ ≥ t0 − 0.8 ≥ 1− 3
β
− 0.8 ≥ 0.1, we conclude that∫ t0−Kr′

0

exp(−f(x)) dx ≤ exp(−βr′/20)
r′

I(t0 − r′). (B.4)

Combining (B.2), (B.3), and (B.4), we get∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr′2/2)
+

exp(−βr′/20)
r′

)∫ t0+r′

t0−r′
exp(−f(x)) dx.

Substituting in r′ ≥ r/2 gives the claimed result.

Lemma 177. Fix β ≥ 160 log(8). Then for any 1 ≤ k ≤ 8,∫ ∞

0

xk exp(−x8 − β(1− x2)2) dx ≤ 2k
∫ ∞

0

exp(−x8 − β(1− x2)2) dx.

Proof. Define a distribution q(x) ∝ exp(−x8 − β(1− x2)2) for x ∈ [0,∞). We want to show that
Eq[x

k] ≤ 2k. Indeed,

Eq[exp(x
8)] =

∫∞
0

exp(−β(1− x2)2) dx∫∞
0

exp(−x8 − β(1− x2)2) dx

≤
2
∫ 3/2

1/2
exp(−β(1− x2)2) dx∫∞

0
exp(−x8 − β(1− x2)2) dx

= 2Eq[exp(x
8)1[1/2 ≤ x ≤ 3/2]]

≤ 2 exp((3/2)8)

where the first inequality is by an application of Lemma 176 with r = 1/2 and m = 1. Now by
Jensen’s inequality we get

Eq[x
8] ≤ logEq[exp(x

8)] = log(2) + (3/2)8 ≤ 28

and consequently, an application of Hölder inequality gives us Eq[x
k] ≤ 2k, for any 1 ≤ k ≤ 8.
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B.2 Moment bounds

Lemma 178 (Moment bound). For any θ ∈ ΘB, i ∈ [n], and ℓ ∈ N it holds that

Ex∼pθx
ℓ
i ≤ max(2ℓℓ, BℓM ℓ2ℓ(d+1)+1).

Proof. Without loss of generality assume i = 1. Let L0 := max(ℓ, BM2d+1). Then

Ex∼pθx
ℓ
1 ≤ Lℓ

0 + Ex∼pθx
ℓ
11[∥x∥∞ > L0]

= Lℓ
0 +

∞∑
k=0

Ex∼pθ

[
xℓ
11[2

kL0 < ∥x∥∞ ≤ 2k+1L0]
]

Now for any L ≥ L0,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
=

1

Zθ

∫
B2L(0)\BL(0)

xℓ
1 exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≤ (2L)n

Zθ

(2L)ℓ exp
(
−Ld+1 +BM(2L)d

)
≤ (2L)n+ℓ exp(−Ld+1/2)

Zθ

.

We can lower bound Zθ as

Zθ ≥
∫
B1/(BM)(0)

exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≥ (BM)−n exp(−n(BM)−d−1 −BM(BM)−d)

≥ e−2(BM)−n.

Thus,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
≤ exp

(
(n+ ℓ) log(2L)− 1

2
Ld+1 + 2 + n log(BM)

)
≤ exp

(
−1

4
Ld+1

)
since L was assumed to be sufficiently large (recall that we assume B ≥ 1). We conclude that

Ex∼pθx
ℓ
1 ≤ Lℓ

0 +
∞∑
k=0

exp

(
−1

4
2k(d+1)Ld+1

0

)
≤ Lℓ

0 + 1 ≤ 2Lℓ
0

which completes the proof.
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Lemma 179 (Smoothness bounds). For every θ ∈ ΘB, it holds that

Ex∼pθ∥∆T (x)∥22 :=
M∑
j=1

Ex∼pθ(∆Tj(x))
2 ≤ d4B2dM2d+122d(d+1)+1

and
Ex∼pθ∥(JT )(x)∥

2
op ≤ nd2B2dM2d+122d(d+1)+1.

Proof. Fix any j ∈ [M ]; then there is a degree function d with 1 ≤ |d| ≤ d so that Tj(x) = xd =∏n
i=1 x

d(i)
i . Therefore

∆Tj(x) =
∑

k∈[n]:d(k)≥2

d(k)(d(k)− 1)xd−2{k} =: ⟨w, T (x)⟩

for some w ∈ RM with ∥w∥22 =
∑

k∈[n]:d(k)≥2 d(k)
2(d(k)− 1)2 ≤ d4. By Corollary 104, we conclude

that
Ex∼pθ(∆Tj(x))

2 = Ex∼pθ⟨w, T (x)⟩2 ≤ n2d4B4dM4d+224d(d+2)+1.

Summing over j ∈ [M ] gives the first claimed bound. For the second bound, observe that

Ex∼pθ∥(JT )(x)∥
4
op ≤ Ex∼pθ∥(JT )(x)∥

4
F = Ex∼pθ

(
M∑
j=1

n∑
i=1

(
∂

∂xi

Tj(x)

)2
)2

.

For any j ∈ [M ] and i ∈ [n], there is some degree function d with |d| ≤ d and ∂
∂xi

Tj(x) = |d| ·xd−{i}.
Thus, by Holder’s inequality and Lemma 178 (with ℓ = 4d), we get

Ex∼pθ

(
M∑
j=1

n∑
i=1

(
∂

∂xi

Tj(x)

)2
)2

=
∑

j,j′∈[M ]

∑
i,i′∈[n]

Ex∼pθ

(
∂

∂xi

Tj(x)

)2(
∂

∂xi′
Tj′(x)

)2

≤M2n2d4B4dM4d24d(d+2)+1

which proves the second bound.

The following regularity conditions are sufficient for consistency and asymptotic normality of
score matching, assuming that the restricted Poincaré constant is finite and λmin(I(θ∗)) > 0 (see
Proposition 2 in [FL15] together with Lemma 1 in [KHR22]). We show that these conditions hold
for our chosen exponential family.

Lemma 180 (Regularity conditions). For any θ ∈ RM , the quantities Ex∼pθ∥∇h(x)∥
4
2, Ex∼pθ∥∆T (x)∥22,

and Ex∼pθ∥(JT )(x)∥
4
op are all finite. Moreover, pθ(x)→ 0 and ∥∇xpθ(x)∥2 → 0 as ∥x∥2 →∞.

Proof. Both of the quantities ∥∇h(x)∥42 and ∥∆T (x)∥22 can be written as a polynomial in x.
Finiteness of the expectation under pθ follows from Holder’s inequality and Lemma 178 (with
parameter B set to ∥θ∥∞). Finiteness of Ex∼pθ∥(JT )(x)∥

4
op is shown in Lemma 179 (again, with B :=

∥θ∥∞). The decay condition pθ(x)→ 0 holds because log pθ(x) + logZθ = −
∑n

i=1 x
d+1
i + ⟨θ, T (x)⟩.

For x ∈ Rn with L ≤ ∥x∥∞ ≤ 2L, the RHS is at most −Ld+1 +M∥θ∥∞(2L)d, which goes to −∞
as L→∞. A similar bound shows that ∥∇xpθ(x)∥2 → 0.
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B.3 Conditioning

We analyze the condition number of underdamped Langevin dynamics with potential f(x) =
1
2
∥x∥2 and stationary distribution p(x, v) = e−f(x)− 1

2
∥v∥2 = e−

1
2
(∥x∥2+∥v∥2). Underdamped Langevin

dynamics is given by the following SDE’s,

dxt = −vt (B.5)

dvt = −γvt −∇f(xt) +
√
2dBt

= −γvt − xt +
√
2dBt. (B.6)

Given the distribution p0 at time 0, the distribution pt at time t is the same as that given by,[
dx
dt
dv
dt

]
= −

[
0 −Id
Id γId

][
∇x

δKL(pt∥p∗)
δpt

∇v
δKL(pt∥p∗)

δpt

]
(B.7)

which simplifies to

d

[
xt

vt

]
=

[
O Id
−Id −γId

]
(∇ ln pt −∇ ln p). (B.8)

Our goal is to prove the following theorem.

Theorem 181. Consider underdamped Langevin dynamics (B.5)–(B.6) with friction coefficient
γ < 2 and starting distribution p0 that is C2. Let Tt denote the transport map from time 0 to time
t induced by (B.8). Suppose that the initial distribution p0(x, v) is such that

I2d ⪯ −∇2 ln p0(x, v) ⪯ κI2d.

Then for any x0, v0 and unit vector w, the directional derivative of Tt at x0, v0 in direction w satisfies(
1 +

2 + γ

2− γ
(κ− 1)

)−2/γ

≤ ∥DwTt(x0)∥ ≤
(
1 +

2 + γ

2− γ
(κ− 1)

)2/γ

Thus the condition number of Tt is bounded by
(
1 + 2+γ

2−γ
(κ− 1)

)4/γ
.

We remark that the exponent is likely loose by a factor of 2, and that taking γ → 2 gives
the best exponent; however, the case γ = 2 would require a separate calculation as the matrix
appearing in the exponential is not diagonalizable. Note γ = 2 is the transition between when the
dynamics exhibit underdamped and overdamped behavior.

To prove the theorem, we first relate the Jacobian with the Hessian of the log-pdf. By Lemma 188,
the Jacobian Dt = DTt(x0) satisfies

d

dt
Dt =

[
O Id
−Id −γId

]
∇2(ln pt − ln p)Dt. (B.9)

We will show that ∇2(ln pt − ln p) decays exponentially (Lemma 184). First, we need the following
bound for convolutions.
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B.3.1 Bounding the Hessian of the logarithm of a convolution

Lemma 182. Suppose that p is a probability density function on Rd such that Σ−1
1 ⪯ −∇2 ln p ⪯ Σ−1

2 .
Let q be the distribution of N(0,Σ) (where Σ is not necessarily full-rank). Then

(Σ1 + Σ)−1 ⪯ −∇2 ln(p ∗ q) ⪯ (Σ2 + Σ)−1.

Proof. The lower bound is a bound on the strong log-concavity parameter; see Theorem 3.7b
in [SW14].

For the upper bound, we first prove the lemma in the case that Σ is full rank. We have
(p ∗ q)(x) =

∫
Rd p(u)q(x− u) dt, so

∇2[ln((p ∗ q)(x))] =
∫
Rd p(u)∇2q(x− u) du∫
Rd p(u)q(x− u) du

−
(∫

Rd p(u)∇q(x− u) du∫
Rd p(u)q(x− u) du

)(∫
Rd p(u)∇q(x− u) du∫
Rd p(u)q(x− u) du

)⊤

=

(∫
Rd Σ

−1(x− u)p(u)q(x− u) du∫
Rd p(u)q(x− u) du

)(∫
Rd(Σ

−1(x− u))⊤p(u)q(x− u) du∫
Rd p(u)q(x− u) du

)
−
∫
Rd(Σ

−1(x− u)(x− u)⊤Σ−1 − Σ−1)p(u)q(x− u) du∫
Rd p(u)q(x− u) du

Let µx denote the distribution with density function ρ(u) ∝ p(u)q(x− u). Then

−∇2[ln((p ∗ q)(x))] = [EµxΣ
−1(u− x)][Eµx(Σ

−1(u− x))⊤]− [EµxΣ
−1(u− x)(u− x)⊤Σ−1] + Σ−1

= −Eµx [Σ
−1(u− Eu)(u− Eu)⊤Σ−1] + Σ−1.

It suffices to show for any unit vector v, that

−v⊤∇2[ln((p ∗ q)(x))]v = −Eµx [
〈
Σ−1v, (u− Eu)

〉2
] + v⊤Σ−1v ≤ v⊤(Σ2 + Σ)−1v

Note that µx satisfies

−∇2 lnµx ⪯ Σ−1
2 + Σ−1,

so µx can be written as the density of a Gaussian with variance (Σ−1
2 + Σ−1)−1 multiplied by a

log-convex function. By the Brascamp-Lieb moment inequality (Theorem 5.1 in [BL02])1,

Eµx [
〈
Σ−1v, (u− Eu)

〉2
] ≥ Eu∼N(0,(Σ−1

2 +Σ−1)−1)[
〈
Σ−1v, u

〉2
] = v⊤Σ−1(Σ−1

2 + Σ−1)−1Σ−1v.

