A new proof of the 2-dimensional Halpern-Läuchli Theorem

Andy Zucker

January 2017

Abstract

We provide an ultrafilter proof of the 2-dimensional Halpern-Läuchli Theorem in the following sense. If T_{0} and T_{1} are trees and $T_{0} \otimes T_{1}$ denotes their level product, we exhibit an ultrafilter $\mathcal{U} \in \beta\left(T_{0} \otimes T_{1}\right)$ so that every $A \in \mathcal{U}$ contains a subset of the form $S_{0} \otimes S_{1}$ for suitable strong subtrees of T_{0} and T_{1}. We then discuss obstacles to extending our method of proof to higher dimensions.

1 Introduction

Our conventions on trees mostly follow [2]. By a tree (T, \leq), we mean a rooted, finitelybranching tree of height ω so that each $t \in T$ has at least 2 immediate successors. If $t \in T$, we set $\operatorname{Pred}(t, T):=\{s \in T: s \npreceq t\}$. The level of $t \in T$, denoted $\operatorname{Lev}(t, T)$, is the number $|\operatorname{Pred}(t, T)|$. If $n<\omega$, we set $T(n):=\{t \in T: \operatorname{Lev}(t, T)=n\}$. Given $s, t \in T$, we say that t is an immediate successor of s in T if $s \leq t$ and $\operatorname{Lev}(t, T)=\operatorname{Lev}(s, T)+1$. Write $\operatorname{IS}(s, T)$ for the immediate successors of s in T. Note that for every $s \in T, 2 \leq|\operatorname{IS}(s, T)|<\omega$.

A subset $S \subseteq T$ is called a strong subtree of T if $\left.(S, \leq\rceil_{S}\right)$ is a tree satisfying the following two items.

1. For some increasing function $f: \omega \rightarrow \omega$, we have $S(n) \subseteq T(f(n))$.
2. For every $s \in S$ and $t \in \operatorname{IS}(s, T)$, there is a unique $t^{\prime} \in \operatorname{IS}(s, S)$ with $t \leq t^{\prime}$.

If in item (1) we have a specific $f: \omega \rightarrow \omega$ in mind, we call $S \subseteq T$ an f-strong subtree of T.

If $d<\omega$ and T_{0}, \ldots, T_{d-1} are trees, the level product, denoted $T_{0} \otimes \cdots \otimes T_{d-1}$, is the set $\bigcup_{n} T_{0}(n) \times \cdots \times T_{d-1}(n)$, which receives a tree structure in the obvious way.

We are now ready to state the Halpern-Läuchli Theorem [1].

[^0]Theorem 1.1 (Halpern-Läuchli). Let $d<\omega$, and let T_{0}, \ldots, T_{d-1} be trees. Let
$\chi: T_{0} \otimes \cdots \otimes T_{d-1} \rightarrow 2$ be a coloring. Then there are an increasing function $f: \omega \rightarrow \omega$ and f-strong subtrees $S_{i} \subseteq T_{i}$ so that $S_{0} \otimes \cdots \otimes S_{d-1}$ is monochromatic for χ.

The parameter d is referred to as the dimension. We will provide a new proof of the Halpern-Läuchli Theorem for $d=2$.

2 Warmup in one dimension

As a warmup, we will first provide a new proof for $d=1$. If T is a tree, a branch through T is a maximal linearly ordered subset of T. If $x \subseteq T$ is a branch, then for every $n<\omega$, there is a unique element of $T(n)$ in x, which we will denote by $x(n)$. Let $[T]$ denote the set of branches through T. We endow $[T]$ with the topology generated by the sets $\left\langle N_{t}: t \in T\right\rangle$, where for $t \in T$, we set $N_{t}:=\{x \in[T]: t \in x\}$. With this topology, $[T]$ is homeomorphic to Cantor space. Of particular interest will be the ideal of nowhere dense subsets of $[T]$.

For X any nonempty set, let βX denote the set of ultrafilters on X. In particular, let $\beta([T])$ denote the set of ultrafilters on $[T]$, where we now view $[T]$ as just a set. Fix $\mathcal{U} \in \beta([T])$ avoiding the nowhere dense ideal. Also fix any nonprincipal ultrafilter $\mathcal{V} \in \beta \omega$. We define the ultrafilter $\mathcal{U} \otimes \mathcal{V} \in \beta T$ as follows. If $A \subseteq T$, we have

$$
A \in \mathcal{U} \otimes \mathcal{V} \Leftrightarrow \forall^{\mathcal{U}} x \in[T] \forall^{\mathcal{V}} n<\omega(x(n) \in A)
$$

