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Abstract

In recent years a lot of work has been done to try to bridge the gap between the two

main approaches in credit risk modelling: structural and reduced form models. Many

papers tries to obtain this using special assumptions about the problem. For instance,

Duffie and Lando(1999)[16] makes the connection using incomplete accounting infor-

mation. Whereas we propose a unified approach that attains this in full generality.

A model where the credit default event is defined as the minimum of the two default

times, one from the structural default and the other from the exogenous intensity.

In particular, we look at the effect of having stochastic volatility in the structural

approach. We study the effects of time scales on the credit spread yield curves both

for the stochastic volatility and the stochastic intensity. In this framework we use

perturbation analysis to derive closed-form approximations for the credit spreads that

would ease the work of calibration of parameters.

The main quantities of interest are not only include fixed-income market data such

as bond spreads but also the equity market data such as variance and leverage ratio.

We test for the calibration of the model and stability of the model parameters for

particular names of different credit ratings. We observe and analyze the differences

of the behaviors of credit spreads between highly and lowly rated names. We analyze

these differences. Results emphasize the importance of equtiy market data, such as

variance and leverage ratio and also the stochastic default intensity.

iv



Acknowledgement

All thanks first go to my advisor George PAPANICOLAOU, for his encouragement

and patience. To him I owe more than I could express. George is a rare breed, his

greatness as a mathematician and advisor is matched by his greatness as a person.

It was truly an honor to be his student, and working with him has been an immense

pleasure and privilige. I hope to repay him by working hard...from now on. I am

forever indebted to George for providing his wisdom to me on mathematics, with

regards to the material as well as professional development and teaching.

I would naturally also like to thank my readers, Amir DEMBO and Tze LAI, two

stand up guys. They helped me all the way through during my graduate study. They

were there for my area exams and then again for my thesis defense and yet again for

my reading committee. I am really grateful to have such wonderful advisors.

I would also like to extend my thanks to Valdo Durrleman for serving on my

dissertation committee and lots of thanks goes to Caio Ibsen Rodrigues for his unwa-

vering support and everlasting enthusiasm.

I am indebted to all my friends including likes Adrian and Sverrir which are four

years ahead of me and likes of Kuan Ju and David Li who are my peers, as well as

Kazim and many others that I had leave out that are younger than me.

My whole graduate study would not have been possible without the constant sup-

port of my mother and my sisters. Their encouragement and nurturing of my dream

v



helped make it become a reality.

vi



Contents

Abstract iv

Acknowledgement v

1 Credit Risk Modeling 1

1.1 Defaultable Bond Pricing . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Classical Bond Pricing . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Bond Pricing with Defaults . . . . . . . . . . . . . . . . . . . 4

1.2 Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The Merton Model . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 First Passage Model . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Longstaff-Schwartz Model . . . . . . . . . . . . . . . . . . . . 9

1.3 Reduced Form Models . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Intensity Process under Risk-Neutral Measure . . . . . . . . . 13

1.3.2 Defaultable Zero Coupon Bond Pricing . . . . . . . . . . . . . 14

1.3.3 Defaultable Bond Pricing with Recovery . . . . . . . . . . . . 15

1.3.4 Credit Default Swaps . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.5 Financial Interpretation and Multi-name Product Pricing . . . 18

1.4 Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Default Intensity Effects . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Stochastic Volatility Effects . . . . . . . . . . . . . . . . . . . 22

1.4.3 Connection to Interest Rates . . . . . . . . . . . . . . . . . . . 23

1.4.4 Multi-name Products and Correlated Defaults . . . . . . . . . 24

vii



1.5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Default and Equity Risk in Credit Derivatives 27

2.1 Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Stochastic Volatility Models in Finance . . . . . . . . . . . . . 27

2.1.2 Stochastic Volatility Models in Credit Risk . . . . . . . . . . . 29

2.2 General Framework under Physical and Risk-Neutral Measures 30

2.2.1 Girsanov’s Theorem for Diffusion Processes: . . . . . . . . . . 32

2.2.2 Girsanov’s Theorem for Counting Processes: . . . . . . . . . . 32

2.2.3 Market Prices of Risk . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Immediate Improvements: Simplistic Case . . . . . . . . . . . . 36

2.4 Default Intensity with Slow Mean Reversion . . . . . . . . . . 40

2.5 Modelling Default Risk . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Merton’s Model with Surprise Defaults . . . . . . . . . . . . . 45

2.5.2 First Passage Model with Surprise Defaults . . . . . . . . . . . 47

2.6 Stochastic Volatility with Fast Mean Reversion . . . . . . . . . 50

2.7 Modelling Equity Risk . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Merton’s Model with Stochastic Volatility . . . . . . . . . . . 53

2.7.2 First Passage Model with Stochastic Volatility . . . . . . . . . 56

2.7.3 Pricing Formulas and Implied Spreads . . . . . . . . . . . . . 58

2.8 Modelling Default and Equity Risk: . . . . . . . . . . . . . . . . 60

2.8.1 Combined Framework and Mathematical Derivations . . . . . 60

2.8.2 Risk due to Equity Risk . . . . . . . . . . . . . . . . . . . . . 68

2.8.3 Risk due to Default Risk . . . . . . . . . . . . . . . . . . . . . 68

2.8.4 Bond Price and Yield Approximations . . . . . . . . . . . . . 69

3 Credit Default Swap Pricing 72

3.1 Credit Default Swap Valuation . . . . . . . . . . . . . . . . . . . 75

3.2 Parametric Credit Default Swap Model . . . . . . . . . . . . . 76

3.3 Closed-form Approximate Solutions and Implied Spreads . . 80

3.3.1 The Long Term Interaction . . . . . . . . . . . . . . . . . . . 80

3.3.2 The Short Term Interaction . . . . . . . . . . . . . . . . . . . 81

viii



3.3.3 Calculated CDS Premiums . . . . . . . . . . . . . . . . . . . . 83

A Girsanov’s Theorem for Counting Processes 87

B Defaultable Bond Pricing via HJM 90

C Extended Framework, Intensity as a Function of Underlying 93

D Slow Scale Correction Formulas without Default Boundary 99

E Fast Scale Correction Formulas without Default Boundary 104

Bibliography 107

ix



Chapter 1

Credit Risk Modeling

Credit risk is the distribution of financial losses due to unexpected changes in the

credit quality of a counter-party in a financial agreement. Examples range from

agency downgrades to failure to service debt liquidation. Credit risk pervades virtu-

ally all financial transactions.

The distribution of credit losses is complex. At its center is the probability of default,

by which we mean any type of failure to honor a financial agreement and the time of

the default, by which we mean the time that it is known to everybody that there is

a failure. To estimate these two main quantities, we need to specify the models of

i. investor uncertainty;

ii. the available information and its evolution over time;

iii. the definition of the default event.

