21-301 Combinatorics Section B

Assignment 4 - Solutions

1. If a permutation σ on $[n]$ is chosen uniformly at random from all possible permutations on $[n]$, what is the expected number of fixed points of σ. (i.e. the number of $i \in[n]$ such that $\sigma(i)=i$).
Solution Let X be the number of fixed points of a permutation chosen uniformly at random from all possible permutations on $[n]$. Then we have that $X=\sum_{i=1}^{n} X_{i}$ where X_{i} is the indicator variable for i being a fixed point in the permutation, i.e. if our permutation is π then $X_{i}=1$ if $\pi(i)=i$ and 0 otherwise.

For each $i, \pi(i)$ can be any value in $[n]$ with equal probability and so the probability that $\pi(i)=i$ is just $1 / n$. This gives us that the expectation of $X_{i}=1 / n$ and so by linearity of expectation, the expected value of X which is the expected number of fixed points is $n / n=1$.

As an interesting aside, note that this does not depend on n.
2.* Prove that for all integers $n \geq 1$,

$$
\left(1+\frac{1}{n}\right)^{n+1} \geq e
$$

Solution In lectures we proved that

$$
(1-x) \leq e^{-x}
$$

This tells us that,

$$
\frac{1}{(1-x)} \geq \frac{1}{e^{-x}}=e^{x} .
$$

We observe that

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n+1} & =\left(\frac{n+1}{n}\right)^{n+1} \\
& =\frac{1}{\left(\frac{n}{n+1}\right)^{n+1}} \\
& =\frac{1}{\left(1-\frac{1}{n+1}\right)^{n+1}} \\
& \geq\left(e^{\frac{1}{n+1}}\right)^{n+1}=e
\end{aligned}
$$

3.* Let X be the value obtained from a standard 6 -sided dice roll. Calculate the expected value and variance of X^{2}.
Solution Since each outcome is equally likely, we have

$$
\mathbb{E}\left(X^{2}\right)=\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) / 6=91 / 6,
$$

and

$$
\mathbb{E}\left(X^{4}\right)=\left(1^{4}+2^{4}+3^{4}+4^{4}+5^{4}+6^{4}\right) / 6=2275 / 6 .
$$

Using these, we have,

$$
\operatorname{Var}\left[X^{2}\right]=\mathbb{E}\left(X^{4}\right)-\mathbb{E}\left(X^{2}\right)^{2}=2275 / 6-(91 / 6)^{2}=5369 / 36
$$

4.

(a) Let X_{1} and X_{2} be the values obtained from two independent standard 6 -sided dice rolls. Calculate the expected value and variance of $X_{1}+X_{2}$.
Solution We always have $\mathbb{E}\left(X_{1}+X_{2}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)$ and we saw in lectures that if X_{1} and X_{2} are independent, as they are in this question, then we also have $\operatorname{Var}\left[X_{1}+X_{2}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]$. We have

$$
\mathbb{E}\left(X_{1}\right)=\mathbb{E}\left(X_{2}\right)=(1+2+3+4+5+6) / 6=7 / 2,
$$

and

$$
\operatorname{Var}\left[X_{1}\right]=\operatorname{Var}\left[X_{2}\right]=\mathbb{E}\left(X_{1}^{2}\right)-\mathbb{E}\left(X_{1}\right)^{2}=91 / 6-(7 / 2)^{2}=35 / 12 .
$$

This tells us that

$$
\mathbb{E}\left(X_{1}+X_{2}\right)=7,
$$

and

$$
\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]=35 / 6 .
$$

(b) Calculate the expected value and variance of $X_{1} \times X_{2}$.