Fix $A \in \mathcal{U} \otimes \mathcal{V}$. We will show that A contains a strong subtree of T. To see this, first set

$$
A_{\mathcal{V}}:=\{x \in[T]:\{n<\omega: x(n) \in A\} \in \mathcal{V}\}
$$

By the definition of $\mathcal{U} \otimes \mathcal{V}$, we have $A_{\mathcal{V}} \in \mathcal{U}$. As \mathcal{U} avoids the nowhere dense ideal, $A_{\mathcal{V}}$ is somewhere dense. This means that for some $t \in T, A_{\mathcal{V}}$ is dense in N_{t}. Pick any $x \in A_{\mathcal{V}}$ with $t \in x$. Then $\{n<\omega: x(n) \in A\} \in \mathcal{V}$. So for some $n<\omega$, we have $t \leq x(n)$ and $x(n) \in A$. Set $S(0)=\{x(n)\}$.

Assume $S(m)=\left\{s_{0}, \ldots, s_{k-1}\right\}$ has been determined. Let $\bigcup_{i<k} \operatorname{IS}\left(s_{i}, T\right)=\left\{t_{0}, \ldots, t_{\ell-1}\right\}$. For each $i<\ell$, we can find $x_{i} \in A_{\mathcal{V}}$ with $t_{i} \in x_{i}$. Then $\bigcap_{i<\ell}\left\{n<\omega: x_{i}(n) \in A\right\} \in \mathcal{V}$. So for some suitably large n, set $S(m+1)=\left\{x_{i}(n): i<\ell\right\}$.

3 The proof for 2 dimensions

The proof for $d=2$ will be very similar to the proof for $d=1$. We will choose ultrafilters $\mathcal{U} \in \beta\left(\left[T_{0} \otimes T_{1}\right]\right)$ and $\mathcal{V} \in \beta \omega$ and form $\mathcal{U} \otimes \mathcal{V}$ as before, and argue that every $A \in \mathcal{U} \otimes \mathcal{V}$ contains a subset of the form $S_{0} \otimes S_{1}$ for some f-strong subtrees S_{0} and S_{1}. The added difficulty in dimension 2 is that we must choose \mathcal{U} more carefully.

Notice first that $\left[T_{0} \otimes T_{1}\right] \cong\left[T_{0}\right] \times\left[T_{1}\right]$. Let $\pi_{i}:\left[T_{0}\right] \times\left[T_{1}\right] \rightarrow\left[T_{i}\right]$ be the projection maps. We call $Z \subseteq\left[T_{0}\right] \times\left[T_{1}\right]$ a dense-by-dense-filter, or DDF for short, if

1. $\pi_{0}(Z) \subseteq\left[T_{0}\right]$ is dense.
2. Letting $(Z)_{x}=\left\{y \in\left[T_{1}\right]:(x, y) \in z\right\}$, the collection $\left\{(Z)_{x}: x \in \pi_{0}(Z)\right\}$ generates a filter of dense subsets of $\left[T_{1}\right]$.

If $s \in T_{0}$ and $t \in T_{1}$, we say $Z \subseteq N_{s} \times N_{t}$ is (s, t)-DDF if the relativized analogs of items (1) and (2) hold. We call $Z \subseteq\left[T_{0}\right] \times\left[T_{1}\right]$ somewhere $D D F$ if Z is (s, t)-DDF for some $s \in T_{0}$ and $t \in T_{1}$.

Proposition 3.1. The collection of somewhere DDF subsets of $\left[T_{0}\right] \times\left[T_{1}\right]$ is weakly partition regular, i.e. for any $k<\omega$ and partition $\left[T_{0}\right] \times\left[T_{1}\right]=P_{0} \cup \cdots \cup P_{k-1}$, some P_{k} contains a somewhere DDF subset.

Proof. We prove a "relativized" version. First suppose that $X \subseteq\left[T_{0}\right]$ is non-meager and $Y \subseteq\left[T_{1}\right]$ is somewhere dense. By zooming in to a suitable $N_{s} \subseteq\left[T_{0}\right]$ and $N_{t} \subseteq\left[T_{1}\right]$, we may assume that $X \subseteq\left[T_{0}\right]$ is nowhere meager and $Y \subseteq\left[T_{1}\right]$ is dense.

