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Name:

This is a closed book exam, you may not consult your notes,
textbooks, other students or electronic equipment during the
exam. You may use known series expansions for functions with-
out proof as long as you state what you are using. If you make
use of something we proved during lectures, be very explicit in
doing so by stating exactly what results or properties you are
using and why they apply. You may not cite without proof
theorems you proved on homework/review sheet or read in the
book/the internet/elsewhere. You must justify your answers.

Problem Points Score

1 30

2 35

3 35

Total: 100
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1.

(a) Prove that (for 1 < k < n),(
n

k

)
>
(n
k

)k
.

Solution(
n

k

)
=

n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 2× 1
=

n

k

(
n− 1

k − 1

)(
n− 2

k − 2

)
. . .

(
n− k + 1

k − k + 1

)
.

For 1 ≤ i ≤ k − 1 we have that n−i
k−i >

n
k . This follows since

the following are equivalent statements,

n− i

k − i
>

n

k
nk − ik > nk − in

in > ik

n > k,

and we know the final statement is true. This gives us that(
n

k

)
>
(n
k

)(n
k

)
. . .
(n
k

)
=
(n
k

)k
.

(b) Prove that
2n

n + 1
≤
(

n

bn/2c

)
≤ 2n.

Solution
(
n
k

)
is the number of ways of choosing a subset

of size k from a set of size n. We know that the number
of ways of choosing a subset of any size from n elements is
2n since each element of [n] can be either in or out of the
subset. Therefore for all k,

(
n
k

)
< 2n.
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Equally, the above tells us that

n∑
k=0

(
n

k

)
= 2n.

We also know that
(

n
bn/2c

)
is the largest of the possible

(
n
k

)
and hence must be at least as large as the average over the
values of k. The values of k range between 0 and n and
hence there are n + 1 of them, so the average value of

(
n
k

)
is equal to 2n

n+1 and as such we have

2n

n + 1
≤
(

n

bn/2c

)
,

as required.

(b) Prove that (
1− 1

n

)n

≤ 1

e
.

Solution As shown in class, we have that for all x ∈ R we
have (1− x) ≤ e−x. Putting x = 1

n gives us(
1− 1

n

)n

≤
(
e−

1
n

)n
= e−

n
n = e−1 =

1

e
.
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2. You are organising a school sports day. The school will be
split into two teams who will compete in many different sporting
events. The students will decide what sports will be played
and have formed 30 committees of 6 students each to discuss
organisation and rules for each sport.

To ensure the competition is fair, you must choose the two
teams, and must make sure that each committee has at least
one student from each team. Show that this is possible.
Solution Call the teams A and B. Assign each student to A

or B with probability half each, uniformly and independently at
random. The probability that a committee is entirely on team A

is therefore 1
26 . Equally the probability that it is entirely on team

B is the same. Therefore, since these events are distinct events
on the same probability space, the probability that a committee
is entirely on the same team is

2× 1

26
= 2−5 =

1

32
.

The expected number of committees with all members of one
team is therefore 30× 1

32 . Since this is clearly less than 1, and the
number of committees with all members on one team can only
take integer values, there must be a greater than 0 probability
that this value is 0. This tells us that there must exist at least
one assignment of students to teams such that the number of
committees with all members on one team is 0 and this is the
assignment we require.
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3. Let n2 < 2k−1. Show that there exists an (edge) colouring
of the complete graph on n vertices with two colours such that
there exists no mono-coloured clique of size k (i.e. no k vertices
where all the edges between those k vertices are one colour.)
Solution Randomly colour the edges of the graph either red or
blue independently of the colour of any other edge, with proba-
bility half each. There are

(
n
k

)
cliques of size k and each clique

contains
(
k
2

)
edges.

The probability that a clique is mono-coloured is 2×(1/2)(
k
2),

since there are two choices of colour for the mono-coloured clique
to be and the probability that all of the edges are that colour is

(1/2)(
k
2).

The expected number of mono-coloured cliques is therefore(
n

k

)
21−(k

2) =

(
n

k

)
21−

k(k−1)
2

=2

(
n

k

)
2−

k(k−1)
2

≤nk2−
k(k−1)

2

=
(
n2−

(k−1)
2

)k
=
(
n22−(k−1)

)k
2

.

The third line follows from noting that,

2

(
n

k

)
=2

n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 3× 2× 1

=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 3× 1
≤ nk.
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Returning to the expected number of mono-coloured cliques, we
have that it is equal to (

n2

2k−1

)k
2

.

We are given that n2 < 2k−1 and so this value is less than 1 and
hence the probability that there exists less than 1 (and hence 0)
mono-coloured cliques is greater than 0. This tells us that such
a colouring must exist as required.
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