However, default probabilities and default times alone are not sufficient to price credit

sensitive securities. We need to, also, model

i. the risk-free interest rate

ii. recovery upon default

iii. the premium investors required as compensation for bearing systematic credit

risk

1



CHAPTER 1. CREDIT RISK MODELING 2

The credit premium maps actual default probabilities to market implied probabilities

that are embedded in market prices. To price securities that are sensitive to the credit

risk of multiple issuers and to measure the aggregated portfolio credit risk, we also

need to specify a model that links defaults of several entities.

Our main goal is modeling credit risk for measuring credit risk and for pricing de-

faultable bonds, credit derivatives and other securities that are exposed to credit

risk. We first present critical assessments of the existing theoretical approaches for

pricing the instruments sensitive to credit risk, pointing out the advantages and dis-

advantages of the current frameworks. In particular, we review two broad classes of

models: Reduced-form models that assume an exogenous process for the migration

of default probabilities, that are calibrated to historical market data, and Structural

models that are based directly on the issuer’s ability or willingliness to pay its liabil-

ities. Structural models are in general based around a stochastic model of variation

in asset liability ratio. Both classes have its own advantages and disadvantages, e.g.

although reduced form models have a lot of room for calibrating to historical data,

they lack the financial ingredient for the model parameters. On the other hand struc-

tural models have a nice explanation in financial terms and rather intuitive, they lack

measuring in particular the short-term credit risk and much harder to apply when

there is more than one name involved. Hence, a framework that would combine the

two general classes of models in a way that none of the above criticisms do not apply

would be the ideal framework to model credit risk. And yet the model still should

be parsimonious enough so that it could calibrated to historical data easily which is

hard to find most of the time even for the single name products. Also the framework

should be open to correlation to other market variables such as interest rates, equities

or in fact more importantly the credit risk of other names.

Rest of this chapter is organized as follows. In section 1.1 we summarize the basics of

zero coupon bond pricing with or without default and explain the concept of credit

yield spreads. Section 1.2 and 1.3 we describe the two main schools of credit risk

modelling and review the already existing models in the literature for single name
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credit derivatives. We state the advantages and disadvantages of each model, espe-

cially the ones that relates to our work. In section 1.4 we present the basic results of

the thesis and finally in section 1.5 we mention some recent related work and future

research directions that we would like to pursue.

1.1 Defaultable Bond Pricing

1.1.1 Classical Bond Pricing

In the most classical sense bonds are priced using models of the term structures of

interest rates that are used for the pricing and hedging of fixed-income securities. We

fix a d−dimensional Standard Brownian Motion W = (W1,W2, ...,Wd)in Rd, for some

dimension d ≥ 1, restricted to some time interval [0, T ], on a given probability space

(Ω,F ,P). We also fix he standard filtration F = {Ft : 0 ≤ t ≤ T} of W .

We take as given an adapted short-rate process rt with
∫ T

0
|rt|dt. Conceptually, rt is

the continually compounding rate of interest on a riskless securities at time t. This is

formalized by supposing that, for any time t, one can invest one unit of account and

achieve a market value at any future time s of exp(
∫ s

t
rudu) units of account. This

may be viewed as the proceeds of continual reinvestment at the short rate rt.

Consider a zero-coupon bond maturing at some future time s > t. By definition,

the bond pays no dividends before time s, and offers a fixed payment at time s that

we can take without loss of generality to be 1 unit of account. Although it is not

always the case essentially to do so, we assume that such a bond exists for each

maturity date s. Main objective is to characterize the price B(t, s) at time t of the

s−maturity bond, and behavior over time. Absence of arbitrage assumption, under

some technical conditions, implies the existence of an equivalent martingale measure.

Such a probability measure Q has the property that any security whose dividend is

in the form of a payment of X at some time s has a price, at any time t < s, of

EQ
t {exp(−

∫ s

t

rudu)X} (1.1)
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where EQ
t denotes Ft conditional expectation under the probability measure Q. Here,

X is some Fs measurable random variable such that the expectation (1.1) is well

defined. In particular, taking X = 1 in the expression (1.1), the price at time t of the

zero-coupon bond maturing at s is

B(t, s) ≡ EQ
t {exp(−

∫ s

t

rudu)}

The doubly indexed process is known as the term structure of interest rates. And

the term structure is often expressed in terms of the yield curve. The continuously

compounding yield y(t, s), on a zero-coupon bond maturing at time s is defined by

y(t, s) ≡ − log(B(t, s))

s− t

And mostly in the literature the short rate, rt, is modeled by a single or multi-factor

model given by an SDE of the form

drt = µ(rt, t)dt+ σ(rt, t)dW
Q
t

with various choices of µ and σ.

1.1.2 Bond Pricing with Defaults

Pricing defaultable zero-coupon bonds is more complicated than pricing riskless zero-

coupon bonds. Consider the same setting of section (1.1.1) but with an additional

filtration G = {Gt : 0 ≤ t ≤ T} where Gt ⊇ Ft. The default time of the bond,τ , is a

stopping time with respect to this possibly larger filtration G.

Consider a defaultable zero-coupon bond maturing at some time s > t. The payoff

of the bond is a lumpsum amount of X at time s and no dividends before time s if

there is no default until time s, i.e. τ > s. Again without loss of generality assuming

that X = 1, this time as opposed to the equation (1.1) we have

P (t, s) ≡ EQ
t {exp(−

∫ s

t

rudu)1τ>s} (1.2)
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The concept credit spread is the difference between the yield on a defaultable bond

and the yield on an otherwise equivalent default-free zero coupon bond. It gives the

excess return demanded by the bond investors to carry the potential default losses.

Hence the formula for credit spread, S(t, s), at time t is

S(t, s) ≡ − 1

s− t
log(

P (t, s)

B(t, s)
)

where B(t, s) is the risk-free bond maturing at time s as defined in equation (1.1).

The term structure of credit spreads is the function S(t, ·), i.e. the schedule of S(t, s)

against s holding t fixed.

Term structures of credit spreads can also be modelled using an HJM[39] framework.

Although we do not we work all the details since we do not use it, but see Appendix

B for a brief overview.

1.2 Structural Models

This class of models defines default as a contingent claim by describing precisely when

the default occurs and then prices the defaultable security using the methods of deriv-

ative security pricing. We shall consider three models in this class, first the classical

Merton Model,[59], second as an extension of the Merton Model, first passage time

models,[6] and the Longstaff-Schwartz Model,[52]. Models in this class are differenti-

ated by the way that in which the default event is defined and particular definitions

may well be better suited to describing particular defaults. All these models relate

the default to the process for the firm’s asset backing and define the default event in

terms of a boundary condition on this process. A major deficiency of these models,

as noted in Madan and Unal,[55], is that they treat the value of the asset backing as

a primary asset of the economy when in fact it may be a derivative asset in its own

right with exposure to other more primitive state variables of the economy. Prices

should be reduced to exogenous state variables of the economy and it is unclear that

a firm’s asset value is such a variable.
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1.2.1 The Merton Model

For a simple start, we outline the classic Black-Scholes-Merton,[7],[59], model of cor-

porate debt and equity valuation. We suppose that the firms future cash flows have a

total market value at time t given by St, where the process S is a Geometric Brownian

Motion, satisfying

dSt = µStdt+ σStdWt

for constants µ and σ, and where we have taken as the dimension of the underlying

Brownian Motion W to be 1. One sometimes refers to St as the total asset level

of the firm. For simplicity, assuming that the firm produces no cash flows before a

given time T . We take it that the original owners of the firm have chosen a capital

structure consisting of pure equity and of debt in the form of a single zero-coupon

bond maturing at time T , of face value K. In the event, that the total value ST is

less than the contractual payment K due on the debt., the firm defaults at time T

giving its future cash flows, worth ST to debtholders. That is, debtholders receive

min(ST , K) at T . Equityholders receive the residual max(ST −K, 0). We suppose for

simplicity that there are no other distributions (such as dividends) to debt or equity.