Hence

−v⊤∇2[ln((p ∗ q)(x))]v ≤ v⊤
[
−Σ−1(Σ−1

2 + Σ−1)−1Σ−1 + Σ−1
]
v

The conclusion then follows from

−Σ−1(Σ−1
2 + Σ−1)−1Σ−1 + Σ−1 = −(ΣΣ−1

2 Σ + Σ)−1 + Σ−1

= (ΣΣ−1
2 Σ + Σ)−1(���−Id + ΣΣ−1

2 + ��Id)

= (Σ + Σ2)
−1.

1Note that the sign is flipped in the theorem statement in the log-convex case.
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Now for the general case, take the limit as Σ′ → Σ where Σ′ is full-rank. More precisely, let
Σt = Σ+ tP , where P is projection onto Im(Σ)⊥, and let qt be the density function for N(0,Σt).
Then we have

∇2[ln((p ∗ qt)(x))] =
∫
Rd∇2p(x− u)qt(u) du∫
Rd p(x− u)qt(u) du

−
(∫

Rd∇p(x− u)qt(u) du∫
Rd p(x− u)qt(u) du

)(∫
Rd∇p(x− u)qt(u) du∫
Rd p(x− u)qt(u) du

)⊤

Examining the first term, we have∫
Rd

∇2p(x− u)qt(u) du =

∫
Im(Σ)

∫
Im(P )

∇2p(x− u− v)qt(u+ v) dv du

→
∫
Im(Σ)

∇2p(x− u)qt(u) du as t→ 0+

by the dominated convergence theorem. Similarly, the other integrals converge to their counterparts
with q(u). Therefore, ∇2[ln((p ∗ qt)(x))]→ ∇2[ln((p ∗ q)(x))] as t→ 0+. Apply the lemma to the
full-rank case; the RHS bound converges to the desired bound: (Σ2 + Σt)

−1 → (Σ2 + Σ)−1.

B.3.2 Bounding the variance proxy for underdamped Langevin

As it is useful to work with the matrices Σ1 and Σ2, we make the following definition.

Definition 183. Let p be a probability density on Rd. For a positive definite matrix Σ1, if
Σ−1

1 ⪯ −∇2 ln p, we say that Σ1 is an upper variance proxy for p. For a positive definite matrix
Σ2, if −∇2 ln p ⪯ Σ−1

2 , we say Σ2 is a lower variance proxy for p.

Lemma 184. Consider underdamped Langevin dynamics (B.5)–(B.6) with with starting distribution
p0(x, v) that is C2. Suppose p0 has lower (upper) variance proxy Σ0. Then pt has lower (upper)
variance proxy

Σt = exp

[([
1

−1 −γ

]
⊗ Id

)
t

]
(Σ0 − I2d) exp

[([
−1

1 −γ

]
⊗ Id

)
t

]
+ I2d.

Proof. We first consider discretized Lanegevin, given by

x̃t+η = x̃t + ηṽt

ṽt+η = (1− ηγ)ṽt − ηx̃t + ξt, ξt ∼ N(0, 2ηId)

or in matrix form,[
x̃t+η

ṽt+η

]
=

[
Id ηId
−ηId (1− ηγ)Id

] [
x̃t

ṽt

]
+ ξt, ξt ∼ N

(
0,

[
O O
O 2ηId

])
.

Fix t. Let p̃
(η)
t be the distribution at time t for discretized Langevin with step size η (dividing t).

By standard arguments, p̃
(η)
t → pt as η → 0, in the C2 topology on any compact set. In particular,

for any x, v, ∇2 ln p̃
(η)
t (x, v)→ ∇2 ln pt(x, v). Hence it suffices to bound ∇2 ln pt(x, v).
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We write the proof for the upper variance proxy; the proof for the lower variance proxy differs
only in the direction of the inequality. Suppose − ln p̃t(x, v) ⪰ Σ̃−1

t . Consider breaking the update
into two steps, [

x̃′
t+η

ṽ′t+η

]
=

[
Id ηId
−ηId (1− ηγ)Id

] [
x̃t

ṽt

]
[
x̃t+η

ṽt+η

]
=

[
x̃′
t+η

ṽ′t+η

]
+ ξt, ξt ∼ N

(
0,

[
O O
O 2ηId

])
.

Let p̃′t+η(x, v) denote the distribution of

[
x̃′
t+η

ṽ′t+η

]
. Then

p̃′t+η(x, v) = p̃t

([
Id ηId
−ηId (1− ηγ)Id

]−1 [
x
v

])
so

Σ̃′
t+η : =

[
Id ηId
−ηId (1− ηγ)Id

]
Σ̃t

[
Id −ηId
ηId (1− ηγ)Id

]
is an upper variance proxy for p̃′t+η and by Lemma 182,

Σ̃t+η : = Σ̃′
t+η +

[
O O
O 2ηId

]
is an upper variance proxy for p̃t+η. Note that

Σ̃t+η : = Σ̃t +

[[
1

−1 −γη

]
⊗ Id

]
S̃t + S̃t

[[
−1

1 −γη

]
⊗ Id

]
+

[
0 0
0 2γη

]
+O(η2).

By the standard analysis of Euler’s method, as η → 0, the distribution, Σ̃t approaches Σt defined
by

d

dt
Σt =

[[
1

−1 −γ

]
⊗ Id

]
Σt + Σt

[[
−1

1 −γ

]
⊗ Id

]
+

[
0 0
0 2γ

]
.

This Σt is an upper variance proxy for pt. The solution to this equation is

Σt = exp

[([
1

−1 −γ

]
⊗ Id

)
t

]
(Σ0 − I2d) exp

[([
−1

1 −γ

]
⊗ Id

)
t

]
+ I2d,

as desired.
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B.3.3 Proof that underdamped Langevin is well-conditioned

We are now ready to prove the main theorem.

Proof of Theorem 181. Let Ht = ∇2(− ln pt + ln p) and C =

[
O Id
−Id −γId

]
. By (B.9) and the chain

rule,

d

dt
DtD

⊤
t = −(CHtDtD

⊤
t +DtD

⊤
t HtC

⊤). (B.10)

Fix w and consider yt = Dtw = DwTt(x0). Multiplying the above by W on both sides gives2∣∣∣∣ ddt ∥yt∥2
∣∣∣∣ ≤ 2 ∥CHt∥ ∥yt∥2

so by Grönwall’s inequality (Lemma 192),

exp

[
−2
∫ t

0

∥CHs∥ ds
]
≤ ∥yt∥2 ≤ exp

[
2

∫ t

0

∥CHs∥ ds
]
. (B.11)

By Lemma 184,

I2d ⪯ −∇2 ln pt ⪯ (κ− 1) exp

[([
1

−1 −γ

]
⊗ Id

)
t

]
exp

[([
−1

1 −γ

]
⊗ Id

)
t

]
+ I2d.

The eigenvalues of A :=

[
−1

1 −γ

]
are

−γ±
√

γ2−4

2
, which have absolute value 1. The absolute value

of the inner product of the eigenvectors of A is γ/2, so the condition number squared of the two

exponential factors is bounded by
1+ γ

2

1− γ
2
= 2+γ

2−γ
. In full detail, we calculate

exp

([
−1

1 γ

]
t

)
=

[
1 1

γ−
√

γ2−4

2

γ+
√

γ2−4

2

]
︸ ︷︷ ︸

S

exp
(

−γ+
√

γ2−4

2
t

)
exp

(
−γ−
√

γ2−4

2
t

)


︸ ︷︷ ︸
D

· 1√
γ2 − 4

 γ+
√

γ2−4

2
−1

−γ+
√

γ2−4

2
1


︸ ︷︷ ︸

S−1∥∥S†S
∥∥ =

∥∥∥∥∥∥
 2

γ2+γ
√

γ2−4

2
γ2−γ
√

γ2−4

2
2

∥∥∥∥∥∥ = 2 + γ

∥∥∥∥exp([ −1
1 γ

]
t

)∥∥∥∥ ≤ 2 + γ√
4− γ2

exp

(
−γt
2

)
=

√
2 + γ

2− γ
exp

(
−γt
2

)
.

2The condition number bound in Theorem 181 is the square of what one might expect because we are only able
to get obtain a bound on the absolute value here. If this is always increasing or decreasing, then we would save a
factor of 2 in the exponent.
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Hence Ht = −∇2 ln pt + I2d satisfies

∥CHs∥ ≤ 1− 1

1 + 2+γ
2−γ

(κ− 1)e−γt/2∫ ∞

0

∥CHs∥ ds ≤
∫ ∞

0

2+γ
2−γ

(κ− 1)e−γt/2

1 + 2+γ
2−γ

(κ− 1)e−γt/2
ds

≤
[
2

γ
ln

(
1 +

2 + γ

2− γ
(κ− 1)e−γt/2

)]0
∞
≤ 2

γ
ln

(
1 +

2 + γ

2− γ
(κ− 1)

)
.

Hence by (B.11), (
1 +

2 + γ

2− γ
(κ− 1)

)−2/γ

≤ ∥yt∥ ≤
(
1 +

2 + γ

2− γ
(κ− 1)

)2/γ

,

giving the theorem. To obtain the bound on condition number, note that the condition number of

DTt(x0) is
max∥w∥=1∥DwTt(x0)∥
min∥w∥=1∥DwTt(x0)∥ .

B.4 Proof of Lemma 127

For the sake of convenience, we restate Lemma 127 again.

Lemma. Let C ∈ R2d be a compact set. For any function H(x, v, t) : R2d × R≥0 → R which is
polynomial in (x, v), there exist polynomial functions J , F , G, s.t. the time-(t0 + τ, t0) flow map of
the system {

dx
dt

= ∂
∂v
H(x, v, t)

dv
dt

= − ∂
∂x
H(x, v, t)− γ ∂

∂v
H(x, v, t)

(B.12)

is uniformly O(τ 2)-close over C in C1 topology to the time-2π map of the system{
dx
dt

= v − τF (v, t)⊙ x
dvj
dt

= −Ω2
jxj − τJj(x, t)− τvjGj(x, t)

(B.13)

for some integers {Ωj}dj=1. Here, ⊙ denotes component-wise product, and the constants inside the
O(·) depend on C and the coefficients of H.

Proof. First, note that the time-(t0 + τ, t0) flow map of (B.12) is equal to the time-(t0, t0 + τ) flow
map of the system: {

dx
dt

= − ∂
∂v
H(x, v, t0 + τ − t)

dv
dt

= ∂
∂x
H(x, v, t0 + τ − t) + γ ∂

∂v
H(x, v, t0 + τ − t)

(B.14)
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Proceeding ahead, we broadly follow the proof strategy in [Tur02]. For notational convenience, let’s
denote the initial vector by x(0), v(0) (each coordinate is specified separately). Let

x0
j(t) = xj(0) cosΩjt+

1

Ωj

vj(0) sinΩjt (B.15)

v0j (t) = −Ωjxj(0) sinΩjt+ vj(0) cosΩjt. (B.16)

Using perturbative ODE techniques (see section B.5.5), the solution to (B.13) satisfies
x(t) = x0(t)− τ

∫ t
0

(
1
Ω ⊙ J(x0(s), s)⊙ sinΩ(t− s) + F (v0(s), s)⊙ cosΩ(t− s)⊙ x0(s)

+ 1
Ω ⊙G(x0(s), s)⊙ sinΩ(t− s)⊙ v0(s)

)
ds+O(τ2)

v(t) = v0(t)− τ
∫ t
0

(
J(x0(s), s)⊙ cosΩ(t− s)− Ω⊙ F (v0(s), s)⊙ sinΩ(t− s)⊙ x0(s)

+G(x0(s), s)⊙ cosΩ(t− s)⊙ v0(s)
)
ds+O(τ2)

(B.17)

Substituting t = 2π, the time-2π map of (B.13) is given by
x(2π) = x0(2π)− τ

∫ 2π
0

(
− 1

Ω ⊙ J(x0(s), s)⊙ sinΩs+ F (v0(s), s)⊙ cosΩs⊙ x0(s)

− 1
Ω ⊙G(x0(s), s)⊙ sinΩs⊙ v0(s)

)
ds+O(τ2)

v(2π) = v0(2π)− τ
∫ 2π
0

(
J(x0(s), s)⊙ cosΩs+Ω⊙ F (v0(s), s)⊙ sinΩs⊙ x0(s)

+G(x0(s), s)⊙ cosΩs⊙ v0(s)
)
ds+O(τ2)