Fix a partition $X \times Y=P_{0} \cup \cdots \cup P_{\ell-1}$. We will attempt to find $D \subseteq P_{0}$ which is DDF. Enumerate $T_{0}:=\left\{s_{n}: n<\omega\right\}$. First set $Y=Y_{0}$. At stage k, starting with $k=0$, we find if possible some $x_{k} \in X \cap N_{s_{k}}$ so that $Y_{k+1}:=\left(P_{0}\right)_{x_{k}} \cap Y_{k}$ is dense. If we can do this for every $k<\omega$, then P_{0} contains a DDF subset as desired.

Suppose we fail at stage k. This means that for every $x \in X \cap N_{s_{k}}$, there is some $t_{x} \in T_{1}$ so that $\left(P_{0}\right)_{x} \cap Y_{k} \cap N_{t_{x}}=\emptyset$. Since X is nowhere meager, there is some $t \in T_{1}$ so that $X^{\prime}:=\left\{x \in X \cap N_{s_{k}}: t_{x}=t\right\}$ is non-meager. Setting $Y^{\prime}=Y_{k} \cap N_{t}$, we have X^{\prime} non-meager, Y^{\prime} somewhere dense, and the partition relative to $X^{\prime} \times Y^{\prime}$ has one fewer piece.

We can now complete the proof of Halpern-Läuchli for $d=2$. Let $\mathcal{U} \in \beta\left(\left[T_{0}\right] \times\left[T_{1}\right]\right)$ be an ultrafilter chosen so that every large set contains a somewhere DDF subset. Let $\mathcal{V} \in \beta \omega$ be any non-principal ultrafilter, and define $\mathcal{U} \otimes \mathcal{V}$ exactly as before.

Fix $A \in \mathcal{U} \otimes \mathcal{V}$. We will show that A contains a subset of the form $S_{0} \otimes S_{1}$ for suitable strong subtrees $S_{0} \subseteq T_{0}$ and $S_{1} \subseteq T_{1}$. First set

$$
A_{\mathcal{V}}:=\left\{(x, y) \in\left[T_{0}\right] \times\left[T_{1}\right]:\{n<\omega:(x(n), y(n)) \in A\} \in \mathcal{V}\right\}
$$

By definition of $\mathcal{U} \otimes \mathcal{V}$, we have $A_{\mathcal{V}} \in \mathcal{U}$. Let $D \subseteq A_{\mathcal{V}}$ be an (s, t)-DDF subset for some $s \in T_{0}$ and $t \in T_{1}$. Pick some $(x, y) \in D$; then $\{n<\omega:(x(n), y(n)) \in A\} \in \mathcal{V}$. Pick $n>$ $\max \left(\operatorname{Lev}\left(s, T_{0}\right), \operatorname{Lev}\left(t, T_{1}\right)\right)$ with $(x(n), y(n)) \in A$, and set $S_{0}(0)=\{x(n)\}, S_{1}(0)=\{y(n)\}$.

Assume $S_{0}(m)=\left\{s_{0}, \ldots, s_{k_{0}-1}\right\}$ and $S_{1}(m)=\left\{t_{0}, \ldots, t_{k_{1}-1}\right\}$ have been determined. Let $\bigcup_{i<k_{0}} \operatorname{IS}\left(s_{i}, T_{0}\right)=\left\{s_{0}^{\prime}, \ldots, s_{\ell_{0}-1}^{\prime}\right\}$. For each $i<\ell_{0}$, we can find $x_{i} \in \pi_{0}(D)$ with $s_{i}^{\prime} \in x_{i}$. Since D is (s, t)-DDF, the set $\bigcap_{i<\ell_{0}}(D)_{x_{i}}$ is dense in N_{t}. Let $\bigcup_{i<k_{1}} \operatorname{IS}\left(t_{i}, T_{1}\right)=\left\{t_{0}^{\prime}, \ldots, t_{\ell_{1}-1}^{\prime}\right\}$. For each $j<\ell_{1}$, we can find $y_{j} \in\left[T_{1}\right]$ so that $\left(x_{i}, y_{j}\right) \in D$ for each $i<\ell_{0}$. Now observe that $\left\{n<\omega: \forall i<\ell_{0} \forall j<\ell_{1}\left(x_{i}(n), y_{j}(n)\right) \in A\right\} \in \mathcal{V}$. For a suitably large n, set $S_{0}(m+1)=$ $\left\{x_{i}(n): i<\ell_{0}\right\}$ and $S_{1}(m+1)=\left\{y_{j}(n): j<\ell_{1}\right\}$.

4 Obstacles to higher dimensions

In this last section, we show that the appropriate notion of "somewhere DDF" subset of $2^{\omega} \times 2^{\omega} \times 2^{\omega}$ is consistently not weakly partition regular, which prevents the proof for $d=2$ from being generalized. To be precise, let us call the notion of DDF from the last section $\operatorname{DDF}(2)$ to emphasize the dimension.

