
21-301 Combinatorics
Section B

Assignment 3 - Solutions

1.*

(a) Prove the linearity of expectation, namely that for a finite collection
of discrete random variables X1, X2, X3, . . . , Xn on a single probability
space, we have that

E
(∑

Xi

)
=
∑

E(Xi).

Solution Let Ω be our probability space and Xi(ω) be the value that
Xi takes when the event ω ∈ Ω occurs. We note that (

∑
i(Xi)) (ω),

the value that the sum of the Xi takes when ω occurs is equal to∑
i ((Xi)(ω)) since the Xi are variables on the same probability space.

Using this, we have

E

(∑
i

Xi

)
=
∑
ω∈Ω

(∑
i

(Xi)

)
(ω)Pr(ω)

=
∑
ω∈Ω

(X1(ω) + X2(ω) + · · ·+ Xn(ω))Pr(ω)

=
∑
ω∈Ω

(∑
i

Xi(ω)

)
Pr(ω)

=
∑
i

∑
ω∈Ω

(Xi(ω)Pr(ω)) (since both sums are finite.)

=
∑
i

E(Xi).
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(b) Prove the first moment method, namely that if X is a random variable
taking values in {0, 1, 2, 3, . . . }, then

Pr[X ≥ 1] ≤ E (X) .

Solution

E (X) =(X|X = 0)Pr(X = 0) + (X|X = 1)Pr(X = 1) + (X|X = 2)Pr(X = 2) + . . .

The value of (X|X = i) is precisely i and so the above is equal to

E (X) =0Pr(X = 0) + 1Pr(X = 1) + 2Pr(X = 2) + 3Pr(X = 3) + . . .

≥Pr(X = 1) + Pr(X = 2) + Pr(X = 3) + . . .

=Pr(X ≥ 1)

2.* Prove that for a graph with 2n vertices and m > 0 edges, it is possible
to partition the vertices of the graph into two sets of size n such that more
than m/2 edges go between these two sets.
Solution Partition V , the vertex set of the graph G into two sets V1 and V2

by choosing V1 uniformly at random from all possible subsets of V of size n.
Let V2 = V \ V1. There are

(
2n
n

)
ways of choosing V1. let E(G) be the edge

set of G.
Let X be the random variable denoting the number of edges of G that

go between these two sets. For each edge e, the Xe be the indicator variable
for e going between V1 and V2, i.e. if e = {x, y}, then

Xe =

{
1 if {x ∈ V1 and y ∈ V2} or if {y ∈ V1 and x ∈ V2}
0 otherwise.

From this we have X =
∑

e∈E(G) Xe and so EX =
∑

e∈E(G) EXe by lin-

earity of expectation. For each of the
(

2n
n

)
choices for V1 and for e = {x, y},

we know that x lies in V1 or in V2. If we require y to be in the other set,
then the remaining 2n − 2 vertices can be put into V1 or V2 freely until an
extra n − 1 vertices have been added to each set. There are

(
2n−2
n−1

)
ways of

doing this and since each outcome is equally likely the expected value of Xe
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satisfies,

E(Xe) =0Pr(x, y ∈ V1 or x, y ∈ V2) + 1Pr(x ∈ V1, y ∈ V2) + 1Pr(x ∈ V2, y ∈ V1)

=1Pr(x ∈ V1, y ∈ V2) + 1Pr(x ∈ V2, y ∈ V1)

=

(
2n−2
n−1

)(
2n
n

) +

(
2n−2
n−1

)(
2n
n

) = 2
(2n− 2)(2n− 3) . . . n

(n− 1!)

n!

2n(2n− 1) . . . (n + 1)

=
2n2

2n(2n− 1)
=

n

2n− 1
>

1

2
.

Using linearity of expectation, gives us that

E(X) =
∑

e∈E(G)

Xe > |E(G)|1
2
,

and since there must exist a choice of V1 such that the value of X is at least
E(X) we have that there must exist a choice of V1 with X which is the
number of edges going from V1 to V2, greater than half the number of edges,
as required.

3.* Prove that if
(
n
k

)
31−(k

2) < 1 then it is possible to colour the edges of Kn,
the complete graph on n vertices, with three colours such that there is no
monochromatic Kk.
Solution Randomly colour the edges of Kn with each edge receiving one of
three colours, uniformly at random, independently of the choice for any other
edge. For each subgraph of Kn of size k, it contains

(
k
2

)
edges and so the

probability that this clique is entirely coloured with the first colour is 1

3(
k
2)

.

This is equally true for either of the other two colours, so the probability

that it is mono-coloured is 3

3(
k
2)

= 31−(k
2). There are

(
n
k

)
choices for a subset

of size k and so the expected number of mono-coloured Kk is(
n

k

)
31−(k

2) < 1

by our initial assumption. Since the expectation is strictly less than 1, there
must exist some colouring where the number of mono-coloured Kk is less
than 1. Since this can only take integer values, there must exist a colouring
with no mono-coloured Kk as required.
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4. * In an n×n array, each of the numbers 1, 2, . . . , n appears exactly n times
(not randomly). Let X be the random variable determined by counting the
number of distinct numbers in a randomly chosen row or column. Use X to
prove that there must exist a row or column containing at least

√
n distinct

numbers.
Solution Choose a random row or column, where each of the 2n choices are
equally likely. For each i ∈ {1, 2, . . . n} let Ii be the indicator variable for
i appearing in your randomly chosen row, i.e. Ii = 1 if i is present in your
row (whether it appears once or multiple times) and 0 otherwise. clearly
X =

∑n
i=1 Ii. We note that the expectation of Ii is equal to the number of

rows and columns that i appears in, divided by the total number of rows and
columns.

We find a lower bound on E(Ii) by noting that the smallest number of
rows and columns it can be present in is if all of the n values of i appear in a
single

√
n×
√
n sub array. This is because if i appears in distinct positions

(j, k) and (x, y), then putting an extra i in positions (j, y) or (x, k) in the
array does not increase the number of rows and columns it appears in and
so minimises the expectation. Continuing this way, we say that if we must
add extra values of i (which we have to do until there are n present in the
array) we can minimise the expectation by building up a square block of all
i values.

This tells us that the expectation is minimised when i appears in 2
√
n of

the total 2n possible rows and columns.
Therefore,

E(X) =
n∑

i=1

E(Ii) ≥
n∑

i=1

2
√
n

2n
= n

√
n

n
=
√
n.

Since the expected number of distinct i in our randomly chosen row or column
is
√
n, there must be a row or column with at least this many distinct elements

in it.
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