(B.18)

Note that this holds if Ω is integral, and we will choose it to be so.
On the other hand, using Taylor’s theorem, the solution to (B.12) satisfies:{

x(τ) = x(0)− τ ∂
∂v
H(x(0), v(0), t0 + τ) +O(τ 2)

v(τ) = v(0) + τ ∂
∂x
H(x(0), v(0), t0 + τ) + τγ ∂

∂v
H(x(0), v(0), t0 + τ) +O(τ 2)

(B.19)

We will now show that for any two polynomials r1, r2 of total degree at most M we can choose
functions J, F,G, s.t.:

∫ 2π

0

(
− 1

Ω
⊙ J(x0(s), s)⊙ sinΩs+ F (v0(s), s)⊙ cosΩs⊙ x0(s)

− 1
Ω
⊙G(x0(s), s)⊙ sinΩs⊙ v0(s)

)
ds = r1(x(0), y(0))∫ 2π

0
(J(x0(s), s)⊙ cosΩs+ Ω⊙ F (v0(s), s)⊙ sinΩs⊙ x0(s)

+G(x0(s), s)⊙ cosΩs⊙ v0(s)) ds = r2(x(0), y(0))

(B.20)

We will choose J, F,G of the form:
∀j ∈ [d] : Jj(z, t) =

∑
i:|i|≤M vJj,i(t)z

i

∀j ∈ [d] : Fj(z, t) =
∑

i:|i|≤M−1 v
F
j,i(t)z

i

∀j ∈ [d] : Gj(z, t) =
∑

i:|i|≤M−1 v
G
j,i(t)z

i

(B.21)

where i = (i1, . . . , id) denotes multi-index, and |i| =
∑d

k=1 ik and zi =
∏d

k=1 z
ik
k . Let

r1,j(x(0), v(0)) =
∑

k:|k|≤M

∑
p+q=k

h1
j,p,qx(0)

pv(0)q (B.22)

r2,j(x(0), v(0)) =
∑

k:|k|≤M

∑
p+q=k

h2
j,p,qx(0)

pv(0)q (B.23)
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The equation (B.20) gives us that for all j,

∫ 2π

0

(
− 1

Ωj
Jj(x

0(s), s) sin(Ωjs) + Fj(v
0(s), s) cos(Ωjs)x

0
j(s)

− 1
Ωj
Gj(x

0(s), s) sin(Ωjs)v
0
j (s)

)
ds = r1,j(x(0), y(0))∫ 2π

0

(
Jj(x

0(s), s) cos(Ωjs) + ΩjFj(v
0(s), s) sin(Ωjs)x

0
j(s)

+Gj(x
0(s), s) cos(Ωjs)v

0
j (s)

)
ds = r2,j(x(0), y(0))

(B.24)

Let
(
k
p

)
=
∏d

k=1

(
ki
pi

)
. Let kt

j be the multi-index (k1, . . . , kj+t, . . . , kd). We substitute (B.15)–(B.16),

(B.21), and (B.22)–(B.23) into (B.24) and match the coefficients of x(0)pv(0)q.
If kj = 0, then

h1
j,p,q =

∫ 2π

0

− 1

Ωj

vJj,k cos(Ωs)
p sin(Ωs)q

1
j

(
k

p

)
ds

h2
j,p,q =

∫ 2π

0

vJj,k cos(Ωs)
p1
j sin(Ωs)q

(
k

p

)
ds

where vJj,k = a cos(Ωs)p sin(Ωs)q
1
j +b cos(Ωs)p

1
j sin(Ωs)q. Since the function δ(s) = cos(Ωs)p+p1

j sin(Ωs)q+q1
j

satisfies δ(π − s) = −δ(π + s), this function integrates to zero, and hence the system above reduces
to

h1
j,p,q = a

1

Ωj

C

(
k

p

)
h2
j,p,q = bC

(
k

p

)
for some non-zero constant

C =

∫ 2π

0

cos(Ωs)2p sin(Ωs)2q
1
j ds =

∫ 2π

0

cos(Ωs)2p
1
j sin(Ωs)2qds

Note that the integral is non-zero since the function inside is positive as all the powers are even.
If kj > 0, then substituting the forms of x0(s), v0(s) from (B.15) in the LHS of (B.24), and
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expanding using the binomial theorem, we get that

h1
j,p,q =

1

Ωq1
j

∫ 2π

0

−vJj,k cos(Ωs)p sin(Ωs)
q1
j

(
k

p

)
ds

+ Ωp−1
j

∫ 2π

0

vF
j,k−1

j
(−1)p

−1
j sin(Ωs)p

−1
j cos(Ωs)q

2
j

(
k−1
j

p−1
j

)
ds

+ Ωp−1
j

∫ 2π

0

vF
j,k−1

j
(−1)p sin(Ωs)p1

j cos(Ωs)q
(
k−1
j

p

)
ds

+
1

Ωq

∫ 2π

0

(
vG
j,k−1

j
cos(Ωs)p

−1
j sin(Ωs)q

2
j

(
k−1
j

p−1
j

)
− vG

j,k−1
j

cos(Ωs)p
1
j sin(Ωs)q

(
k−1
j

p

))
ds

h2
j,p,q =

1

Ωq

∫ 2π

0

vJj,k cos(Ωs)
p1
j sin(Ωs)q

(
k

p

)
ds

+ Ωp

∫ 2π

0

vF
j,k−1

j
(−1)p

−1
j sin(Ωs)p cos(Ωs)q

1
j

(
k−1
j

p−1
j

)
ds

+ Ωp

∫ 2π

0

vF
j,k−1

j
(−1)p sin(Ωs)p2

j cos(Ωs)q
−1
j

(
k−1
j

p

)
ds

+
1

Ωq−1
j

∫ 2π

0

(
−vG

j,k−1
j

cos(Ωs)p sin(Ωs)q
1
j

(
k−1
j

p−1
j

)
+ vG

j,k−1
j

cos(Ωs)p
2
j sin(Ωs)q

−1
j

(
k−1
j

p

))
ds

Let gk,p(s) = cos(Ωs)p sin(Ωs)k−p for all p ≤ k. Crucially, let us assume that vJj,k, v
F
j,k, v

G
j,k are all

of the form 
vFj,k =

∑
r≤k2

j
αk2

j ,r
gk2

j ,r
(s)

vGj,k =
∑

r≤k2
j
βk2

j ,r
gk2

j ,r
(s)

vJj,k =
∑

r≤k1
j
γk1

j ,r
gk1

j ,r
(s)

(B.25)
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Substituting,

h1
j,p,q =

1

Ωq1
j

∫ 2π

0

−
∑
r≤k1

j

γk1
j ,r
gk1

j ,r
(s)gk1

j ,p
(s)

(
k

p

)
ds

+ Ωp−1
j

∫ 2π

0

(−1)p
−1
j

∑
r≤k1

j

αk1
j ,r
gk1

j ,r
(s)gk1

j ,q
2
j
(s)

(
k−1
j

p−1
j

)
+ (−1)p

∑
r≤k1

j

αk1
j ,r
gk1

j ,r
(s)gk1

j ,q
(s)

(
k−1
j

p

) ds

+
1

Ωq

∫ 2π

0

∑
r≤k1

j

βk1
j ,r
gk1

j ,r
(s)gk1

j ,p
−1
j
(s)

(
k−1
j

p−1
j

)
−
∑
r≤k1

j

βk1
j ,r
gk1

j ,r
(s)gk1

j ,p
1
j
(s)

(
k−1
j

p

) ds

h2
j,p,q =

1

Ωq

∫ 2π

0

∑
r≤k1

j

γk1
j ,r
gk1

j ,r
(s)gk1

j ,p
1
j
(s)

(
k

p

)
ds

+ Ωp

∫ 2π

0

(−1)p
−1
j

∑
r≤k1

j

αk1
j ,r
gk1

j ,r
(s)gk1

j ,q
1
j
(s)

(
k−1
j

p−1
j

)
+ (−1)p

∑
r≤k1

j

αk1
j ,r
gk1

j ,r
(s)gk1

j ,q
−1
j
(s)

(
k−1
j

p

) ds

+
1

Ωq−1
j

∫ 2π

0

−∑
r≤k1

j

βk1
j ,r
gk1

j ,r
(s)gk1

j ,p
(s)

(
k−1
j

p−1
j

)
+
∑
r≤k1

j

βk1
j ,r
gk1

j ,r
(s)gk1

j ,p
2
j
(s)

(
k−1
j

p

) ds

Now, let ⟨f, g⟩ =
∫ 2π

0
f(s)g(s)ds denote the ℓ2 inner product. Then, we can rewrite the above

system as

h1
j,p,q = − 1

Ωq1
j

∑
r≤k1

j

γk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
(s)
〉(k

p

)

+ Ωp−1
j

(−1)p−1
j

∑
r≤k1

j

αk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,q
2
j
(s)
〉(k−1

j

p−1
j

)
+ (−1)p

∑
r≤k1

j

αk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,q
(s)
〉(k−1

j

p

)
+

1

Ωq

∑
r≤k1

j

βk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
−1
j
(s)
〉(k−1

j

p−1
j

)
−
∑
r≤k1

j

βk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
1
j
(s)
〉(k−1

j

p

)
h2
j,p,q =

1

Ωq

∑
r≤k1

j

γk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
1
j
(s)
〉(k

p

)

+ Ωp

(−1)p−1
j

∑
r≤k1

j

αk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,q
1
j
(s)
〉(k−1

j

p−1
j

)
+ (−1)p

∑
r≤k1

j

αk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,q
−1
j
(s)
〉(k−1

j

p

)
+

1

Ωq−1
j

−∑
r≤k1

j

βk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
(s)
〉(k−1

j

p−1
j

)
+
∑
r≤k1

j

βk1
j ,r

〈
gk1

j ,r
(s), gk1

j ,p
2
j
(s)
〉(k−1

j

p

)
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Now, we will add a few redundant constraints in the system. These are added to ensure that the
system has a nice matrix form; they are all of the type 0 = 0. To do this, we allow p ≥ 0−1

j , instead
of p ≥ 0. Note that if pj = −1, then qj = kj + 1 since p+ q = k. Again, we follow the convention
that

(
n
i

)
= 0 if i < 0 or i > n, as well as gk,p = 0 if p is not between 0 and k, both inclusive. Also

define h1
p,q = h2

p,q = 0 if either p or q are not between 0 and k. Thus, all the new constraints
added are indeed of the type 0 = 0.

After these modifications, the system obtained has one constraint corresponding to ht
p,q for each

0 ≤ q ≤ k1
j (or equivalently 0−1

j ≤ p ≤ k), p+ q = k, t = 1, 2 with variables αk1
j ,r
, βk1

j ,r
, γk1

j ,r
for

0 ≤ r ≤ k1
j . Further, let

nj,k = |Dk| Dk = {r : 0 ≤ r ≤ k}

We will write this system in a matrix form, given by a matrix Aj,k of dimension 2nj,k1
j
× 3nj,k1

j

such that

Aj,k

αβ
γ

 =

[
h1
j

h2
j

]
Here ξ = (ξk1

j ,r
) is the vector of dimension nj,k1

j
for ξ ∈ {α, β, γ}. For notational convenience, we

will fix j and k and denote A = Aj,k. We will index rows of A by (p, t) and columns by (r, ξ)
where r,p1

j ∈ Dk1
j
, t ∈ {1, 2}, ξ ∈ {α, β, γ}. Further, we will denote by At,ξ the submatrix of A

corresponding to the rows (p, t) and columns (r, ξ), that is, At,ξ(p, r) = A((p, t), (r, ξ)). Matrix A
has only 2nj,k non-trivial rows, namely the rows which correspond to p such that p ≥ 0. Hence to
show that the system above has a solution, it suffices to prove that matrix A has rank 2nj,k.