We will shortly confirm the natural conjecture that the market value of equity is given

by the Black-Scholes,[7], option pricing formula, treating the firm’s asset value as the

price of the underlying security. Bond and the equity investors have already paid the

original owners of the firm for their respective securities. The absence of well-behaved

arbitrage implies that at any time t < T , the total of the market values Et of equity

and Yt of debt must be the market value of the St of the assets.

St = Et + Yt

Markets are complete given riskless borrowing or lending at a constant rate r and

access to a self-financing trading strategy whose value process is St. This implies that

there is at most one equivalent martingale measure. Letting WQ
t = Wt + ηt where

η = µ−r
σ

, we have

dSt = rStdt+ σStdW
Q
t
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By Girsanov’s theorem,[48] as also stated in section 2.2.1, WQ defines a Standard

Brownian Motion under the equivalent probability measure Q defined by

dQ
dP

= exp(−ηWT −
η2T

2
)

By Ito’s formula, {e−rtSt : t ∈ [0, T ]} is a Q−martingale. It follows that, after

deflation by e−rt, Q is the equivalent martingale measure. As Q is unique in this

regard, we have the unique price process Et of equity in the absence of well-behaved

arbitrage given by

Et = EQ
t {e−r(T−t) max(ST −K, 0)}

Thus, the equity price Et is computed by the Black-Scholes formula, treating St as

the underlying asset price, σ as the volatility coefficient, the face value K as the strike

price, and T − t as the time remaining to exercise. The market value of the debt at

time t is the residual, St − Et.

When the original owners of the firm sold the debt with face value K and the equity,

they realized a total initial market value of E0 + Y0 = S0, which does not depend

on the the chosen face value K of debt. This is one aspect of the Modigliani-Miller

Theorem,[61]. The same irrelevance of capital structure for the total valuation of the

firm applies much more generally, has nothing to do the with the choice of Geometric

Brownian Motion, nor the specific nature of the debt and the equity as noted in [38].

Besides all the nice intuitive definition of default and mathematical attractiveness of

Merton’s model, there are also several shortcomings e.g. the defaults according to

this model are either happening at a fixed maturity T or never which leads to an

inconsistency in pricing multiple maturity derivatives. Also, the default naturally

could happen any time until the maturity of the derivative of interest. Also as a

result of this late defaults, the credit spreads that are produced by the model are 0 in

the beginning and very near zero for short maturities which is unrealistic. Also the

model does not make the connection between the defaults and other market variables

such as interest rates.

Despite all these features of the Merton’s model, it still serves as a benchmark model

for comparison and provides a useful basic framework to develop more complicated
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models based on it. In our calculations in sections 2.5.1,2.7.1 and 2.8.1 we always

start with this setting and improve the definition of default and calculations based

on it.

1.2.2 First Passage Model

Black and Cox,[6], introduced the idea that the default would occur at the first time

that assets drop to a sufficiently low default boundary, whether or not at the matu-

rity of the date of the debt. It is the most natural extension of the Merton’s model

described in section 1.2.1, that would allow defaults other than the maturity of the

financial product. They assumed a simple time-dependent default boundary, exploit-

ing the fact that there is an explicitly known probability distribution (and in fact also

the Laplace transform) for the first time that a Brownian Motion with constant drift

and volatility parameters reaches a given level. Many subsequent structural models,

including those of Fischer et al.,[26],Leland,[51],Anderson and Sunderason,[1], and

Mella-Barral,[57], have considered incentive-based models for the default boundary

and the default recovery.

Focusing for the moment on this simple first-passage model, suppose default occurs

at the first time at which the log-normally distributed asset level,St, reaches a con-

stant default threshold K, which need not to be the face value of the debt, but rather

chosen by the firm so as to maximize the market value of the equity. For each time

horizon T , the survival probability is then the probability P(t, T ) that the distance

to default does not reach between t and T or

P(t, T ) = P(Ss ≥ K, t ≤ s ≤ T |St) = H(St, T − t)

where

H(x, s) = N(
x−K +ms√

s
)− exp(−2m(x−K))N(

−x+K +ms√
s

)

Following the discussion at the end of section 1.2.1, first passage time default models

still suffer from the near zero short term spreads, simply due to the fact that a
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continuous process needs some time to reach the level of default boundary. The

tractability of the model declines rapidly as one enriches the models used for the

asset process,St, and allows for a time varying default threshold K. Although some

extensions, including an allowance of jumps in asset process have been introduced for

purposes of bond pricing, for instance by Merton,[58], the pricing formulas are not as

nice as in this section. And also there is an issue of calibration about how to interpret

the market data for the jumps. As explained in more detail in section 1.4, we use

the first passage framework in our hybrid framework and do the pricing in sections

2.5.2,2.7.2 and 2.8.1 but we enrich the default definition with an outside source so

that we do not come across the problem of near zero spreads, see figure 2.1.

1.2.3 Longstaff-Schwartz Model

This model attempts to address a number of shortcomings of the Merton model.

By allowing early defaults time consistency is attained in pricing multiple maturity

derivatives. Default is defined as occurring at the first time that asset value reaches

a threshold level K and at this time all maturities still outstanding default simulta-

neously. The possibility of early default may also induce higher credit spreads and

eliminate the problem of no short maturity credit spreads. Furthermore, by allowing

for stochastic interest rates one may better calibrate to existing term structures of

interest rates. The model supposes that asset values St, follow Geometric Brownian

Motion while interest rates rt follow a Vasicek process,[68], with movements that are

correlated with the stock. Specifically it is supposed that
dSt = rStdt+ σStdW

S
t

drt = κ(θ − rt)dt+ ηdW r
t

dW S
t dW

r
t = ρdt

At the first passage time of S to K the default threshold, we have a default in

which the recovery level is some constant write down of the face and creditors receive

(1 − l)F . In pricing the defaultable claim one may account for correlation between

interest rates and asset values by following Jamshidian,[44] and Geman, El Karoui
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and Rochet,[24] and expressing the dynamic evolution of asset values and interest

rates using the price of the risk-free bond,B(t, T ), as the numeraire. Hence we let QT

be the probability under which asset prices discounted by the price of the risk free

bond price B(t, T ), are martingales. The price of the defaultable bond, P (t, T ), may

then be written as

P (t, T ) = B(t, T )[G(t, T ) + (1− l)F (1−G(t, T )]

where G(t, T ) is the probability of no default in the interval (t, T ) and in this case we

receive the unit face, while under default, with probability (1 − G(t;T )) we receive

(1− l)F at time T by definition. The claim is priced on determining the probability

of no default G(t, T ) under the measure QT .