Solution Using the fact that for independent variables $\mathbb{E}\left(X_{1} \times X_{2}\right)=$ $\mathbb{E}\left(X_{1}\right) \times \mathbb{E}\left(X_{2}\right)$ we have

$$
\mathbb{E}\left(X_{1} \times X_{2}\right)=(7 / 2)^{2}=49 / 4,
$$

and

$$
\begin{aligned}
\operatorname{Var}\left[X_{1} \times X_{2}\right] & =\mathbb{E}\left(\left(X_{1} \times X_{2}\right)^{2}\right)-\mathbb{E}\left(X_{1} \times X_{2}\right)^{2} \\
& =\mathbb{E}\left(X_{1}^{2} \times X_{2}^{2}\right)-\mathbb{E}\left(X_{1} \times X_{2}\right)^{2} \\
& =\mathbb{E}\left(X_{1}^{2}\right) \times \mathbb{E}\left(X_{2}^{2}\right)-\mathbb{E}\left(X_{1} \times X_{2}\right)^{2} .
\end{aligned}
$$

By the results of question 3 , we can calculate $\mathbb{E}\left(X_{1}^{2}\right)=\mathbb{E}\left(X_{2}^{2}\right)=91 / 6$ and so

$$
\operatorname{Var}\left[X_{1} \times X_{2}\right]=(91 / 6)^{2}-(49 / 4)^{2}=11515 / 144
$$

5.*
(a) If the average mark on an exam was 60 , prove that the probability that a student chosen at random, scored higher than 80 is less than $\frac{3}{4}$.
Solution Let X be the score of the randomly chosen student, by the Markov inequality

$$
\operatorname{Pr}[X>80] \leq \operatorname{Pr}[X \geq 80] \leq \frac{\mathbb{E}(X)}{80}=\frac{60}{80}=\frac{3}{4}
$$

(b) If every student scored at least 50 on the exam, prove that the probability that a student chosen at random scored higher than 80 is less than $\frac{1}{3}$.
Solution Let X be the score of the randomly chosen student. Let $Y=$ $X-50$. We know that Y is a random variable taking values between 0 and 50 and the expected value of Y is $\mathbb{E}(X-50)=60-50=10$. By Markov

$$
\operatorname{Pr}[X>80] \leq \operatorname{Pr}[X \geq 80]=\operatorname{Pr}[Y \geq 30] \leq \frac{\mathbb{E}(Y)}{30}=\frac{10}{30}=\frac{1}{3}
$$

6. Prove that for any constant k and random variable X

$$
\operatorname{Var}[k \times X]=k^{2} \operatorname{Var}[X] .
$$

Solution Starting from the definition of variance and using that $\mathbb{E}(k X)=$ $k \mathbb{E}(X)$, we have

$$
\begin{aligned}
\operatorname{Var}[k X] & =\mathbb{E}\left((k X)^{2}\right)-\mathbb{E}(k X)^{2} \\
& =\mathbb{E}\left(k^{2} X^{2}\right)-(k \mathbb{E}(X))^{2} \\
& =k^{2} \mathbb{E}\left(X^{2}\right)-k^{2} \mathbb{E}(X)^{2} \\
& =k^{2}\left(\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}\right) \\
& =k^{2} \operatorname{Var}[X],
\end{aligned}
$$

as required.
7.* A journal receives an average of 10000 submissions a year with a variance of 2000 submissions. Show that the probability that the journal receives between 8000 and 12000 submissions in a given year is at least 0.9995 .
Solution Letting X be the number of submissions in a given year, we have
$\operatorname{Pr}(8000<X<12000)=\operatorname{Pr}(|X-10000|<2000)=1-\operatorname{Pr}(|X-10000| \geq 2000)$.
Using Chebychev, we have that

$$
\operatorname{Pr}(|X-10000| \geq 2000) \leq \frac{2000}{2000^{2}}=\frac{1}{2000}=0.0005 .
$$

Putting these two results together gives the required result that

$$
\operatorname{Pr}(8000<X<12000) \geq 1-0.0005=0.9995
$$

8. For a random variable with expected value μ and a variance of 0 , what can be said about the values it can take?
Solution This tells us that the variable must have constant value i.e. $X=$ μ with probability 1 . This follows from noting that $(X-\mu)^{2} \geq 0$ and $\mathbb{E}\left((X-\mu)^{2}\right)=\operatorname{Var}[X]=0$ and therefore $(X-\mu)^{2}=0 \rightarrow X=\mu$.
9.* Let X be the number of heads that appear from 200 coin flips of a biased coin, such that the expected value of X is 20 . Determine the variance of X. Solution This is a binomial distribution with $n=200$ and mean $n p=20$ and hence $p=1 / 10$. This tells us that the variance is $n p(1-p)=200 \times \frac{1}{10} \times \frac{9}{10}=$ 18.