Define X, Y to be nj,k × nj,k matrices with rows and columns indexed by elements of Dk such
that

X(p, r) =
〈
gk1

j ,r
, gk1

j ,p
1
j

〉
Y (p, r) = (−1)p1

j

〈
gk1

j ,r
, gk1

j ,k
1
j −p1

j

〉
Now, assign Ω1 = 1, Ωj =

Mj−1
M−1

for j > 1. For this choice of Ωj’s, it is shown in [Tur02] that the
functions gk,s for 0 ≤ s ≤ k are linearly independent. It follows from this that the matrices X and
Y are full rank. Let P be the permutation matrix that takes row r of this matrix to row r1j unless
rj = kj, in which case it takes row r to s where si = ri for all i ̸= j and sj = −1. Thus, for any
matrix M , PM(p, r) = M(p−1

j , r) when pj ̸= −1, and PM(p, r) = M(p′, r) where p′i = pi for i ≠ j
and p′i = kj if pj = −1. In particular,

PX(p, r) = X(p−1
j , r) =

〈
gk1

j ,r
, gk1

j ,p

〉
PY (p, r) = Y (p−1

j , r) = (−1)p
〈
gk1

j ,r
, gk1

j ,k
1
j −p

〉
when p ≥ 0. Define nj,k × nj,k diagonal matrices D1, D2, D3 such that

D1(p,p) =

(
k−1
j

p

)
D2(p,p) =

(
k−1
j

p−1
j

)
D3(p,p) =

(
k

p

)
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for 0−1
j ≤ p ≤ k. Recalling that q = k− p, we see that

A1,α(p, r) = Ωp−1
j

(
k−1
j

p−1
j

)
(−1)p

−1
j

〈
gk1

j ,r
, gk1

j ,k
1
j −p−1

j

〉
+ Ωp−1

j

(
k−1
j

p

)
(−1)p

〈
gk1

j ,r
, gk1

j ,k
1
j −p1

j

〉
= Ωp−1

j D2(p,p)P
2Y (p, r)− Ωp−1

j D1(p,p)Y (p, r)

⇒ A1,α = Ωp−1
j (D2P

2 −D1)Y

A1,β(p, r) =
1

Ωq

(
k−1
j

p−1
j

)〈
gk1

j ,r
, gk1

j ,p
−1
j

〉
− 1

Ωq

(
k−1
j

p

)〈
gk1

j ,r
, gk1

j ,p
1
j

〉
=

1

Ωq
D2(p,p)P

2X(p, r)− 1

Ωq
D1(p,p)X(p, r)

⇒ A1,β =
1

Ωq
(D2P

2 −D1)X

A1,γ(p, r) = −
1

Ωq1
j

(
k

p

)〈
gk1

j ,r
, gk1

j ,p

〉
= − 1

Ωq1
j

D3(p,p)PX(p, r)

⇒ A1,γ = − 1

Ωq1
j

D3PX

A2,α(p, r) = Ωp

(
k−1
j

p−1
j

)
(−1)p

−1
j

〈
gk1

j ,r
, gk1

j ,k
1
j −p

〉
+ Ωp

(
k−1
j

p

)
(−1)p

〈
gk1

j ,r
, gk1

j ,k
1
j −p2

j

〉
= −ΩpD2(p,p)PY (p, r) + ΩpD1(p,p)P

−1Y (p, r)

⇒ A2,α = Ωp(−D2P +D1P
−1)Y

A2,β(p, r) = −
1

Ωq−1
j

(
k−1
j

p−1
j

)〈
gk1

j ,r
, gk1

j ,p

〉
+

1

Ωq−1
j

(
k−1
j

p

)〈
gk1

j ,r
, gk1

j ,p
2
j

〉
= − 1

Ωq−1
j

D2(p,p)PX(p, r) +
1

Ωq−1
j

D1(p,p)P
−1X(p, r)

⇒ A2,β =
1

Ωq−1
j

(−D2P +D1P
−1)X

A2,γ(p, r) =
1

Ωq

(
k

p

)〈
gk1

j ,r
, gk1

j ,p
1
j

〉
=

1

Ωq
D3(p,p)X(p, r)

⇒ A2,γ =
1

Ωq
D3X

For the above equations to go through as is, we need to check the case when pj = −1, since
definitions of PX and PY are different for this case. But, in this case, D1(p,p) = D2(p,p) = 0,
and hence the equations hold. Similarly, we need to check the case pj = 0 for blocks A1,α and A1,β,
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but again, D2(p,p) = 0 and hence the equations hold. Thus, we can write A as[
I 0
0 ΩjI

] [
D2P

2 −D1 D2P
2 −D1 −D3P

−D2P +D1P
−1 −D2P +D1P

−1 D3

]Ωp−1
j I 0 0
0 1

Ωq I 0
0 0 1

Ω
q1
j
I


Y 0 0
0 X 0
0 0 X


To show that A has rank 2nj,k, it suffices to show that the matrix

B =

[
D2P

2 −D1 −D3P
−D2P +D1P

−1 D3

]
has rank 2nj,k. Let us index rows of B using (p, s) and columns using (p, t) for s, t ∈ {1, 2}. Since
P is a permutation matrix, post multiplying by P takes column r of this matrix to column r−1

j ,
where the indices cycle whenever they are out of bounds. More specifically,

MP (p, r) = P−1M⊺(r,p) = M⊺(r1j ,p) = M(p, r1j ).

Hence, for a fixed row (p, 1) the non-zero entries in B are in columns (p−2
j , 1), (p, 1), (p−1

j , 2).

Similarly, non-zero entries in the row (p, 2) are in columns (p−1
j , 1), (p1

j , 1), (p, 2). Observe that
rows (p1

j , 1) and (p, 2) have non-zero entries in the same columns. This gives us a procedure to
convert this matrix into a lower triangular matrix using row operations, where indices are ordered
using any order <R that respects

1. (p, t) <R (q, t) if pj < qj
2. (p, 1) <R (q, 2) for all 0−1

j ≤ p,q ≤ k

In particular, any lexicographical ordering with highest priority to the jth coordinate works.
Note that only upper triangular non-zero entries using any such ordering are of the type

((p1
j , 1), (p, 2)). Now, we eliminate these using the following row operations:

R(p1
j , 1)← R(p1

j , 1) + CpR(p, 2))

for all p such that 0 ≤ p ≤ k−1
j . Here

Cp = −
B((p1

j , 1), (p, 2))

B((p, 2), (p, 2))
= −
−
(
k
p1
j

)
(
k
p

) =

(
kj

pj+1

)(
kj
pj

) =
kj − pj
pj + 1

Note that after this set of operations, B((p1
j , 1), (p, 2))← 0. On the other hand,

B((p1
j , 1), (p

1
j , 1))←B((p1

j , 1), (p
1
j , 1)) +

kj − pj
pj + 1

B((p, 2), (p1
j , 1))

=−
(
k−1
j

p1
j

)
+

kj − pj
pj + 1

(
k−1
j

p

)
=

(
k−1
j

p

)(
−kj − pj − 1

pj + 1
+

kj − pj
pj + 1

)
=

1

pj + 1

(
k−1
j

p

)
̸= 0
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The only non-zero entries in the upper triangle after this operation corresponds to positions
((p1

j , 1), (p, 2)), for 0−1
j ≤ p ≤ k−1

j , such that pj = −1. To eliminate these, we perform the
following row operations:

R(p1
j , 1)↔ R(p, 2)

for all 0−1
j ≤ p ≤ k−1

j such that pj = −1. Hence,

B((p, 2), (p, 2))← B((p1
j , 1), (p, 2)) =

(
k

p1
j

)
̸= 0

Note that R(p, 2) = 0 since this row corresponds to a dummy constraint. Also, the other two
non-zero entries in R(p1

j , 1) are in the first half, and hence this does not create any upper triangular
entries. Hence, this matrix is in fact lower triangular, in the given ordering <R of indices.

After the operations, among the diagonal terms, B((p, 2), (p, 2)) ̸= 0 for 0−1
j ≤ p ≤ k. Also,

B((p, 1), (p, 1)) ̸= 0 for 01
j ≤ p ≤ k. Therefore, the total number of non-zero diagonal entries is

nj,k

(
kj + 1

kj
+

kj − 1

kj

)
= 2nj,k

This proves that the matrix has rank 2nj,k, which is the same as the number of non-trivial rows,
and hence the system has a solution for any r1, r2. Consequently, we can always find polynomial
functions J, F,G as required.

B.5 Proof of Lemma 129

Proof. From Lemma 126, it suffices to focus on H being a polynomial. We break the time from ϕ
to 0 for which we want to flow the ODE given by (7.14) into (n+ 1) small chunks of length τ , i.e.,
let τ = ϕ/(n+ 1). Further, let Ai = T(n−i+1)τ,(n−i)τ . Then, the time-ϕ flow map can be write as the
composition of n+ 1 maps, that is

Tϕ,0 = Tτ,0 ◦ · · · ◦ Tϕ,ϕ−τ = An ◦ · · · ◦ A0

Let C0 = T0,ϕ(C). Let C1, . . . , Cn+1 be a sequence of compact sets such that Ai(Ci) is in the interior
of Ci+1; by choosing them small enough, we can make Cn+1 an arbitrary compact set containing C in
its interior. Below, we treat A0, . . . , An (and their approximations) as maps C0 → C1 → · · · → Cn+1,
and when we take the C1 norm, we do it on the appropriate compact set. For small enough η, the
η-discretized maps will stay inside the Ci.

Let Si denote the time-2π flow map obtained by running the ODE system (7.12) from Lemma
127 above which approximates the map T(n−i+1)τ,(n−i)τ = Ai. Further, let S ′

i denote the map
obtained by discretizing the ODE system as in (7.13) with step size η. Then, we have that for each
i, as η → 0,

∥S ′
i − Ai∥C1 ≤ ∥S ′

i − Si + Si − Ai∥C1

≤ ∥S ′
i − Si∥C1 + ∥Si − Ai∥C1

≤ O(η) +O(τ 2) (by Lemmas 127 and 128)
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We choose η = τ 2. Using the definition of C1 norm, this implies that

∥S ′
i − Ai∥ = O(τ 2) ∥DS ′

i −DAi∥ = O(τ 2),

where ∥·∥ denotes L∞ norm on Ci; for matrix-valued functions M(x) on Ci, ∥M∥ = supx∈Ci ∥M(x)∥2,
where ∥·∥2 denotes spectral norm. Again, using the definition of the C1 norm,

∥An ◦ · · · ◦ A0 − S ′
n ◦ · · · ◦ S ′

0∥C1

≤∥An ◦ · · · ◦ A0 − S ′
n ◦ · · · ◦ S ′

0∥+ ∥D(An ◦ · · · ◦ A0)−D(S ′
n ◦ · · · ◦ S ′

0)∥

We will bound each term individually. For the first term, note that

∥An ◦ · · · ◦ A0 − S ′
n ◦ · · · ◦ S ′

0∥
≤ ∥An ◦ · · · ◦ A1 ◦ A0 − An ◦ · · · ◦ A1 ◦ S ′

0∥+ ∥An ◦ · · · ◦ A1 ◦ S ′
0 − S ′

n ◦ · · · ◦ S ′
1 ◦ S ′

0∥
(by triangle inequality)

= ∥Tϕ−τ,0 ◦ A0 − Tϕ−τ ◦ S ′
0∥+ ∥An ◦ · · · ◦ A1 ◦ S ′

0 − S ′
n ◦ · · · ◦ S ′

1 ◦ S ′
0∥

≤ ∥DTϕ−τ,0∥∥S ′
0 − A0∥+ ∥An ◦ · · · ◦ A1 ◦ S ′

0 − S ′
n ◦ · · · ◦ S ′

1 ◦ S ′
0∥

≤ O(τ 2) + ∥An ◦ · · · ◦ A1 ◦ S ′
0 − S ′

n ◦ · · · ◦ S ′
1 ◦ S ′

0∥ (B.26)

Observe that

sup
x
∥An ◦ · · · ◦ A1 ◦ S ′

0(x)− S ′
n ◦ · · · ◦ S ′

1 ◦ S ′
0(x)∥

= sup
y=S′

0(x)

∥An ◦ · · · ◦ A1(y)− S ′
n ◦ · · · ◦ S ′

1(y)∥

≤ sup
y
∥An ◦ · · · ◦ A1(y)− S ′

n ◦ · · · ◦ S ′
1(y)∥

= ∥An ◦ · · · ◦ A1(y)− S ′
n ◦ · · · ◦ S ′

1(y)∥ (B.27)

Using (B.27), (B.26), and induction, we get that

∥An ◦ · · · ◦ A0 − S ′
n ◦ · · · ◦ S ′

0∥ ≤ O(nτ 2)
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Now, we bound the derivatives:

∥D(An ◦ · · · ◦ A0)−D(S ′
n ◦ · · · ◦ S ′

0)∥
≤ ∥D(An ◦ · · · ◦ A1 ◦ A0)−D(An ◦ · · · ◦ A1 ◦ S ′

0)∥
+ ∥D(An ◦ · · · ◦ A1 ◦ S ′

0)−D(S ′
n ◦ · · · ◦ S ′

1 ◦ S ′
0)∥ (by triangle inequality)

= sup
x

∥∥DTϕ−τ,0|A0(x)DA0(x)−DTϕ−τ,0|S′
0(x)

DS ′
0(x)

∥∥
+ sup

x

∥∥D(An ◦ · · · ◦ A1)|S′
0(x)

DS ′
0(x)−D(S ′

n ◦ · · · ◦ S ′
1)|S′

0(x)
DS ′

0)(x)
∥∥ (by chain rule)

≤ sup
x

∥∥DTϕ−τ,0|A0(x)DA0(x)−DTϕ−τ,0|S′
0(x)

DA0(x)
∥∥

+ sup
x

∥∥DTϕ−τ,0|S′
0(x)

DA0(x)−DTϕ−τ,0|S′
0(x)

DS ′
0(x)

∥∥ (by triangle inequality)

+ ∥DS ′
0∥∥D(An ◦ · · · ◦ A1)−D(S ′

n ◦ · · · ◦ S ′
1)∥ (B.28)

≤ sup
x

∥∥DTϕ−τ,0|A0(x) −DTϕ−τ,0|S′
0(x)

∥∥∥DA0∥

+ sup
x

∥∥DTϕ−τ,0|S′
0(x)

∥∥∥DA0 −DS0∥

+ ∥DS ′
0∥∥D(An ◦ · · · ◦ A1)−D(S ′

n ◦ · · · ◦ S ′
1)∥

≤
∥∥D2Tϕ−τ,0

∥∥∥S ′
0 − A′

0∥∥DA0∥+ ∥DTϕ−τ,0∥∥DA0 −DS ′
0∥

+ ∥DS ′
0∥∥D(An ◦ · · · ◦ A1)−D(S ′

n ◦ · · · ◦ S ′
1)∥

≤ O(τ 2) +
(
∥DA0∥+O(τ 2)

)
∥D(An ◦ · · · ◦ A1)−D(S ′

n ◦ · · · ◦ S ′
1)∥ (B.29)

where, for a 3-tensor T , we define ∥T ∥ = sup∥u∥=1∥T u∥2, where ∥T u∥2 is the spectral norm of the
matrix T u, and we define ∥D2Tϕ−τ,0∥ = supx∥D2Tϕ−τ,0(x)∥. In the last step, we use the fact that
∥DTs,t∥, ∥D2Ts,t∥ are bounded for all s, t > 0; this follows from Lemma 185 below. (Alternatively,
note that ∥DTs,t∥ can also be more directly bounded by Theorem 181.)

In the above, (B.28) follows using an argument similar to (B.27), (B.29) follows since ∥DA0 −DS ′
0∥ =

O(τ 2). Further, differentiating (B.33), we get

DA0 = I + τD(x,v)F (x, v, t) +O(τ 2)

where F denotes the defining equation of the ODE system in (7.14). Therefore, we get

∥DA0∥ ≤ 1 + τL+O(τ 2)

where L is the upper bound on ∥Df∥ over all the appropriate compact sets. Using this bound and
induction, we get that

∥D(An ◦ · · · ◦ A0)−D(S ′
n ◦ · · · ◦ S ′

0)∥ ≤ O(nτ 2)(1 + τL+O(τ 2))n = O(nτ 2enτL)

for small enough τ . Substituting nτ = ϕ, we get the overall C1 bound of

∥An ◦ · · · ◦ A0 − S ′
n ◦ · · · ◦ S ′

0∥C1 = O(ϕτeϕL).

150



Now, we can choose τ small enough so that the two maps are ϵ1-close, finishing the proof.
Concretely, we can write each S ′

i as a composition of affine-coupling maps (which constitute
the f1, . . . , fN in the lemma statement). In this manner, we can compose these compositions of
affine coupling maps over each τ -sized chunk of time so as to get a map which is overall close to
the required flow map.

Lemma 185. Consider the ODE d
dt
x(t) = F (x(t), t) for F (x, t) that is Cℓ in x ∈ Rd and continuous

in t. Let C be a compact set and suppose solutions exist for any (x(0), v(0)) ∈ C up to time T . Let
Ts,t be the flow map from time s to time t, for any 0 ≤ s, t ≤ T . Then for any 0 ≤ r ≤ ℓ, DrTs,t is
bounded on Ts(C).

Proof. Let ∂i1···ir =
∂r

∂xi1
···∂xir

. Using the chain rule as in Lemma 188, we find by induction that

d

dt
∂i1···ir(Tt(x)) =

d∑
i=1

∂iF (x(t), t)∂i1···ir(Tt(x)i) +G(DF, . . . , DrF,DTt, . . . , D
r−1Tt). (B.30)

for some polynomial G. For r = 1, the differential equation is given by Lemma 188. By a Grönwall
argument, a bound on DF gives an upper and lower bound on the singular values of DTt as
in (B.10). We use induction on r; for r > 1, let v(t) be equal to (∂i1···ir(Tt(x)))i1···ir written as one
large vector. By the chain rule and (B.30),

d

dt
∥v(t)∥2 ≤ ⟨|v(t)|, A|v(t)|+ b⟩ ≤

(
σmax(A) +

1

2

)
∥v(t)∥2 + 1

2
∥b∥2

for some A, b depending on DF, . . . , DrF,DTt, . . . , D
r−1Tt, where σmax denotes the maximum

singular value and |v| denotes entrywise absolute value. Grönwall’s inequality (Lemma 192) applied
to ∥v(t)∥2 then gives bounds on ∥v(t)∥2 and hence

∣∣ d
dt
∂i1···ir(Tt(x))

∣∣. This shows DrTs,t is bounded
when s ≤ t (by starting the flow at time s).

When s > t, note that the computation of the rth derivative of an inverse map involves up-to-r
derivatives of the forward map, and inverses of the first derivative. As we have a lower bound on
the singular value of DF , this implies that DrTs,t is bounded.

B.5.1 Proof of Lemma 128

We consider a more general ODE than the specific one in (7.12), of the form{
d
dt
(x(t)) = f(x(t), v(t), t)

d
dt
(v(t)) = g(x(t), v(t), t)

(B.31)

where f, g are C2 functions in x, v, t. Given a compact set C, suppose that the solutions are
well-defined for any (x(0), v(0)) ∈ C up to time T . Consider discretizing these ODEs into steps of
size η, as follows: {

T̃ x
i (Xi) = Xi+1 = Xi + ηf(Xi, Vi+1, ti)

T̃ v
i (Vi) = Vi+1 = Vi + ηg(Xi, Vi, ti)

(B.32)
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where ti = iη. We call this the alternating Euler update. The actual flow maps are given by{
T x
i (xi) = xi+1 = xi + ηf(xi, vi, ti) +

∫ (i+1)η

iη

∫ t

iη
x′′(s) ds dt

T v
i (vi) = vi+1 = vi + ηg(xi, vi, ti) +

∫ (i+1)η

iη

∫ t

iη
v′′(s) ds dt

(B.33)

We bound the local truncation error. This consists of two parts. First, we have the integral terms
in (B.33): ∥∥∥∥∥

[∫ (i+1)η

iη

∫ t

iη
x′′(s) ds dt∫ (i+1)η

iη

∫ t

iη
v′′(s) ds dt

]∥∥∥∥∥ ≤ 1

2
η2 max

s∈[0,ti]

∥∥∥∥[x′′(s)
v′′(s)

]∥∥∥∥ . (B.34)

Second we bound the error from using ṽi+1 := vi + ηg(xi, vi, ti) instead of vi in the x update,

∥η[f(xi, vi + ηg(xi, vi, ti), ti)− f(xi, vi, ti)]∥ ≤
∥∥∥∥η ∫ η

0

Dvf(xi, vi + sg(xi, vi, ti), ti)g(xi, vi, ti) ds

∥∥∥∥
≤ η2max

C′
∥Dvf∥max

C′
∥g∥ . (B.35)

where Dvf(x, v, t) denotes the Jacobian in the v variables (rather than the directional derivative),
and where we define

C ′ : = {(x, v + sg(x, v, t), t) : (x, v) = Tt(x0, v0) for some (x0, v0) ∈ C, 0 ≤ s ≤ T},

which ensures that it contains (xi, vi + sg(xi, vi, ti), ti) and (xi, vi, ti). The local truncation error is
then at most the sum of (B.34) and (B.35).

Supposing that

[
f
g

]
is L-Lipschitz in (x, v) ∈ R2d for each t, we obtain by a standard argument

(similar to the proof for the usual Euler’s method, see e.g., [AG11, §16.2]) that the global error at
any step is bounded by∥∥∥∥[x̃i

ṽi

]
−
[
xi

vi

]∥∥∥∥ ≤ η · e
Lti − 1

L

(
max
C′
∥Dvf∥max

C′
∥g∥+ 1

2
max
s∈[0,ti]

∥∥∥∥[x′′(s)
v′′(s)

]∥∥∥∥) . (B.36)

In the case when

[
f
g

]
is not globally Lipschitz, we show that we can restrict the argument to a

compact set on which it is Lipschitz. Let C ′′ be a compact set which contains {(x, v, t) : (x, v) =
Tt(x0, v0) for some (x0, v0) ∈ C, 0 ≤ s ≤ T} in its interior. Apply the argument to f̂ and ĝ which
are defined to be equal to f, g on C ′′, and are globally Lipschitz. Then the error bound applies to
the system defined by f̂ , ĝ. Hence, for small enough step size, the trajectory of the discretization
stays inside C ′′, and is the same as that for the system defined by f, g. Then (B.36) holds for small
enough η and L equal to the Lipschitz constant in (x, v) on C ′′.

To get a bound in C1 topology, we need to bound the derivatives of these maps as well. Let
Ts,t(x, v) denote the flow map of system (B.31). Let h(x, v, t) = (f(x, v, t), g(x, v, t)). Now, consider
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the system of ODEs 

d
dt
(x(t)) = f(x(t), v(t), t)

d
dt
(v(t)) = g(x(t), v(t), t)

d
dt
(α(t)) = D(x,v)f(x(t), v(t), t)

[
α(t)

β(t)

]
d
dt
(β(t)) = D(x,v)g(x(t), v(t), t)

[
α(t)

β(t)

] (B.37)

where α(t), β(t) are d×2dmatrices. Note that setting

[
α(0)
β(0)

]
= I2d and

[
α(t)
β(t)

]
= D(x,v)T0,t(x(0), v(0))

satisfies (B.37) by Lemma 188.
Now we claim that applying the alternating Euler update to (x, α), (v, β), the resulting (αi, βi)

is exactly the Jacobian of the flow map that arises from alternating Euler applied to x, v. This
means that we can bound the errors for α, β using the bound for the alternating Euler method.

The claim follows from noting that the alternating Euler update on α, β is

αi+1 = (Id, O) +D(x,v)f(xi, vi+1, ti)

[
αi

βi+1

]
βi+1 = (O, Id) +D(x,v)f(xi, vi, ti)

[
αi

βi

]
,

which is the same recurrence that is obtained from differentiating Xi+1, Vi+1 in (B.32) with respect
to X0, V0, and using the chain rule.

Thus we can apply (B.36) to get a bound for the Jacobians of the flow map. The constants in the
O(η) bound depend on up to the second derivatives of the x, v, α, β for the true solution, Lipschitz

constants for

[
f
g

]
, D

[
f
g

]
(on a suitable compact set), and bounds for Dvf, g,DvD(x,v)f,D(x,v)g (on

a suitable compact set).

B.5.2 Wasserstein bounds

Lemma 186. Given two distributions p, q and a function g with Lipschitz constant L = Lip(g),

W1(g#p, g#q) ≤ LW1(p, q)

Proof. Let ϵ > 0. Then there exists a coupling (x, t) ∼ γ such that∫
∥x− y∥2dγ(x, y) ≤ W1(p, q) + ϵ
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Consider the coupling (x′, y′) given by (x′, y′) = (g(x), g(y)) where (x, y) ∼ γ. Then

W1(g#p, g#q) ≤
∫
∥g(x)− g(y)∥2 dγ(x, y)

≤ Lip(g)

∫
∥x− y∥ dγ(x, y)

≤ LW1(p, q) + Lϵ.