The explicit dynamics for asset values and interest rates under QT may be determined

by an application of Girsanov’s theorem as
d logSt = (r − σ2

2
− ρσηM(T − t))dt+ σdW ∗S

t

drt = (θ − κrt − η2M(T − t))dt+ ηdW ∗r
t

M(T − t) = 1−exp(−κ(T−t))
κ

where W ∗S
t ,W ∗r

t are Brwonian motions under QT . To determine G, Longstaff and

Schwartz present and solve an integral equation that equates the Gaussian probability

of log( S
K

) being negative at T to the integral over first passage times to zero of the first

passage probability to zero times the Gaussian probability of then ending up below

zero, starting now at zero at the first passage time. It has been observed by Robert

Goldstein that this integral equation is incorrect as one must also integrate over the

level of the random interest rate at the first passage time of log( S
K

) to zero. It is

simple to show using characteristic functions for example, that with two independent

Brownian motions the distribution of the first Brownian motion at the first passage

time of the second Brownian motion to zero is a Cauchy random variable with an

infinite mean. The Longstaff and Schwartz model is, at this writing, as yet unsolved.

Especially for pricing of credit derivatives with longer maturities, the modelling of

interest rates are important and having a stochastic process process in interest rates
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is favorable feature. It allows for easier calibration and also interaction with the

default risk. However, the problem gets too hard if one wants to do it in a structural

framework. We introduce a more direct approach in chapter 3, in the context of CDS

premium calculation, to model the interaction between interest rates and default

probabilities.

1.3 Reduced Form Models

We first introduce the model for a default time as a stopping time τ with a given in-

tensity process λt which will be defined in more detail below. From the joint behavior

of λt and the short rate process rt, the promised payment of the security, and the

model recovery at default, as well as risk premia, one can characterize the stochastic

behavior of the term structure of yields on defaultable bonds.

As far as extensions go, default intensities are allowed to depend on observable vari-

ables that are linked with the likelihood of default, such as debt-to-equity ratios, asset

volatility measures, other accounting measures of indebtedness, market equity prices,

bond yield spreads, industry performance measures and macroeconomic variables re-

lated to business cycle.

We fix a probability space (Ω,F ,P) and a filtration {Gt : t > 0} satisfying the usual

conditions, which were listed in section 1.1.2. As we depart from the case of purely

Brownian information, it is important to make a distinction between an adapted

process and a predictable process. A predictable process is, intuitively speaking, one

whose value at any time s depends only on the information in the underlying filtration

that is available up to, but not including, time s. As defined in section 2.2 in more

details, a non-explosive counting process Nt (for example a Poisson process) has an

intensity λt if λt is a predictable nonnegative process satisfying
∫ t

0
λsds < ∞, with

the property that the compensated counting process defined by Mt,

Mt = Nt −
∫ t

0

λsds (1.3)
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is indeed a martingale.

We will say the a stopping time τ has an intensity λt if τ us the first jump time of a

nonexplosive counting process whose intensity process is λt. The intuition is that, at

any time t and state w with t < τ(w), the Gt− conditional probability that τ < t+ δ

is approximately λ(w, t)δ for small δ.

A stopping time τ is non-trivial if P(τ < ∞) > 0. If a stopping time is nontrivial

and if the filtration Gt is the standard filtration of some Brownian Motion Wt, then

τ could not have an intensity, see Kusuoka (1999),[50], for an example. We know

this from the fact that, if Gt is the standard filtration of Wt, then the associated

compensated counting processMt of (1.3) could be represented as a stochastic integral

with respect to Wt ,and therefore cannot jump, but Mt must be jump at τ . In order

to have an intensity, a stopping time must be totally inaccessible, a property whose

definition,[16], suggests arrival as a sudden surprise but there are no such surprises

on a Brownian filtration.

As an example, Duffie and Lando [16] models the firms equityholders or managers

are equipped with some Brownian filtration for purposes of determining their optimal

default time τ but that bondholders have imperfect monitoring, and may view τ as

having an intensity with respect to the bondholders own filtration Gt, which contains

less information than the Brownian filtration.

We say that τ is doubly stochastic with intensity λt if the underlying counting process

whose first jump time τ is doubly stochastic with intensity λt. The doubly-stochastic

property implies that

P(τ > s|Gt) = Et{exp(−
∫ s

t

λudu)}, t < min(τ, s) (1.4)

where Et denotes the Gt−conditional expectation. This property (1.4) is convenient

for calculations, as evaluating the expectation in (1.2)is computationally equivalent

to the pricing of a default-free zero-coupon bond, treating λt as a short rate and the

Et as risk-neutral.

As we prove in section 2.2, it would be sufficient for (1.4) that λt = Λ(Xt, t) for
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some measurable function Λ, where Xt is a d−dimensional process that solves a sto-

chastic differential equation of the form

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

for some Gt standard Brownian Motion W ∈ Rd.

More generally, (1.4) follows from assuming the doubly stochastic counting process

Nt whose first jump time is τ is driven by some filtration {Ft : T > 0} where Ft ⊆ Gt.
The idea of the doubly-stochastic assumption is that the intensity is Ft−predictable

and that the conditional on λt, Nt is a Poisson process with time varying intensity

λt. In particular, for any time s > t, conditional on the tribe Gt ∨ Fs generated by

the events in Gt ∪ Fs, the number Ns −Nt of arrivals between t and s is distributed

as a Poisson random variable with parameter
∫ s

t
λudu. Thus, letting A be the event

that Ns −Nt = 0, the law of iterated expectations implies that, for t < τ

P(τ > s|Gt) = E{1A|Gt}

= E{E[1A|Gt ∨ Fs]|Gt}

= E{P(Ns −Nt = 0|Gt ∨ Fs)|Gt}

= E{exp(−
∫ s

t

λudu)|Gt}

consistent with (1.4). This is only a sketch of the idea, Duffie and Lando [16] offer a

proper development.

1.3.1 Intensity Process under Risk-Neutral Measure

For purposes of the market valuation of bonds and other securities whose cash flows

are sensitive to default timing, we would want to have an equivalent martingale

measure Q and a risk-neutral intensity process, that is, an intensity λt
Q for the

default time τ that is associated with (Ω,F ,P) and the given filtration {Gt : t > 0}.
As usual, there may be more than one equivalent martingale measure. In [16] the ratio
λQ

λ
(for λ strictly positive) is called a multiplicative risk premium for the uncertainty
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associated with the timing of default.

Proposition 1 Suppose a nonexplosive counting process Nt has a P−intensity process

and Q is any probability measure equivalent to P. Then Nt has a Q−intensity process.