For $i<j<3$, let $\pi_{i, j}:\left(2^{\omega}\right)^{3} \rightarrow 2^{\omega} \times 2^{\omega}$ be the corresponding projection. Let us call $Z \subseteq\left(2^{\omega}\right)^{3} D D F(3)$ if the following conditions are met.

1. $\pi_{0,1}(Z) \subseteq 2^{\omega} \times 2^{\omega}$ is $\operatorname{DDF}(2)$.
2. Letting $(Z)_{(x, y)}=\left\{z \in 2^{\omega}:(x, y, z) \in Z\right\}$, the collection $\left\{(Z)_{(x, y)}:(x, y) \in \pi_{0,1}(Z)\right\}$ generates a filter of dense subsets of 2^{ω}.

The notion of somewhere $\operatorname{DDF}(3)$ is defined similarly to the last section.
Proposition 4.1. ZFC does not prove that the collection of somewhere $D D F(3)$ subsets of $\left(2^{\omega}\right)^{3}$ is weakly partition regular. In particular, under CH there is a 2 -coloring of $\left(2^{\omega}\right)^{3}$ so that neither color class contains a somewhere $D D F(3)$ subset.

Proof. For each $n \in \omega$, let $B_{n}=\left\{z \in 2^{\omega}: z(n)=0\right\}$. Our coloring $\left(2^{\omega}\right)^{3}=P_{0} \cup P_{1}$ will be such that for every $x, y \in 2^{\omega}$, we have $\left(P_{0}\right)_{(x, y)}=B_{n}$ for some n. So our construction is just to describe the map $\varphi: 2^{\omega} \times 2^{\omega} \rightarrow \omega$ so that $\left(P_{0}\right)_{(x, y)}=B_{\varphi(x, y)}$. We will more-or-less use an Ulam matrix to describe $\varphi .^{4}$

Identify 2^{ω} with $\omega_{1} \backslash \omega$. For each infinite ordinal $\alpha<\omega_{1}$, let $f_{\alpha}: \alpha \rightarrow \omega \backslash\{0\}$ be a bijection. We then set

$$
\varphi(\alpha, \beta)= \begin{cases}0 & \text { if } \alpha=\beta \\ f_{\alpha}(\beta) & \text { if } \beta<\alpha \\ f_{\beta}(\alpha) & \text { if } \alpha<\beta\end{cases}
$$

For any distinct infinite $\alpha_{0}, \alpha_{1}<\omega_{1}$ and $n<\omega$, there is at most 1 ordinal β with $\varphi\left(\alpha_{0}, \beta\right)=$ $\varphi\left(\alpha_{1}, \beta\right)=n$.

Now suppose $D \subseteq P_{0}$ is $(s, t, u)-\operatorname{DDF}(3)$ for some $s, t, u \in 2^{<\omega}$. This implies that for some n and every $(x, y) \in \pi_{0,1}(D)$, we have $\varphi(x, y)<n$. For any $N<\omega$, we can find $\left\{x_{i}: i<N\right\}$ and $\left\{y_{i}: i<N\right\}$ so that $\left(x_{i}, y_{j}\right) \in \pi_{0,1}(D)$ for each $i, j<N$. By making N large enough, we can find $x_{0}^{\prime}, x_{1}^{\prime}$ and $y_{0}^{\prime}, y_{1}^{\prime}$ so that for every $i, j<2$, we have $\varphi\left(x_{i}^{\prime}, y_{j}^{\prime}\right)=k$ for some fixed k. This is a contradiction.

References

[1] J. D. Halpern and H. Läuchli, A partition theorem, Trans. Amer. Math. Soc., 124 (1966), 360-367.

[^1][2] K. R. Milliken, A Ramsey Theorem for Trees, Journal of Combinatorial Theory, Series A 26 (1979), 215-237.
[3] A. Zucker, "Countable partitions of Cantor space mod meager," MathOverflow question (2017) http://mathoverflow.net/q/258804.

[^0]: 2010 Mathematics Subject Classification. Primary: 05D10; Secondary: 03E02, 54D80.
 Key words and phrases. Halpern-Läuchli Theorem, ultrafilters
 The author was partially supported by NSF Grant no. DGE 1252522.

[^1]: ${ }^{4}$ I thank MathOverflow user Ashutosh [3] for suggesting the use of an Ulam matrix. Ashutosh also provides evidence which suggests that working with MA $+\mathfrak{c}=\omega_{2}$ might provide a different outcome.