Since this holds for all ϵ > 0, we get that

W1(g#p, g#q) ≤ LW1(p, q)

Lemma 187. Given two functions f, g : Rd → Rd that are uniformly ϵ1-close over a compact set C
in C1 topology, and a probability distribution p,

W1(f#(p|C), g#(p|C)) ≤ ϵ1

Proof. Consider the coupling γ, where a sample (x, y) ∼ γ is generated as follows: first, we sample
z ∼ p|C, and then compute x = f(z), y = g(z). By definition of the pushforward, the marginals of
x and y are f#(p|C) and g#(p|C) respectively. However, we are given that for this γ, ∥x− y∥ ≤ ϵ1
uniformly. Thus, we can conclude that

W1(f#(p|C), g#(p|C)) ≤
∫
Rd×Rd

∥x− y∥2 dγ(x, y)

≤
∫
Rd×Rd

ϵ1 dγ(x, y) = ϵ1

B.5.3 Proof of Lemma 131

Proof. Fix any R > 0, and set C = B(0, R). Consider the coupling (X, Y ) ∼ γ, where a sample
(X, Y ) is generated as follows: we first sample X ∼ p∗ = N (0, I2d). If X ∈ B(0, R), then we set
Y = X. Else, we draw Y from p∗|C. Clearly, the marginal of γ on X is p. Furthermore, since p∗
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and p∗|C are proportional within C, the marginal of γ on Y is p∗|C. Then, we have that

W1(p
∗, p∗|C) ≤

∫
R2d×C

∥x− y∥dγ

=
��������
∫
C×C
∥x− y∥dγ +

∫
R2d\C×C

∥x− y∥dγ

=

∫
R2d\C×C

∥x− y∥dγ

≤
∫
R2d\C×C

(∥x∥+ ∥y∥)dγ

≤
∫
R2d\C×C

(∥x∥+R)dγ

≤
∫
R2d\C×C

(∥x∥+R)dγ

=

∫
R2d\C

(∥x∥+R)dp∗

≤
∫
R2d\C

2∥x∥dp∗ = 2√
2π

∫
R2d\C

∥x∥e−
∥x∥2

2 dx

Now, note that
∫
R2d ∥x∥e−

∥x∥2
2 dx <∞. Hence, by the Dominated Convergence Theorem,

lim
R→∞

∫
R2d\B(0,R)

∥x∥e−
∥x∥2

2 dx = 0.

Thus, given any δ > 0, we can choose R large enough so that the integral above is smaller than δ,
which concludes the proof.

B.5.4 Derivatives of flow maps

We state and prove a technical lemma about the ODE that the derivative of a flow map satisfies.

Lemma 188. Suppose xt = x(t) satisfies the ODE

ẋ = F (x, t)

with flow map T (x, t) : Rn × R→ Rn. Suppose α(t) be the derivative of the map x 7→ T (x, t) at x0,
then α(t) satisfies

α̇ = DF (xt, t)α

with α(0) = I.

Proof. Let Tt(x) = T (x, t). Then Tt satisfies

Tt(x0) =

∫ t

0

F (xs, s) ds.
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Differentiating, we get

α(t) = DTt(x0) =

∫ t

0

D(F (xs, s)) ds

=

∫ t

0

DF (xs, s)DTs(x0) ds by chain rule

=

∫ t

0

DF (xs, s)α(s) ds.

Now, looking at the derivative with respect to t, we get

α̇ = DF (xt, t)α,

which is the required result.

B.5.5 Solving Perturbed ODEs

In this section, we state a result about finding approximate solutions of perturbed differential
equations. Consider the ODE having the following general form:

ẋ = Ax+ ϵg(x, t)

The reason we are concerned with this ODE is that the ODE given by Equation (7.12) has precisely

this form, namely with x ≡
[
x
v

]
, A ≡

[
0 Id

−diag(Ω2) 0

]
and ϵg(x, t) ≡ −τ

[
F (v, t)⊙ x

J(x, t) +G(x, t)⊙ v

]
.

Let T x : R × Rn → Rn be the time t flow map for this ODE. We will find a flow map
T y : R× Rn → Rn such that the maps T x

t defined by T x
t (x) = T x(t, x) and the map T y

t defined by
T y
t (y) = T y(t, y) are uniformly ϵ-close over C in Cr topology for all 0 ≤ t ≤ 2π. That is,

sup
x

∥T x
t (x)− T y

t (x)∥+ ∥DT x
t (x)−DT y

t (x)∥+ · · ·+ ∥DrT x
t (x)−DrT y

t (x)∥

is small, for all t ∈ [0, 2π]. Here Dr denotes the r-th derivative, and the norms are defined
inductively as follows: for a r-tensor T , we let ∥T ∥ = sup∥u∥=1 ∥T u∥; here T u is a (r − 1)-tensor.
(The choice of norm is not important; we choose this for convenience.)

Lemma 189. Consider the ODE

d

dt
x(t) = F (x(t), t) + εG(x(t), t) (B.38)

where x : [0, tmax]→ Rn, F,G : Rn × R→ Rn, and F (x, t), G(x, t) are C1, and F is L-Lipschitz.
Let C be a compact set, and suppose that for all x0 ∈ C, solutions to (B.38) with x(0) = x0 exist for
0 ≤ t ≤ tmax and ε = 0. Then there exists ε0 such that solutions to (B.38) with x(0) = x0 exist for
0 ≤ t ≤ tmax and 0 ≤ ε < ε0.

Moreover, letting x(ε)(t) be the solution with given ε, we have that as ε→ 0,
∥∥x(ε)(t)− x(0)(t)

∥∥ =

O(ε), where the constants in the O(·) depend only on L and max0≤t≤tmax,x0∈C
∥∥G(x(0)(t), t)

∥∥ (the
maximum of G on the ε = 0 trajectories).
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Proof. Let T ϵ(t, x0) be the flow map of (B.38). Let K = T 0(C× [0, tmax]) be the image of C× [0, tmax]
under the flow map T 0. Since F is C1, T 0 is C1, which implies that K is bounded. Fix some ϵ2 > 0.
Let B(K, r) denote the set

B(K, r) = {(x, t) ∈ Rn × [0, tmax] : d(K, x) ≤ r}

Let K2 = B(K, ϵ2). Note that since K is compact, so is K2. Let

M = max{ sup
(x,t)∈K2×[0,tmax]

∥F (x, t)∥, sup
(x,t)∈K2×[0,tmax]

∥G(x, t)∥}

M is finite since K2 is compact and F,G are C1.
Let h : R→ R be a 1-Lipschitz C1 function such that

h(x) = x if |x| ≤M

|h(x)| ≤ 2M for all x.

Let hn : Rn → Rn be defined as hn(x) =
x

∥x∥h(∥x∥). Then hn(x) is also C1 and is the identity

function on B(0,M). Let F1 = hn ◦ F and let G1 = hn ◦ F . Then F1, G1 are C1 functions such
that ∥F1∥, ∥G1∥ ≤ 2M . Further, F1 is L-Lipschitz. Now, we look at the ODE

d

dt
x(t) = F1(x(t), t) + εG1(x(t), t) (B.39)

Since F1, G1 are C1, note that the function H1(x, ϵ, t) = F1(x, t) + ϵG1(x, t) is C1 in x, t, ϵ.
Therefore, using the existence theorem for parametric ODEs (Theorem 1.2, [Chi06]), there is a

ϵ1, t1 > 0 such that solutions x
(ϵ)
1 (t) to (B.39) exist for all x0 ∈ C, ϵ < ϵ1 and t < t1. Further, the

extensibility result for the ODEs (Theorem 1.4, [Chi06]) states that if t1 is largest such value for

which such solutions exist, then there exists a x0 ∈ C and ϵ < ϵ1 such that limt→t1

∥∥∥x(ϵ)
1 (t)

∥∥∥ =∞.

Now, we will bound
∥∥∥x(ϵ)

1 − x
(0)
1

∥∥∥ for t < t1. Define α = x
(0)
1 − x

(ϵ)
1 . Then α(t) satisfies

d

dt
α(t) = F1(x

(0)
1 (t), t)− F1(x

(ϵ)
1 (t), t)− ϵG1(x

(ϵ)
1 (t), t)

Therefore,

d

dt
∥α(t)∥2 ≤ 2∥α(t)∥∥ d

dt
α(t)∥

≤ 2∥α(t)∥
∥∥∥F1(x

(0)
1 (t), t)− F1(x

(ϵ)
1 (t), t)− ϵG1(x

(ϵ)
1 (t), t)

∥∥∥
≤ 2∥α(t)∥(L∥α(t)∥+ 2ϵM)

≤ 2L∥α(t)∥2 + 4ϵM∥α(t)∥

=⇒ d

dt
∥α(t)∥ ≤ 1

2
∥α(t)∥−1 d

dt
∥α(t)∥2 ≤ L∥α(t)∥+ 2ϵM
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Now, Grönwall’s inequality (Lemma 192) gives us the bound

∥α(t)∥ ≤ 2ϵtMeLt ≤ 2ϵtmaxMeLtmax = O(ϵ) (B.40)

Since tmax, L,M are fixed, we can choose ϵ0 such that ϵ0 < ϵ1 and 2ϵ0tmaxMeLtmax < ϵ2, which
ensure that for all x0 ∈ C, ϵ < ϵ0 and t < min(t1, tmax), the point x

(ϵ)
1 (t) is in the interior of K2.

Therefore, if t1 ≤ tmax then limt→t1

∥∥∥x(ϵ)
1 (t)

∥∥∥ ∈ K2, which contradicts the extensibility result. Thus,

t1 > tmax, and hence flow maps for (B.39) exists for all 0 ≤ ϵ ≤ ϵ0 and 0 ≤ t ≤ tmax.
Now, we end with the remark that since F1 = F and G1 = G in K2, the flow map of (B.39) is a

flow map for (B.38) inside K2, and therefore, solutions to (B.38) exist for all x0 ∈ C, 0 ≤ ϵ ≤ ϵ0
and 0 ≤ t ≤ tmax.

Lastly, we will comment on value of M . Let G be L1-Lipschitz on K2, and let

M ′ = max
0≤t≤tmax,x0∈C

∥∥G(x(0)(t), t)
∥∥

Then M ≤M ′ + ϵ0L1. Therefore, we can just choose ϵ0 small enough so that M ≤ 2M ′ + 1, which
enforces the constants in O(·) notation to depend only on L,M ′ and tmax.

Lemma 190. Consider the ODE’s

d

dt
x(t) = F (x(t), t) + ϵG(x(t), t) (B.41)

d

dt
y0(t) = F (y0(t), t)

d

dt
y(t) = F (y(t), t) + εG(y0(t), t)

such F,G : Rn × R → Rn are in Cr+1. Let C ⊆ Rn be a compact set, and suppose that solu-
tions to (B.41) exist for all x0 ∈ C. Let T x(x0), T

y0(x0), and T y(x0) be the time tmax-flow map
corresponding to this ODE for initial values x(t) = y0(t) = y(t) = x0.

Then as ε→ 0, the maps T x
t and T y

t are O(ϵ2) uniformly close over C in Cr topology, for all
t ∈ [0, tmax]. The constants in the O(·) depend on max0≤k≤r+1,x0∈C,0≤t≤tmax

∥∥DkF (x, t)|x=y0(t)

∥∥ (the
first r + 1 derivatives of F on the y0-trajectories) and max0≤k≤r,x0∈C,0≤t≤tmax

∥∥DkG(x, t)|x=y0(t)

∥∥,
(the first r derivatives of G on the y0-trajectories).