A version of Girsanov’s theorem provides conditions suitable for calculating the

change of probability measure associated with a change of intensity, by analogy with

the change in drift of a Brownian Motion. Suppose Nt is a non-explosive counting

process with intensity λt, and φ is a strictly positive predictable process such that,

for some fixed time horizon T ,
∫ T

0
φsλsds < ∞ almost surely. A martingale is then

defined by

ξt = exp(

∫ t

0

(1− φs)λsds)
∏

{i:T (i)≤t}

φT (i) (1.5)

Theorem 1 (Girsanov) Suppose ξt in equation (1.5) is a martingale. Then an

equivalent martingale measure Q is defined by dQ
dP = ξ(T ). Moreover, restricted to the

time interval [0, T ], the counting process Nt has Q−intensity φtλt.

Care must be taken with assumptions, for the convenient doubly-stochastic property

need not be preserved with a change to an equivalent probability measure. Illustrative

counter-examples are cited in [16]. A proof of this version of the Girsanov theorem is

given in Appendix A, which also gives sufficient conditions for the martingale property

of ξ, and for Nt to be doubly stochastic both under P and Q. Under certain conditions

to the filtration {Gt : t > 0} outlined in section 2.2, the martingale representation

property applies and for any equivalent martingale measure Q, one can obtain the

associated Q−intensity of Nt from the martingale representation of the associated

density process.

1.3.2 Defaultable Zero Coupon Bond Pricing

We fix a short rate process rt and an equivalent martingale measure Q after deflation

by exp(−
∫ t

0
rudu). We consider the valuation of a security that pays K1{τ>s} at a

given time s > 0, where K is some Gs−measurable, bounded random variable. As

1{τ>s} is the random variable that is 1 in the event of no default by s and 0 otherwise,
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we may view K as the contractually promised payment of the security at time s,

with default by s leading to no payment. The case of a defaultable zero-coupon bond

is treated by letting K = 1. In the next section 1.3.3, we will consider recovery at

default.

From the definition of Q as an equivalent martingale measure, the price P (t, s) of this

security at any time t < s is given by

P (t, s) = EQ
t {e−

R s
t rudu1{τ>s}K} (1.6)

where EQ
t denotes the Gt−conditional expectation under Q. From (1.6) and the fact

that τ is a stopping time, P (t, s) must be 0 for all t ≥ τ . Let us assume under Q, the

default time τ has intensity λt
Q.

Theorem 2 Suppose that K, rt and λQ are bounded and that τ is doubly stochastic

under Q driven by a filtration Ft such that rt is Ft−adapted and K is Fs−measurable.

Fix any time t < s. Then, for t ≥ τ , we have P (t, s) = 0 and for t ≤ τ ,

P (t, s) = EQ
t {e−

R s
t (ru+λQ

u )duK} (1.7)

The idea of representation (1.7) of the predefault price is that the discounting for

default that occurs at an intensity is analogous to the discounting at the short rate

rt. Again a proof is given in section 2.2.

1.3.3 Defaultable Bond Pricing with Recovery

The next extension is to consider the recovery of some random payoff L at the de-

fault time τ , if default occurs before the maturity date s of the security. Adopting

the assumptions of theorem 2 and adding the assumption that L = lτ where l is a

bounded predictable process that is also adopted to the underlying filtration Ft. The

market value at any time t < min(τ, s) of any default recovery is, by definition of the

equivalent martingale measure Q, given by

R(t, s) = EQ
t {e−

R s
t rudu1{τ≤s}lτ} (1.8)
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The assumption that τ is doubly-stochastic implies that it has a probability density

under Q, at any time u in [t, s], conditional on Gt ∨ Fs and on the event that τ > t

q(t, u) = exp(−
∫ u

t

λQz dz)λ
Q
u

Thus again using the argument of iterated expectations as in the proof of the theorem

2, we have on the event of τ > t

R(t, s) = E{E[e−
R τ

t rzdz1{τ≤s}lτ |Gt ∨ Fs]|Gt}
= E{

∫ s

t
e−

R u
t rzdzq(t, u)ludu|Gt}

=
∫ s

t
Φ(t, u)du

using Fubini’s theorem, where we call

Φ(t, u) ≡ EQ
t {exp(−

∫ u

t

(rz + λQz )dz)λQu lu}

We can summarize the main defaultable valuation result as follows.

Theorem 3 Consider the security pays K at s if τ > s, and otherwise pays lτ at

τ . Suppose l,K, r are all bounded. Suppose also that τ is doubly stochastic under Q
driven by a filtration Ft with the property that rt and lt are Ft−adapted and K is

Fs−measurable. Then, for t ≥ τ we have R(t, s) = 0, and for t < τ

R(t, s) = EQ
t {e−

R s
t ru+λQ

u duK}+

∫ s

t

Φ(t, u)du (1.9)

1.3.4 Credit Default Swaps

In this section we explain the basic definition of the most actively traded form of

credit derivative, credit default swap(CDS). Since it is the most liquid derivative it

has also been used as a benchmark for credit pricing.

A credit swap is a form of derivative security that can be considered as an insurance

for defaults on bonds or loans. Credit default swaps pay the buyer of protection

a given contingent amount at the time of the default of the bond or loan. This
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contingent amount is usually the difference between the face value of a bond and its

market value and it is paid at the time of the default. In exchange, the buyer of the

protection pays a premium until the time of the credit event or until the maturity

date of the credit default swap, whichever comes first.

Below we describe mathematically how one can compute the fair value of the CDS

premium so that the contract is worth nothing at the beginning of the contract. The

present value of the premium of CDS

EQ{
∫ T

t

e
R u

t −rsds(1− χ(u))pdu|Gt}

where p is the continuous premium paid by the CDS buyer for the default swap

contract with maturity T . The present value of the payoff at default can be expressed

as

EQ{
∫ T

t

e
R u

t −rsds(1− χ(u))luλudu|Gt}

Therefore, the fair value of the CDS premium is

p =
EQ{

∫ T

t
e
R u

t −rsds(1− χ(u))luλudu|Gt}
EQ{

∫ T

t
e
R u

t −rsds(1− χ(u))du|Gt}

which by doubly stochasticity assumption turns out to be

p =
EQ{

∫ T

t
e
R u

t −(rs+λs)dsluλudu|Gt}
EQ{

∫ T

t
e
R u

t −(rs+λs)dsdu|Gt}
(1.10)

Equation (1.10) states that, given the processes for interest rate rt, the default in-

tensity λt, the expected loss at default lt, the ratio of these two expectations gives

the fair market CDS premium at the beginning of the contract. In chapter CDS, we

develop a multi-factor model for pricing the CDS’s.
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1.3.5 Financial Interpretation and Multi-name Product Pric-

ing

The intensity-based single-name credit risk models provide a more flexible framework

to model the dynamics and the term structure of credit risk than the structural mod-

els. Usually they are based upon market variables such as credit spreads and most

intensity models can be fitted easily to the term structures of credit spreads and

they have effectively become market standard in the pricing of standard credit deriv-

atives such as credit default swaps. In fact, we develop a general hybrid framework

in chapter 2, we prefer a purely reduced-form model when we try to calculate CDS

premiums in chapter 3. But although they match the market variables well from a

calibration point of view, they lack the interpretation of the basic financial variables

as opposed to the structural models. You model the credit spread on a single name

but you do not have any other source than the individual credit spreads to estimate

the model parameters. Hybrid approach developed in section 2.2 takes advantage of

having a structural component in default modelling so that part of the parameters

can be estimated using market data other than credit spreads.

