
21-301 Combinatorics
Section B

Assignment 5 - Solutions

1. Given a vertex v in G(n, c/n) i.e. G(n, p) with p = c/n for some constant
c. Let d(v) be the degree of v.

(a) Prove that

Pr(d(v) ≥ n/2) <
2c

n
.

Solution Since each vertex is adjacent to n − 1 possible edges, each
present with probability c/n, we have that

E(d(v)) =
c(n− 1)

n
=

(
1− 1

n

)
c < c.

By Markov

Pr(d(v) ≥ n/2) <
E(d(v))

n/2
<

c

n/2
=

2c

n
,

as required.

(b) Prove that

Pr

(∣∣∣∣d(v)−
(

1− 1

n

)
c

∣∣∣∣ ≥ c
√
n

)
<

1

n

Solution The variance of d(v) can be calculated by observing that
d(v) =

∑n−1
i=1 Xi where Xi is the indicator variable for each of the

possible n − 1 edges being present or not. Since each of these Xi are
independent, this is a binomial distribution with n− 1 trials each with
probability of success c/n. This tells us that we have

σ2 = V ar[d(v)] = (n− 1)
c

n

(
1− c

n

)
=

(
1− 1

n

)(
1− c

n

)
c < c.

We observe that this tells us that σ <
√
c and so (actually, we require

that
√
c < c which is only true for c ≥ 1 which I forgot to state. Sorry!)
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Pr

(∣∣∣∣d(v)−
(

1− 1

n

)
c

∣∣∣∣ ≥ √nc) ≤ Pr

(∣∣∣∣d(v)−
(

1− 1

n

)
c

∣∣∣∣ ≥ √nσ) ,
(1)

since the event on the left is contained within the event on the right.

Lastly Chebyshev’s inequality tells us that

Pr (|d(v)− E(d(v))| ≥ tσ) ≤ 1/t2,

and we know E(d(v)) from part a and putting t =
√
n gives us

Pr

(∣∣∣∣d(v)−
(

1− 1

n

)
c

∣∣∣∣ ≥ √nσ) ≤ 1

(
√
n)2

=
1

n
. (2)

Putting these results together gives the required result.

2. Calculate the expected number of K4 (complete graph on 4 vertices) in

(i) G(100, 1/2).

(ii) G(n, p) for general n and p.

Solution There are
(
n
4

)
sets of 4 vertices that could possibly be a K4. Each

of these is a K4 with probability p6, so in the first case when n = 100 and
p = 1/2 this is(

100

4

)
1/26 =

100× 99× 98× 97

264!
= 3921225/64,

while in general it is equal to (
n

4

)
p6.

Show that for p = o
(
n−2/3

)
, (i.e. pn2/3 → 0),

lim
n→∞

Pr(There exists a K4 in G(n, p)) = 0.
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Solution Let X be the number of K4 in G(n, p). We have

E(X) =

(
n

4

)
p6 ≤ n4p6 = o

(
n4
(
n−2/3

)6)
= o

(
n4n−4

)
= o(1).

This tells us that E(X)→ 0 as n→∞. Using Markov

Pr(There exists a K4 in G(n, p)) = Pr(X ≥ 1) ≤ E(X)/1→ 0.

Show that for p = logn
n2/3 and for any constant d > 1,

lim
n→∞

Pr(There exists n/d distinct K4 in G(n, p)) = 0.

Solution We again use Markov on X, the number of K4 in G(n, p). Now we
have

E(X) =

(
n

4

)(
log n

n2/3

)6

≤ n4 (log n)6

n4
= (log n)6.

Markov gives us

Pr(There exists n/d distinct K4 in G(n, p)) ≤Pr(X ≥ n/d)

≤E(X)

n/d
≤ d(log n)6

n
.

this value clearly tends to 0 as required.
3. In class, we showed that if X is the random variable counting the number
of triangles in G(n, p), then the variance of X satisfies

V ar[X] ≤
(
n

3

)
p3 +

(
n

4

)
p5.

(a) Show that when p = logn
n

, and for n sufficiently large that

V ar[X] ≤ (log n)3.

Solution Substituting our value of p, we have

V ar[X] ≤
(
n

3

)
p3 +

(
n

4

)
p5 ≤n

3

3!

(
log n

n

)3

+ n4

(
log n

n

)5

=
(log n)3

6
+

(log n)5

n

=(log n)3 −

(
5 (log n)3

6
− (log n)5

n

)
.
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For n sufficiently large, the term in the bracket on the right must be

greater than 0 since (log n)3 →∞ and (logn)5

n
→ 0, and hence we have

the desired result.

(b) Show that (with p = logn
n

)

Pr

(∣∣∣∣X − (n3
)
p3
∣∣∣∣ ≥ n

)
≤ (log n)3

n2
.

Solution We apply Chebyshev with tσ = n and hence t = n
σ

and recall
that the expected number of triangles has expectation

(
n
3

)
p3.

Pr

(∣∣∣∣X − (n3
)
p3
∣∣∣∣ ≥ n

)
≤ 1

t2
=
σ2

n2
≤ (log n)3

n2
,

as required.
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