Proof. Let Fϵ(x, t) = F (x, t) + ϵG(x, t), and let T ϵ
t (x0) denote the flow map of (B.41) starting at

x0. From (B.30), there is a polynomial P = Pi1,...,ir such that

d

dt
∂i1···irT

x
t (x0) =

d∑
i=1

∂iFϵ(x(t), t)∂i1···irT
ϵ
t,i + P (DFϵ, . . . , D

rFϵ, DT x
t , . . . , D

r−1T x
t ) (B.42)

On the other hand, applying (B.30) to y0 gives

d

dt
∂i1···irT

y0
t (x0) =

d∑
i=1

∂iF (y0(t), t)∂i1···irT
y0
t,i + P (DF, . . . , DrF,DT y0

t , . . . , Dr−1T y0
t )
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We will now show that these two trajectories are O(ϵ) uniformly close by induction on r. Note that
the base case (r = 0) is proved in Lemma 189. We will first show that∥∥P (DFϵ, . . . , D

rFϵ, DT x
t , . . . , D

r−1T x
t )− P (DF, . . . , DrF,DT y0

t , . . . , Dr−1T y0
t )
∥∥ = O(ϵ)

Since P is a fixed polynomial that depends on i1, . . . , ir, to show the above, we only need to show
that the coordinates are O(ϵ) close, for small enough ϵ.∥∥DkFϵ(x(t), t)−DkF (y0(t), t)

∥∥ ≤ ∥∥DkFϵ(x(t), t)−DkF (x(t), t)
∥∥+ ∥∥DkF (x(t), t)−DkF (y0(t), t)

∥∥
≤ ϵ
∥∥DkG(x(t), t)

∥∥+ ∥x(t)− y0(t)∥(2Nk+1 + 1)

≤ O(ϵ(2Mk + 2Nk+1 + 2))

where Nk+1 = supx0∈C,0≤t≤tmax

∥∥Dk+1F (x, t)|x=y0(t)

∥∥ and Mk = supx0∈C,0≤t≤tmax

∥∥DkG(x, t)|x=y0(t)

∥∥.
The second inequality follows since the base case (Lemma 189) implies that ∥x(t)− y0(t)∥ = O(ϵ),
and since Dk+1F is continuous, it follows that for small enough ϵ,

∥∥Dk+1F |(x,t)
∥∥ ≤ 2Nk+1+1, for all

x such that ∥x− y0(t)∥ = O(ϵ). Similarly, note that for small enough ϵ,
∥∥DkG(x(t), t)

∥∥ ≤ 2Mk +1,
since G is Ck. Therefore,

∥∥DkFϵ(x(t), t)−DkF (y0(t), t)
∥∥ = O(ϵ), where constants in O(·) depend

Mk and Nk+1.
To simplify notation, let α(t) = d

dt
∂i1···ir(T

x
t − T y0

t ). Then,

d

dt
α(t) =

d

dt
∂i1···ir(T

x
t − T y0

t )

=
d∑

i=1

∂iFϵ(x(t), t)∂i1···irT
x
t,i −

d∑
i=1

∂iF (y0(t), t)∂i1···irT
y0
t,i +O(ϵ)

=
d∑

i=1

∂iFϵ(x(t), t)∂i1···ir(T
x
t,i − T y0

t,i ) +
d∑

i=1

(∂iFϵ(x(t), t)− ∂iF (y0(t), t))∂i1···irT
y0
t,i +O(ϵ)

= DFϵ(x(t), t)∂i1···ir(T
x
t − T y0

t ) + (DFϵ(x(t), t)−DF (y0(t), t))∂i1···irT
x
t +O(ϵ)

= DFϵ(x(t), t)α(t) + (DF (x(t), t)−DF (y0(t), t) + ϵG(x(t), t))∂i1···irT
y0
t +O(ϵ)

⇒ 1

2

d

dt
∥α∥2 ≤ ∥DFϵ(x(t), t)∥∥α∥2 +O(ϵ(N2 +M0))∥∂i1···irT

y0
t ∥+O(ϵ)

⇒ d

dt
∥α∥ ≤ ∥DF (x(t), t)∥∥α∥+O(ϵ)

≤ (2N1 + 1)∥α∥+O(ϵ)

Now, Grönwall’s inequality (Lemma 192) gives us the bound,

∥α(t)∥ ≤ tmaxe
N1tmaxO(ϵ) = O(ϵ)

The constants in the last O(·) notation depend on tmax, Nk for 0 ≤ k ≤ r+1 and Mk for 0 ≤ k ≤ r.
This tells us that

∥T x
t − T y0

t ∥Cr = O(ϵ) (B.43)
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Now, note that T y
t satisfies

d

dt
y(t) = F (y(t), t) + ϵG(y(t), t) + ϵ(G(y0(t), t)−G(y(t), t))

=⇒ d

dt
y(t) = F (y(t), t) + ϵG(y(t), t) + ϵ2H(y(t), t)

where H(y, t) = 1
ϵ
(G(y0(t), t)−G(y(t), t)). Consider the system of ODEs

d

dt
y(t) = Fϵ(y(t), t) + γH(y(t), t) (B.44)

Note that when γ = 0, T x
t is the flow map for this system, and when γ = ϵ2, T y

t is the flow map for
this system. Therefore, applying (B.43) for the system (B.44), we get

∥T x
t − T y

t ∥Cr = O(γ) = O(ϵ2)

where the constants in O(·) notation depend on sup0≤k≤r,x0∈C,0≤t≤tmax

∥∥Dk+1Fϵ(x(t), t)
∥∥ which is

bounded by max0≤k≤r(2Nk+1 + 1) for small ϵ, and M ′
k = sup0≤k≤r,x0∈C,0≤t≤tmax

∥∥Dk+1H(x(t), t)
∥∥.

Using the definition of H,∥∥DkH(x(t), t)
∥∥ =

1

ϵ

∥∥DkG(y0(t), t)−DkG(x(t), t)
∥∥

≤ 1

ϵ
∥y0(t)− x(t)∥(2Mk+1 + 1)

=
1

ϵ
·O(ε) · (2Mk+1 + 1) = O(1)

where the constant in the O(·) depends on M0, . . . ,Mr+1 and N1, . . . , Nr+1. This proves the
dependence in O(·) notation as stated in the statement, completing the proof.

Corollary 191. Consider the ODE

ẋ = Ax+ ϵg(x, t)

such that ∥A∥ = 1 and g has bounded (r + 1)th derivatives on a compact set C. Let T x be the flow
map corresponding to this ODE. For fixed x0, let y0, y1 be functions satisfying

ẏ0 = Ay0

ẏ1 = Ay1 + g(y0(t), t)

such that y0(0) = x0 and y1(0) = 0. Consider the flow map T y : R × Rn such that T y(t, x0) =
y0(t) + ϵy1(t). Then, the maps T x

t and T y
t are O(ϵ2) uniformly close over C in Cr topology, for

all t ∈ [0, 2π]. The constants in the O(·) depend on ∥A∥ and the first r derivatives of g on the
trajectories x(t) = eAtx0, x0 ∈ C.

This follows directly from Lemma 190, after noting ẏ = Ay0 + εAy1 + εg(y0(t), t) = Ay +
εg(y0(t), t). Note that F (x) = Ax is a linear function, so derivatives of F are bounded, and the y0
trajectories can be computed easily.
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B.5.6 Grönwall lemma

The following lemma is very useful for bounding the growth of solutions, or errors from perturbations
to ODE’s.

Lemma 192 (Grönwall). If x(t) is differentiable on t ∈ [0, tmax] and satisfies the differential
inequality

d

dt
x(t) ≤ ax(t) + b,

then

x(t) ≤ (bt+ x(0))eat

for all t ∈ [0, tmax].
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Appendix C

Implementation details for Algorithm 5

We justify here that our algorithm solves the robust subspace approximation problem with sublinear
space in the general turnstile streaming model within the claimed time bounds.

The only times the input matrix A is involved in computation directly is during left matrix
multiplications by Sparse Cauchy matrices (TA, C1A, C2A), and in the computation of HiA from
the Sampler Algorithm (Alg 8). All of these are oblivious linear sketches, and thus can be performed
online with low space in input sparsity time.

We note that we only make use of limited independence Cauchy variables for the proofs in this
paper. Thus we can store each matrix and perform multiplication with each stream update in
sublinear space by storing just the random seed for each matrix (see Section J of [SWZ16] for a
full description). The Sampler Algorithm was originally a streaming algorithm, and we only keep
log d poly(k/ϵ) copies in parallel over the course of the entire algorithm.

The algorithm performs BootstrapCoreset twice: once with TA and once with V TUT as
input. Note that we cannot compute the projection A(Id− TA) or A(Id− V TUT ) until the after
the stream is finished. Fortunately, since H is oblivious, we can right multiply HA by (Id − P )
once P is available, and only then perform the sampling procedure P from Extract (Alg. 9).

Except for the very last step involving the algorithm of [BPR94], all other steps in the algorithm
are standard matrix operations on matrices of small size.
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Appendix D

Miscellaneous Technical Tools

D.1 Properties of Poisson Distribution

Let X be a measure space with measure µ. We consider a poisson point process Φ with parameter
λ over X , to be a point process such that for any B ⊆ X of finite measure,

P[Φ(B) = n] =
Λ(B)ne−Λ(B)

n!
(D.1)

where Λ(B) = λVµ(B) and Φ(B) denote the number of points of Φ contained in B. These point
processes satisfy the following property:

Proposition 193. For a poisson process Φ and two fixed disjoint sets B1, B2, the random variables
Φ(B1) and Φ(B2) are independent.

For a complete formal treatment of poisson point processes, see . A simple computation shows
that E[Φ(B)] = λVµ(B) for any set B ⊆ X of finite measure. Equivalently, we shall also say
that Φ(B) is given by the measure λµ. We define Φ(B1, . . . , BK) to denote the number of tuples
of distinct points (x1, . . . , xk) ∈ Φ such that xi ∈ Bi. We now claim that E[Φ(B1, . . . , Bk)] =
λkVµ(B1) · · ·Vµ(Bk).

Lemma 194. Let B1, . . . , Bk ⊆ X be of finite measure such that Vµ(Bi ∩Bj) = 0. Then

E[Φ(B1, . . . , Bk)] = λkVµ(B1) · · ·Vµ(Bk).

Proof. First, observe that we can construct B′
i which are pairwise disjoint, such that B′

i = Bi \Xi

with Vµ(Xi) = 0. Then Φ(B1, . . . , Bk) = Φ(B′
1, . . . , B

′
k) almost surely, and it suffices to show the

result on B′
1, . . . , B

′
k. Therefore, we may assume that Bi are pairwise disjoint.

Since B1, . . . , Bk are pairwise disjoint, Φ(B1, . . . , Bk) = Φ(B1) · · ·Φ(Bk). Further, Φ(Bi) are
independent due to Proposition 193. Therefore,

E[Φ(B1, . . . , Bk)] = E[Φ(B1) · · ·Φ(Bk)]

= E[Φ(B1)] · · ·E[Φ(Bk)]

= λkVµ(B1) · · ·Vµ(Bk)

which completes the proof.
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Lemma 195. For any B ⊂ X of finite measure, let B1 = . . . = Bk = B. Then

E[Φ(B1, . . . , Bk)] = λkVµ(B)k = λkVµ(B1) · · ·Vµ(Bk).

Proof. Note that if Φ(B) = n ≥ k, then Φ(B1, . . . , Bk) =
n!

(n−k)!
, and otherwise Φ(B) = 0. Therefore,

E[Φ(B1, . . . , Bk)] =
∞∑
n=k

P[Φ(B) = n] · n!

(n− k)!

=
∞∑
n=k

Λ(B)ne−Λ(B)

n!
· n!

(n− k)!
from eq. (D.1)

= Λ(B)ke−Λ(B) ·
∞∑
n=k

Λ(B)n−k

(n− k)!

= Λ(B)ke−Λ(B) · eΛ(B) = Λ(B)k

Since Λ(B) = λVµ(B), we get the required result.

By using Lemmas 194 and 195, it follows that

Lemma 196. Let B1, . . . , Bk ⊆ X be finite measure subsets such that for all i, j, either Vµ(Bi∩Bj) =
0 or Bi = Bj. Then

E[Φ(B1, . . . , Bk)] = λkVµ(B1) · · ·Vµ(Bk).

The proof is essentially the same as Lemma 194, we just group the dependent sets together
and apply Lemma 195 to compute the expectation on these sets rather than breaking it up into
different parts. Now, we prove the main claim:

Lemma 197. Let B1, . . . , Bk ⊆ X be of finite measure. Then

E[Φ(B1, . . . , Bk)] = λkVµ(B1) · · ·Vµ(Bk).