In recent years, several new derivative securities have been developed whose payoffs

depend on the overall default behavior of a whole portfolio of underlying loans or

bonds. One of the important examples is basket credit derivatives. A consistent

model for default correlation is crucial to price and hedge these structures. Although

we do not tackle the problem of pricing basket credit derivatives or hedging, it is an

important issue needs to be dealt.

So far there were two approaches that have been taken to extend the reduced-form

models to incorporate default correlation and multiple defaults. The most natural

approach is to introduce correlation in the dynamics of the default intensities of the

names, but to keep the models unchanged otherwise. This approach suffers from

several disadvantages. Most importantly the default correlations that can be reached

with this approach are typically too low compared to the observed default correla-

tions, and in addition to that it is very hard to derive and analyze the resulting default
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dependency structure. In Appendix B we develop an approach modelling default in-

tensity as function of both an exogenously defined stochastic process and a common

state factor and obtained more realistic levels of correlation of defaults using a par-

ticular type of function for the intensity. Another approach is the infectious defaults

model by Davis and Lo (1999, 2000) [12], [13], further developed by Jarrow and Yu

(2000) [47]. There default intensities jointly jump upwards by a discrete amount at

the onset of a credit crisis. While intuitively very attractive, deriving the default

probabilities for a single obliger is already very hard problem in this model which

makes calibration very difficult. Let alone the estimation of the jump factor of the

default intensities, since it is not clear how this model can be calibrated to historical

data.

1.4 Hybrid Model

In credit derivatives market there are quite a few securities that depend on more than

one source of risk. Just to mention a few, corporate bonds (which depend on interest

rate risk and on credit risk of the issuing firm) and convertible bonds (which depend,

in addition, on equity risk). Hence, most attractive credit risk models should involve

all these three sources of risk together, i.e. equity risk, credit risk, and interest-rate

risk.

Our framework brings together these three standard building blocks. Although we

do not include all three when it comes down to actual pricing of an instrument of

interest, we provide the most general framework but then focus on the most relevant

sources of risk. Also we introduce the appropriate time scales in our stochastic mod-

els at every step and exploit different order of time scales to price the instruments

approximately as there are no known closed-form solutions most of the time.

The general framework for pricing derivatives on a defaultable security, where the

price of the security is modelled as a Geometric Brownian Motion with stochastic

volatility, and the default event is modelled by the stopping time τ , the first jump

of the counting process Nt. We assume that the short term interest rate process is
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constant and equal to r.1 The stochastic volatility process is defined as a positive,

bounded function of an Ornstein-Uhlenbeck process. The default intensity process

is also modelled as a positive bounded function of an Ornstein-Uhlenbeck process,

where the parameters of the process might depend on the state process that governs

the volatility of the security price. The Brownian Motion that drives the dynamics

of the security price is correlated with the Brownian Motion that drives the volatility

process, allowing the model to mimic empirical features of the returns distribution

such as kurtosis and skewness. We also introduce correlation between the security

price and the intensity Brownian motions allowing that changes in prices influence

the likelihood of default.
dSt = µStdt+ σ(Yt)StdW

S
t

dYt = α(m− Yt)dt+
√
αβσdW

σ
t dW σ

t = ρσdW
S
t +

√
1− ρ2

σdZ
σ
t

dXt = κ(b−Xt)dt+
√
κβλdW

λt dW λt = ρλdW
S
t +

√
1− ρ2

λdZ
λt

λt = g(Xt)

(1.11)

where S is the stock price, σ is the volatility, λ is the instantaneous probability of

default of the stock, and g is a positive bounded function which is bounded away

from zero.

Clearly, the way the problem is set up gives rise to an incomplete market model in

the sense that there exist derivatives that can not be hedged by a portfolio of the

basic securities. We carefully derive all possible risk-neutral pricing laws and arrive

at the general form of the Radon-Nykodim derivative

dP ∗∗

dP
|Ft = e−

R t
0 θ1(u)dWS

u − 1
2

R t
0 θ

2
1(u)due−

R t
0 θ2(u)dZσ

u− 1
2

R t
0 θ

2
2(u)du

e−
R t
0 θ3(u)dZλ

u− 1
2

R t
0 θ

2
3(u)due

R t
0 (1−φu)λudu(1{τ>t} + φ(τ)1{τ≤t})

where

θ1 =
µ−r−λ∗t
σ(Yt)

θ2 = γt

1This implies that the money market account, the usual instrument adopted for deflation, will
be Bt = ert.
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θ3 = δt where the parameters γ,δ and φ are free and corresponds to market prices

due to volatility risk, default intensity risk and default time risk, respectively.

1.4.1 Default Intensity Effects

We first study of the simplest product,a defaultable zero coupon bond, and the implied

credit yield spreads as a result. We start with the Classical Merton’s Model and

immediately extend it to a mathematical model where we also have a default intensity

process that would allow sudden defaults. And observe the immediate implications

on the credit yield spreads and not surprisingly realizing the non-zero spreads in short

maturities as opposed to Merton’s case and otherwise pretty much the same. Then,

we went onto extend the model with a stochastic default intensity, in particular a

mean reverting one and through simulations find out that the relevant time scale, i.e.

if we would like to obtain an interesting effect of the stochastic intensity as opposed

to the constant case, it should have a long time scale so that we have some freedom

for the spreads over the long run as well as the non-zero start. It is essential for our

analysis that the default intensity process is mean reverting since the notion of time

scales and mean reversion are intimately related. The improvement is exhibited in

figure 1.1.

Figure 1.1: Solid curve is the spreads produced by the simple hybrid model with con-
stant default intensity and the volatility. Dashed curve is the spreads produced by the
model where the default intensity process is a mean reverting stochastic process using
the approximate solution derived in section 2.5.2. Qualitatively, the correction to the
spreads does not have much short run effect but has a persistent change in the long
run as expected from the simulated results. Quantitatively, although approximate
formula goes only up to the first order, it still fits the simulated data points with a
small least squares error with the calibration of very few parameters.
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1.4.2 Stochastic Volatility Effects

We then on top of this framework laid out a stochastic volatility process that drives

the equity price in the spirit of Fouque et al (2004)[34]. The class of the process is a

Geometric Brownian Motion as usual with stochastic volatility. We introduce another

mean reverting process for the volatility and through simulations observe that the fast

mean reversion have dramatic effects on the short run which the model with just the

stochastic default intensity is missing. Moreover, having different time scales for the

two stochastic processes allowed us to exploit the asymptotic analysis. We were able

to come up with closed-form approximate solutions for the bond prices and therefore

the yield spreads. The improvement is exhibited in figure 1.2.

