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Name:

This is a closed book exam, you may not consult your notes,
textbooks, other students or electronic equipment during the
exam. If you make use of something we proved during lectures,
be very explicit in doing so by stating exactly what results or
properties you are using and why they apply. You may not cite
without proof theorems you proved on homework/review sheet
or read in the book/the internet/elsewhere. You must justify
your answers and if you are asked for a combinatorial proof,
then little to no credit will be provided for non-combinatorial
answers.

Problem Points Score

1 25

2 25

3 25

4 25

Total: 100
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1. Let m and n be positive integers.

(a) How many non-negative integer solutions are there to

x1 + x2 + · · ·+ xm = n.

Solution We can consider this sum by thinking of n+m−1
empty space in a sequence. In each space we can place a 1
or a +. If we place m − 1 pluses and then group adjacent
1’s with no + between them into their sum and considering
adjacent + signs to have a 0 between them, then we will
be left with m non-negative integers that sum to n. This
is a unique representation of the required sum and so the
number of such solutions is equal to the number of ways of
choosing the m− 1 pluses from the n+m− 1 spaces. This
is equal to

(
n+m−1
m−1

)
.

(b) Let 1 ≤ p ≤ m be an integer. How many integer solutions
are there to the above that satisfy xi ≥ 3 for 1 ≤ i ≤ p and
xi ≥ 0 otherwise.

Solution If we define yi = xi − 3 for 1 ≤ i ≤ p and yi = xi
otherwise, then we have that each yi can take any non-negative
integer value and the following is true,

y1+y2+· · ·+ym = x1−3+x2−3+· · ·+xp−3+xp+1+· · ·+xm = n−3p.

We now apply part a) to get that the number of ways of choosing
the yi and hence the xi is

(
n+m−3p−1

m−1
)
.
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2. Let a(x) be the ordinary generating function for the sequence
an with closed form of

a(x) =
1

1− x2
.

(a) Express a(x) as the product of two generating functions
and use this to find an.

Solution

a(x) =
1

1− x2
=

1

(1− x)

1

(1 + x)
.

1

(1− x)
=

∞∑
i=1

(−1)nxn.

1

(1 + x)
=

∞∑
i=1

1xn.

a(x) =
∞∑
n=1

anx
n =

∞∑
n=1

(
i∑

k=0

1(−1)k

)
xn.

Therefore

an =
i∑

k=0

1(−1)k =

{
1 if n is even,

0 if n is odd.

(b) Find a closed form for b(x) =
∑∞

n=0 bnx
n if

bn =

{
1 if n is even,

n− 1 if n is odd.
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Solution We have that bn = an + cn where an is the solution to
part a and cn = n− 1 for n odd and 0 otherwise.

Therefore

c(x) =
∞∑
n=0

cnx
n = 0x + 2x3 + 4x5 + · · · = 2x(1x2 + 2x4 + 3x6 + . . . )

=2x(0 + 1x2 + 2(x2)2 + 3(x2)3 + . . . )

=2x
∞∑
n=0

n(x2)n = 2x
x2

(1− x2)2
=

2x3

(1− x2)2
.

This gives us

b(x) = a(x) + c(x) =
1

1− x2
+

2x3

(1− x2)2
=

1− x2 + 2x3

(1− x2)2
.
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3. Let f(m,n) be the number of surjective (onto) mappings
from [m] to [n]. Prove that

f(m,n) =
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Solution Let Ai be the set of mappings from [m] to [n] such
that f(x) 6= i for any x ∈ [m]. For S ⊆ [n] we let AS = ∩i∈SAi.
AS is therefore the mappings that do not map any element of
[m] to any element of S. The elements of [m] can be mapped
freely to any of the other n − |S| elements of n so there are
(n− |S|)m such mappings in each AS. The surjective mappings
are those that do not lie in any Ai and so by inclusion exclusion

f(m,n) =
∑
S⊆[n]

(−1)|S||AS| =
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

The second equality following from grouping the AS by size,
taking |AS| = k, and noting that there are

(
n
k

)
choices for S of

size k.
As a side note, you could also use description, involution,

exception here. See
https://www.math.hmc.edu/ benjamin/papers/DIE.pdf
for an elegant proof.
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4.

(a) Provide a combinatorial proof that(
n

m

)(
m

k

)
=

(
n

k

)(
n− k

m− k

)
.

Solution
(
n
m

)
is the number of ways of choosing a set M

of size m from [n] and then
(
m
k

)
is the number of ways of

choosing a subset K of M of size k. This is equivalent to
first choosing a subset of [n] of size k and then choosing the
remaining m−k elements of M from [n]\K. There are

(
n
k

)
ways to choose K first and

(
n−k
m−k
)

ways to choose the rest
of M .

(b) Show that
m∑
k=0

(
n− k

m− k

)
=

(
n + 1

m

)
.

(Hint: How many subsets of [n + 1] of size m contain the
elements 1, 2, 3, . . . , k but not k + 1?

Solution There are
(
n+1
m

)
subsets of [n + 1] of size m. For

each subset M ⊂ [n + 1], consider the smallest element
k+1 of [n+1] not contained in M . M must contain all the
elements 1, 2, . . . , k but not k+1. Given that there are m−k
remaining elements of M , and these can be chosen freely
from the remaining n−k elements of {k+2, k+3, . . . , n+1},
there are

(
n−k
m−k
)

such M for each k. Since each sets satisfies
this property for exactly one k the total number of M is just
the sum of

(
n−k
m−k
)

over all possible values of k as required.

(c) Deduce that
m∑
k=0

(
m
k

)(
n
k

) =
n + 1

n + 1−m
.
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Solution By part a), we have that(
m
k

)(
n
k

) =

(
n−k
m−k
)(

n
m

) .

Therefore, using part b),

m∑
k=0

(
m
k

)(
n
k

) =
m∑
k=0

(
n−k
m−k
)(

n
m

)
=

1(
n
m

) m∑
k=0

(
n− k

m− k

)
=

1(
n
m

)(n + 1

m

)
=
m!(n + 1)!(n−m)!

m!(n−m + 1)!n!
=

(n + 1)n!(n−m)!

n!(n−m + 1)(n−m)!

=
n + 1

n + 1−m
,

as required
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