Proof. For each binary string S ̸= 0 (where 0 indicates all zero binary string) of size k, define
BS =

⋂k
i=1Ci where Ci = Bi if Si = 1 and Ci = B̄i otherwise. Let S =

{
S ∈ 2k, S ̸= 0

}
. For

each i, define Si =
{
S ∈ 2k : Si = 1

}
. Then we have Bi =

⋃
S∈Si

BS. Therefore, by linearity of
expectation, we know that

E[Φ(B1, . . . , Bk)] =
∑
Si∈Si

E[Φ(BS1 , . . . , BSk
)]

Further, for any S1, S2 ∈ S, either Vµ(BS1 ∩BS2) = 0 or S1 = S2. Therefore, by Lemma 196,

E[Φ(B1, . . . , Bk)] =
∑
Si∈Si

E[Φ(BS1 , . . . , BSk
)] =

∑
Si∈Si

λkVµ(BS1) · · ·Vµ(BSk
)

Since we are looking at all possible such sums, we have

λk
∑
Si∈Si

k∏
i=1

Vµ(BSi
) = λk

k∏
i=1

(∑
Si∈Si

Vµ(BSi
)

)
= λk

k∏
i=1

Vµ(Bi)

Combining the two equations, we have the required result.
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Now, consider any set B ⊆ X k that is measurable with respect to µk. Define Φ(B) to be the
expected number of tuples (x1, . . . , xk), such that xi are distinct, and the vector (x1, . . . , xk) ∈ B.
Then we claim that Φ defines a measure on X k, given by the measure λkµk. Note that Φ is a
measure by linearity of expectation. Hence, it suffices to show that Φ agrees with λkµk on set of
generators of µk. Since the family of sets B1 × · · · × Bk where Bi ⊆ X is µ measurable forms a
basis for the measurable sets of µk, we can see that λkµk and Φ agree due to Lemma 197, which
proves the following:

Theorem 198. Let µ be a measure on X . Let Φ be a poisson process with parameter λ. For
any k, and for any B ⊆ X k measurable with respect to µk, let Φ(B) denote the number of tuples
(x1, . . . , xn) ∈ Φ of distinct points such that (x1, . . . , xk) ∈ B. Then E[Φ(B)] is given by the measure
λkµk. In other words,

E[Φ(B)] =

∫
B

λkµk = λkVµ(B)

D.2 Bounds on Binomial Coefficients

We first recall some exponential bounds on 1 + x. We have the standard upper bound:

ex ≥ 1 + x ∀x ∈ R (D.2)

On the other hand, we have the lower bound:

e
x

1+x ≤ 1 + x ≤ ex ∀x > −1 (D.3)

This follows since

1− t ≤ e−t =⇒ 1− x

1 + x
≤ e−

x
1+x =⇒ 1

1 + x
≤ e−

x
1+x

We get Equation (D.3) from this by taking reciprocals whenever 1
1+x
≥ 0. Further, Equation (D.3)

implies that
e

x
2 ≤ 1 + x ≤ ex ∀ 0 ≤ x ≤ 1 (D.4)

We also recall the Sterling’s Approximation - the non-asymptotic version of Sterling’s Approximation
is given in Robbins [Rob55] as

√
2πn

(n
e

)n
exp

(
1

12n+ 1

)
≤ n! ≤

√
2πn

(n
e

)n
exp

(
1

12n

)
(D.5)

We can use these exponential bounds on (1+x) to bound the binomial coefficients. In particular,
we are interested in bounded the binomial coefficient

(
n+x
k

)
in the case where x, k ≤ n

10
. Recall by

the definition of binomial coefficients:(
n+ x

k

)
=

1

k!

k−1∏
i=0

(n+ x− i) =
nk

k!

k−1∏
i=0

(
1 +

x− i

n

)
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Using Equation (D.2) we get the following upper bound:(
n+ x

k

)
≤ nk

k!
exp

(
k−1∑
i=0

x− i

n

)

≤ nk

k!
exp

(
2kx− k2 + k

2n

)
Using Equation (D.4) we get the following lower bound when n+ x− k ≥ |x|, k:(

n+ x

k

)
≥ nk

k!
exp

(
k−1∑
i=0

x−i
n

1 + x−i
n

)

=
nk

k!
exp

(
k−1∑
i=0

x− i

n+ x− i

)

=
nk

k!
exp

(
k−1∑
i=0

x− i

n
+

x− i

n+ x− i
− x− i

n

)

=
nk

k!
exp

(
k−1∑
i=0

x− i

n
− (x− i)2

n(n+ x− i)

)

≥ nk

k!
exp

(
2kx− k2 + k

2n
− 2k(|x|+ k)

n

)
Where the last inequality follows since (x − i)2 ≤ 2x2 + 2i2 ≤ 2x2 + 2k2 ≤ 2(|x| + k)(n + x − i)
assuming that n+ x− i ≥ |x|, k. Together, we get the following upper and lower bounds on the
binomial coefficients:

nk

k!
exp

(
2kx− k2 + k

2n
− 2k|x|+ 2k2

n

)
≤
(
n+ x

k

)
≤ nk

k!
exp

(
2kx− k2 + k

n

)
(D.6)

D.3 Bounding the matrix integral in Equation 5.6

We prove a variant of the Cauchy-Schwarz inequality that gives us a handle on norms of matrix
integrals.

Lemma 199. Let f : Rd → R and A : Rd → Rn be integrable functions, with M =
∫
x
f(x)A(x)dx.

Then we have

∥M∥22 =
∥∥∥∥∫

x

f(x)A(x)ds

∥∥∥∥2
2

≤
(∫

x

|f(x)|2dx
)(∫

x

∥A(x)∥22dx
)
. (D.7)

Similarly, if A : Rd → Rn×n is a matrix valued function then

∥M∥2F =

∥∥∥∥∫
x

f(x)A(x)

∥∥∥∥2
F

≤
(∫

x

|f(x)|2dx
)(∫

x

∥A(x)∥2Fdx
)
. (D.8)
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Proof. The proof follows from the Cauchy-Schwarz inequality. Since we integrate component-wise,
for eq. (D.7) we have that

M2
i =

(∫
x

f(x)A(x)idx

)2

≤
(∫

x

f(x)2dx

)(∫
x

A(x)2i dx

)
.

Summing over i, we get the result. The matrix variant eq. (D.8) follows by looking at the matrix
M as a vector in Rn2

.

D.4 Proof of Lemma 79

We restate the lemma for convenience:

Lemma 79. Let d > 0 be sufficiently large. Let p = p̂d and q = q̂d be any product distributions,

and define R(x) = q(x)
p(x)

. Suppose we have the following third moment bound: Ex∼p̂

[(
log q̂

p̂

)3]
<∞.

Then, for any ϵ, there exist constants α = α(p̂, q̂, ϵ), µ = µ(p̂, q̂, ϵ) < 0 such that

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]
≥ 1

2
− ϵ and Px∼p

[
R(x) ≥ exp

(
µd+ α

√
d
)]
≥ 1

2
− ϵ.

Proof. We will analyze the behaviour of R(x) using the Berry-Esseen theorem. Given that p∗ = p̂d

and q = q̂d are product distributions, let r(x) be the random variable defined by r(x) = q̂(x)
p̂(x)

,

x ∼ p̂. Let yi(x) = log r(x) for 1 ≤ i ≤ d be d independent copies of the random variable r(x).
Let E[yi] = µr, E

[
∥yi − µr∥2

]
= σ2

r and E
[
∥yi − µr∥3

]
= γr, all of which are well defined by the

hypothesis of the lemma. Let Y =
∑d

i=1 yi, and Z be the standard Gaussian in R. Then, by the
Berry-Esseen Theorem [Dur19, Theorem 3.4.17],

P
[
Y − µrd

σr

√
d
≤ −c

]
≥ P[Z ≤ −c]− CBE · γr

σ3
r

√
d

,

where CBE < 1 [Bee72] is an absolute constant. We can now choose c = c(ϵ) such that P[Z ≤ c] ≥ 1−ϵ
2
.

Further, we can choose d large enough so that CBE·γ
σ3

√
d
≤ ϵ

2
. Then for µ = µr and α = cσr, we have

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]
≥ 1

2
− ϵ.

Since Z is symmetric around 0, Berry-Esseen gives us the other inequality for the same choice of µ
and α,

P
[
Y − µrd

σr

√
d
≥ c

]
≥ P[Z ≥ c]− CBE · γr

σ3
r

√
d
≥ 1

2
− ϵ.

Note that the constants µ and α are independent of d. Further, note that µ = µr = −KL(p̂||q̂) <
0.
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D.5 Invertibility of the Hessian

We prove that the Hessian of NCE loss for the exponential family given by T (x) = (x4
1, . . . , x

4
d, 1) is

invertible. In particular, we have the following lemma:

Lemma 200. Let Q = N (0, Id) be the standard Gaussian in Rd. Let P̂ be the log concave
distribution defined in definition 77. Let P = P̂ d. Let q and p denote the density functions of Q
and P respectively. Observe that P is in the exponential family given by T (x) = (x4

1, . . . , x
4
d, 1), and

equals Pθ∗ for some θ∗. Then the hessian of the NCE loss with respect to distribution P and noise
Q given by

H = ∇2
θL(θ∗) =

1

2

∫
x

p∗q

p∗ + q
T (x)T (x)⊤

is invertible.

Proof. For any subset A ⊆ Rd, define

HA =
1

2

∫
x∈A

p∗q

p∗ + q
T (x)T (x)⊤.

Observe that the density functions p∗ and q of P∗ and Q respectively are strictly positive over all
of Rd. Therefore, for any subset A ⊆ Rd and any v ∈ Rd+1, we have

v⊤Hv ≥ 1

2

∫
x∈A

p∗q

p∗ + q
v⊤T (x)T (x)⊤v = v⊤HAv.

Given a vector v ∈ Rd+1, we will pick A such that
∣∣T (x)⊤v∣∣ > 0 for all x ∈ A. Note that the

set B = {e1 + ed+1, . . . , ed + ed+1, ed+1} is a basis. Therefore, if b⊤v = 0 for all b ∈ B, then v = 0.
Hence, there exists some x ∈ {e1, . . . , ed} such that

∣∣T (x)⊤v∣∣ > 0. Since x 7→ T (x)⊤v is a continuous
function, we can find an open set A around x such that∣∣T (y)⊤v∣∣ > 0, ∀y ∈ A.

It follows that

v⊤HAv =
1

2

∫
x∈A

p∗q

p∗ + q
v⊤T (x)T (x)⊤v =

1

2

∫
x∈A

p∗q

p∗ + q

∣∣T (x)⊤v∣∣2 > 0.

Let B = Rd \ A. Since v⊤HAv > 0 and v⊤HBv ≥ 0, we have that v⊤Hv > 0. Since this holds for
any arbitrary non-zero vector v, the matrix H must be full rank. Since H is an integral of PSD
matrices, it is a full rank PSD matrix and hence invertible.

D.6 Tail bounds for Equation 5.17

We prove that some Tup = O(σ2
√
d) suffices to obtain the bounds in eq. (5.17). Concretely, we

prove tail bounds for ∥T (x)∥ using tail bounds for P∗ and Q. We will use Lemma 1 from [LM00]
which proves a bound for χ2 distributions:
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Lemma (Lemma 1, [LM00]). If X is a χ2 random variable with d degrees of freedom, then for any
positive t,

P
[
X − d ≥ 2

√
td+ 2t

]
≤ exp(−t).

Then, for x ∼ Q, ∥x∥2 is a χ2 random variable with d degrees of freedom. Observe that for
t, d ≥ 4, we have d+ 2t+ 2

√
td ≤ 2td. In particular, we have the weaker bound

Px∼Q

[
∥x∥2 ≥ 2dt2

]
≤ exp

(
−t2
)
,

implying that

Px∼Q

[
∥x∥ ≥ t

]
≤ exp

(
− t2

2d

)
.

Further, if ∥x∥ ≥ σ2
√
d, q(x) ≥ p∗(x), implying that for t ≥ σ2

√
d

Px∼P∗

[
∥x∥ ≥ t

]
≤ exp

(
− t2

2d

)
.

In particular, for any δ such that log(1/δ) ≥ σ4, we have

Px∼Q

[
∥x∥ ≥

√
2d log(1/δ)

]
≤ δ and Px∼P∗

[
∥x∥ ≥

√
2d log(1/δ)

]
≤ δ. (D.9)
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