Figure 1.2: Solid curve is the spreads produced by the simple hybrid model with con-
stant default intensity and the volatility. Dotted curve is the spreads produced by the
model where the default intensity process is a mean reverting stochastic process using
the approximate solution derived in section 2.7.3. Qualitatively, the correction to the
spreads does not have much long run effect as we observed numerical experiments
the fast mean reverting stochastic volatility converges to the constant volatility case
as the maturity gets large but has a dramatic effect to the short end of the curve.
Quantitatively, although approximate formula goes only up to the first order, it still
fits the simulated data points with a small least squares error with the calibration of
very few parameters.



CHAPTER 1. CREDIT RISK MODELING 23

1.4.3 Connection to Interest Rates

Finally, we explore a model with a two-factor interest rate process that captures the

relation of the default risk to a global market variable, interest rates. We introduce

the two-factor model in the spirit of Duffie, Pedersen and Singleton[18], that would

capture the short-run and long-run term structures well. In order to accommodate

for the interaction of each of these two factors we also introduce a two-factor model

for the default intensity.

The resulting framework combines, in a single parsimonious model and accounting for

interaction between the two. In the appendix we also outline a framework that would

include all the three major sources of risk at once. Hence, default information in the

model is extracted from equity, fixed income and credit market information rather

than just from credit-market information (as in reduced-form credit-risk models) or

from just equity-market information (as in structural credit-risk models) and in fact

you can observe the effects of each of these risks separately as correction terms in our

closed form formulas. In particular, default probabilities may be jointly calibrated

to market prices of equity and risky debt. This allows valuation, in a single consis-

tent framework, of hybrid debt-equity securities such as convertible bonds that are

vulnerable to default, as well as of derivatives on interest rates, equity and credit.

Finally, we estimate the model parameters using a simple least squares estimate for

real-world CDS premium data for a fixed time and show that we could calibrate the

model so that we could capture the term-structure succesfully, as shown in figure 1.3.

Figure 1.3: Above is the default-swap rates for a selected convertible bond issued by
an entity which is rated Aaa by Moody’s in 1999. Data is available at the website
www.neatideas.com. Solid curve is the CDS premium curves produced by the model
(3.3) and (3.4) using the asymptotic aproximation obtained in (3.19). Used adjusted
average interest rate is 6% and expected recovery is 40% for the above curve. Our
multi-factor CIR equipped with time scales captures the premium structure that the
one factor CIR models would not be able to generate.
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1.4.4 Multi-name Products and Correlated Defaults

In credit derivatives market there are lots of multi-name products whose pricing is

critically dependent on the correlation of defaults of these different names. Basket

default swaps are first-to-default swaps are such examples. The hybrid framework

can also serve as a basis for valuing credit portfolios where correlated default is an

important source of risk. Although it is not our main focus, in the appendix we

try to develop a model to price this kind of products paying particular attention to

the default correlations. We try to combine the capital structure models and reduced

form models by modelling the default intensities of different names as both a function

of the overall market and a function of its individual structure. Modelling the effect

of overall market is done through a proxy like a big common index, e.g. S&P 500 and

the effect of individual structure is like a surprise default.

The straight forward intuition behind the setting is when the overall market is not

doing well, the default probability of each name tend to go up together, not necessarily

with the same rate. Or there could be something happening not in the whole market

but in a specific sector which would bump up all the default probabilities of names

in that sector. In addition to that there could be also something happening within a

firm which would only effect that particular firm but not the others. So it is natural

to assume the default probabilities(intensities) have two different components, one

for the overall market effect and one for the individual firm effect.

In the typical setting of the model, the proxy used to capture the overall market

impact is modelled as a Geometric Brownian Motion with stochastic volatility. The

stochastic volatility process is defined as a positive, bounded function of an OU

process. All the default intensities are modelled as product of a state process, which is

an OU process with appropriate parameters and a positive function of the index level

above. The Brownian Motions that drive the dynamics of all the state processes that

effect the intensities are correlated with each other. One can, in general, introduce

the correlation between the Brownian Motions of the index level and state processes

but we rather capture that effect in the specific form that we choose for the intensity

processes. The generated default time correlations as almost a linear function of one

single parameter is depicted in figure 1.4. The level of correlation obtained via this
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parameter are much higher compared to a purely reduced-form model.

Figure 1.4: Correlation effect of the parameter in the exponent of the function g,
without the effect of the volatility of the index process

1.5 Future Research

In the framework suggested by the general model described in section 2.2, the default

information is revealed both by the equity and the debt market rather than just one

of them. Hence, the default probabilities can be adjusted to market prices of both

equity and risky debt. This allows us to price in a single parsimonious model the

kind of hybrid debt-equity securities such as convertible bonds that are exposed to

default risk besides other derivatives of interest rates, equity and credit. Immediate

step after this work would be the estimation and calibration of the model parameters

using actual market data and testing how accurate and stable the model works.

Another research area to pursue would be extending the asymptotic analysis to the

general framework of the model where there are more than one obligors and using the

method price the kind of derivatives where the payoffs depend on the overall default

behavior of a whole portfolio of underlying loans or bonds such basket default swaps

and collateralized debt obligations(CDO’s).

Our model can also serve as a basis for valuing credit portfolios where correlated

default is an important source of risk. Our framework has several close references in

the literature. It is intimately linked to the two standard approaches to credit-risk

modeling: the class of structural models (Merton (1974)[59], Black-Cox (1976)[6] and

the class of reduced-form models (e.g., Duffie and Singleton (1999)[19], Madan and

Unal (2000)[56]) and others.

After all the modelling aspects of the problem as a result of the asymptotic analy-

sis we come up with approximate closed form formulas for the prices of instruments
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or quantity of interest such as CDS spreads. Not only that the asymptotic results

reveal that there are a few group market parameters that needs to be calibrated for

pricing purposes. Though the overall models are pretty complicated and have a lot

of parameters and even more importantly most of them are unobservable such as risk

premia of three different kinds, the asymptotic results suggest a way of calibration of

the models through the price of rather liquid derivatives such as CDS’s.

Moreover, counter-party risk is also recognized as a major source of risk. So models

that capture the correlation structure between default times of different entities are

much needed. Incorporating the notion of copulas to the framework to obtain default

dependencies is another research direction to pursue.



Chapter 2

Default and Equity Risk in Credit

Derivatives

2.1 Stochastic Volatility Models

2.1.1 Stochastic Volatility Models in Finance

The class of stochastic volatility (SV) models has its roots both in mathematical fi-

nance and financial econometrics. In fact, several variations of SV models originated

from research looking at very different issues. Clark (1973)[10], for instance, suggested

to model asset returns as a function of a random process of information arrival. This

so-called time deformation approach yielded a time-varying volatility model of asset

returns. Later Tauchen and Pitts (1983)[66] refined this work proposing a mixture of

distributions model of asset returns with temporal dependence in information arrivals.

