21-301 Combinatorics

 Section B

 Section B}

Assignment 5 - Solutions

1. Given a vertex v in $G(n, c / n)$ i.e. $G(n, p)$ with $p=c / n$ for some constant c. Let $d(v)$ be the degree of v.
(a) Prove that

$$
\operatorname{Pr}(d(v) \geq n / 2)<\frac{2 c}{n} .
$$

Solution Since each vertex is adjacent to $n-1$ possible edges, each present with probability c / n, we have that

$$
\mathbb{E}(d(v))=\frac{c(n-1)}{n}=\left(1-\frac{1}{n}\right) c<c .
$$

By Markov

$$
\operatorname{Pr}(d(v) \geq n / 2)<\frac{\mathbb{E}(d(v))}{n / 2}<\frac{c}{n / 2}=\frac{2 c}{n},
$$

as required.
(b) Prove that

$$
\operatorname{Pr}\left(\left|d(v)-\left(1-\frac{1}{n}\right) c\right| \geq c \sqrt{n}\right)<\frac{1}{n}
$$

Solution The variance of $d(v)$ can be calculated by observing that $d(v)=\sum_{i=1}^{n-1} X_{i}$ where X_{i} is the indicator variable for each of the possible $n-1$ edges being present or not. Since each of these X_{i} are independent, this is a binomial distribution with $n-1$ trials each with probability of success c / n. This tells us that we have

$$
\sigma^{2}=\operatorname{Var}[d(v)]=(n-1) \frac{c}{n}\left(1-\frac{c}{n}\right)=\left(1-\frac{1}{n}\right)\left(1-\frac{c}{n}\right) c<c
$$

We observe that this tells us that $\sigma<\sqrt{c}$ and so (actually, we require that $\sqrt{c}<c$ which is only true for $c \geq 1$ which I forgot to state. Sorry!)

$$
\begin{equation*}
\operatorname{Pr}\left(\left|d(v)-\left(1-\frac{1}{n}\right) c\right| \geq \sqrt{n} c\right) \leq \operatorname{Pr}\left(\left|d(v)-\left(1-\frac{1}{n}\right) c\right| \geq \sqrt{n} \sigma\right) \tag{1}
\end{equation*}
$$

since the event on the left is contained within the event on the right.
Lastly Chebyshev's inequality tells us that

$$
\operatorname{Pr}(|d(v)-\mathbb{E}(d(v))| \geq t \sigma) \leq 1 / t^{2}
$$

and we know $\mathbb{E}(d(v))$ from part a and putting $t=\sqrt{n}$ gives us

$$
\begin{equation*}
\operatorname{Pr}\left(\left|d(v)-\left(1-\frac{1}{n}\right) c\right| \geq \sqrt{n} \sigma\right) \leq \frac{1}{(\sqrt{n})^{2}}=\frac{1}{n} \tag{2}
\end{equation*}
$$

Putting these results together gives the required result.
2. Calculate the expected number of K_{4} (complete graph on 4 vertices) in
(i) $G(100,1 / 2)$.
(ii) $G(n, p)$ for general n and p.

Solution There are $\binom{n}{4}$ sets of 4 vertices that could possibly be a K_{4}. Each of these is a K_{4} with probability p^{6}, so in the first case when $n=100$ and $p=1 / 2$ this is

$$
\binom{100}{4} 1 / 2^{6}=\frac{100 \times 99 \times 98 \times 97}{2^{6} 4!}=3921225 / 64
$$

while in general it is equal to

$$
\binom{n}{4} p^{6}
$$

Show that for $p=o\left(n^{-2 / 3}\right)$, (i.e. $\left.p n^{2 / 3} \rightarrow 0\right)$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\text { There exists a } K_{4} \text { in } G(n, p)\right)=0
$$

Solution Let X be the number of K_{4} in $G(n, p)$. We have

$$
\mathbb{E}(X)=\binom{n}{4} p^{6} \leq n^{4} p^{6}=o\left(n^{4}\left(n^{-2 / 3}\right)^{6}\right)=o\left(n^{4} n^{-4}\right)=o(1) .
$$

This tells us that $\mathbb{E}(X) \rightarrow 0$ as $n \rightarrow \infty$. Using Markov
$\operatorname{Pr}\left(\right.$ There exists a K_{4} in $\left.G(n, p)\right)=\operatorname{Pr}(X \geq 1) \leq \mathbb{E}(X) / 1 \rightarrow 0$.

Show that for $p=\frac{\log n}{n^{2 / 3}}$ and for any constant $d>1$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\text { There exists } n / d \text { distinct } K_{4} \text { in } G(n, p)\right)=0 .
$$

Solution We again use Markov on X, the number of K_{4} in $G(n, p)$. Now we have

$$
\mathbb{E}(X)=\binom{n}{4}\left(\frac{\log n}{n^{2 / 3}}\right)^{6} \leq n^{4} \frac{(\log n)^{6}}{n^{4}}=(\log n)^{6}
$$

Markov gives us

$$
\begin{aligned}
\operatorname{Pr}\left(\text { There exists } n / d \text { distinct } K_{4} \text { in } G(n, p)\right) & \leq \operatorname{Pr}(X \geq n / d) \\
& \leq \frac{\mathbb{E}(X)}{n / d} \leq \frac{d(\log n)^{6}}{n} .
\end{aligned}
$$

this value clearly tends to 0 as required.
3. In class, we showed that if X is the random variable counting the number of triangles in $G(n, p)$, then the variance of X satisfies

$$
\operatorname{Var}[X] \leq\binom{ n}{3} p^{3}+\binom{n}{4} p^{5} .
$$

(a) Show that when $p=\frac{\log n}{n}$, and for n sufficiently large that

$$
\operatorname{Var}[X] \leq(\log n)^{3} .
$$

Solution Substituting our value of p, we have

$$
\begin{aligned}
\operatorname{Var}[X] \leq\binom{ n}{3} p^{3}+\binom{n}{4} p^{5} & \leq \frac{n^{3}}{3!}\left(\frac{\log n}{n}\right)^{3}+n^{4}\left(\frac{\log n}{n}\right)^{5} \\
& =\frac{(\log n)^{3}}{6}+\frac{(\log n)^{5}}{n} \\
& =(\log n)^{3}-\left(\frac{5(\log n)^{3}}{6}-\frac{(\log n)^{5}}{n}\right) .
\end{aligned}
$$

For n sufficiently large, the term in the bracket on the right must be greater than 0 since $(\log n)^{3} \rightarrow \infty$ and $\frac{(\log n)^{5}}{n} \rightarrow 0$, and hence we have the desired result.
(b) Show that (with $p=\frac{\log n}{n}$)

$$
\operatorname{Pr}\left(\left|X-\binom{n}{3} p^{3}\right| \geq n\right) \leq \frac{(\log n)^{3}}{n^{2}} .
$$

Solution We apply Chebyshev with $t \sigma=n$ and hence $t=\frac{n}{\sigma}$ and recall that the expected number of triangles has expectation $\binom{n}{3} p^{3}$.

$$
\operatorname{Pr}\left(\left|X-\binom{n}{3} p^{3}\right| \geq n\right) \leq \frac{1}{t^{2}}=\frac{\sigma^{2}}{n^{2}} \leq \frac{(\log n)^{3}}{n^{2}}
$$

as required.