Hull and White (1987)[43] were not directly concerned with linking asset returns to

information arrival but rather were interesting in pricing European options assuming

continuous time SV models for the underlying asset. They suggested a diffusion for

asset prices with volatility following a positive diffusion process. The diffusion process

is a mean reverting one and they compare the price given by their model with the

price given by the Black-Scholes when the variance rate in Black-Scholes is put equal

to the expected average variance rate during the life of the option. They find that

27
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Black-Scholes overprices that are at the money or close to money, and underprices

options that are deep in or deep out of the money. This is also consistent with the

pattern of implied volatilities observed for currency options, e.g. see Section 17.2

of [41]. ARCH models, invented by Engle (1982)[23] and a lot of extensions after

that besides SV models are mainly built to capture the volatility clustering feature.

ARCH models in general can be considered as filters to extract the continuous time

conditional variance process from discrete time data. And the seminal contribution

of Nelson (1990) [62] is to show that ARCH models converge weakly to a diffusion

process and therefore bringing the ARCH and SV models together.

And yet another approach emerged from the work of Taylor (1986) [67] who for-

mulated a discrete time SV model as an alternative to Autoregressive Conditional

Heteroskedasticity (ARCH) models. Until recently estimating Taylor’s model, or any

other SV model, remained almost infeasible. Recent advances in econometric theory

have made estimation of SV models much easier. As a result, they have become an

attractive class of models and an alternative to other classes such as ARCH. Also,

Duan (1995)[14] shows that it is possible to use GARCH(1, 1) as the basis for an

internally consistent option pricing model.

For derivatives that last less than a year, the pricing impact of stochastic volatility is

fairly small in absolute terms (although in percentage terms it could be quite large

especially for deep out of the money options). It becomes progressively larger as the

life of the derivative increases. In that case one feature that the models seem to like is

mean reversion. The term mean reverting refers to the average time it takes a process

to pull back to its mean level of its invariant long-run distribution. Empirical studies

and common experience show that actually there are volatility clusters, i.e. there is

tendency of high volatility coming in bursts. And the concept of burstiness is closely

related to mean reversion. A bursty process is returning to its mean and the shorter

the periods of the bursts, the more often it returns. These are the main features in a

series of papers by Fouque et al. [11],[29],[30],[31].
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2.1.2 Stochastic Volatility Models in Credit Risk

Originally, Sharpe (1963) [65] stated the dependence of stocks returns systematic (i.e.,

market or undiversifiable) risk and idiosyncratic (i.e., specific or diversifiable) risk.

Indeed, systematic risk is known to be common to any risky asset in the financial mar-

ket whereas idiosyncratic risk is peculiar to the asset under consideration. Therefore,

credit risky assets (e.g., corporate bonds or debt) should satisfy such a dependence,

which is our very first motivation in chapter 3 for a two factor default intensity.

The documented research shed light on the typology and components of credit risk.

Given the state of the art, credit risk has to be envisioned along with systematic

risk and idiosyncratic risk. Such a typology is used by Gatfaoui (2003) [35] to price

risky debt in a Merton (1974)[59] framework where diffusion parameters are constant.

However, under its constant parameter assumptions, Mertons model leads to implied

spreads which are too low in comparison with observed credit spreads. Indeed, Eom

et al. (2003)[25] show that adding stochastic interest rates correlated with the firm

value in Mertons model fails to offset this prediction problem about implied credit

spreads. To solve this problem, Hull et al. (2003)[42] study the implications of Mer-

tons model about implied at-the-money volatility and volatility skews. Their results

lead to several findings which are supported by empirical data. First, implied volatil-

ity is sufficient to predict credit spreads. Second, there is a positive relationship

between credit spreads and implied volatility, and between volatility skews and both

implied credit spreads and implied volatility. Third, implied volatility plays a ma-

jor role in explaining credit spreads. Finally, as historical volatility leads to implied

credit spreads which underestimate their observed counterparts, the implied volatil-

ity approach exhibits a superior performance in predicting credit spreads over time.

Such findings are consistent with Black and Scholes (1973)[7] option pricing type

models. Specifically, such models exhibit a volatility smile effect (i.e., the implied

volatility is a U-shaped function of the options moneyness) which is determined by

stochastic volatility, maturity and systematic risk among others (see Duque & Lopes

(2000)[22] for details, and Psychoyios et al. (2003) [63] for a survey about stylized

facts of volatility as well as stochastic volatility models). In the light of such results,

Gatfaoui (2004)[36] extends the work of Gatfaoui (2003)[35] to stochastic parameters
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in order to price risky debt in a Merton framework with stochastic volatility.

Also, Fouque et al. (2004) [34] handle these challenges by introducing stochastic

volatility in the dynamics of a defaultable asset and they use the framework of multi-

scale stochastic volatility that they have developed in [31] both in equity markets and

interest-rate derivatives.

2.2 General Framework under Physical and Risk-

Neutral Measures

Let us fix a Probability space (Ω,F , P ) and the σ− algebra Ft = σ(W S
t , Z

σ
t , Z

λt)

where W S
t , Z

σ
t , Z

λt are independent standard Brownian Motions. Let’s also introduce

the σ− algebra Gt = σ(Ft ∨ Nt) where Nt is a nonexplosive doubly stochastic (with

respect to Ft) counting process with intensity λt, i.e.

i. λt is Ft predictable and
∫ t

0
λsds <∞ a.s.

ii. Nt −
∫ t

0
λsds is a Gt local martingale

iii. P{Ns −Nt = k|Gt ∨ Fs} =
e−

R s
t λudu(

R s
t λudu)k

k!

In this section we lay out the general framework for pricing derivatives on a defaultable

security, where the price of the security is modelled as a Geometric Brownian Motion

with stochastic volatility, and the default event is modelled by the stopping time τ ,

the first jump of the counting process Nt. We assume that the short term interest

rate process is constant and equal to r.1 The stochastic volatility process is defined as

a positive, bounded function of an Ornstein-Uhlenbeck process. The default intensity

process is also modelled as a positive bounded function of an Ornstein-Uhlenbeck

process, where the parameters of the process might depend on the state process that

governs the volatility of the security price. The Brownian Motion that drives the

dynamics of the security price is correlated with the Brownian Motion that drives

the volatility process, allowing the model to mimic empirical features of the returns

1This implies that the money market account, the usual instrument adopted for deflation, will
be Bt = ert.
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distribution such as kurtosis and skewness. We also introduce correlation between

the security price and the intensity Brownian motions allowing that changes in prices

influence the likelihood of default.
dSt = µStdt+ σ(Yt)StdW

S
t

dYt = α(m− Yt)dt+
√
αβσdW

σ
t dW σ

t = ρσdW
S
t +

√
1− ρ2

σdZ
σ
t

dXt = κ(b−Xt)dt+
√
κβλdW

λt dW λt = ρλdW
S
t +

√
1− ρ2

λdZ
λt

λt = g(Xt)

(2.1)

where S is the stock price, σ is the volatility, λ is the instantaneous probability of

default of the stock, and g is a positive bounded function which is bounded away

from zero.

Clearly, the way the problem is set up gives rise to an incomplete market model in the

sense that there exist derivatives that can not be hedged by a portfolio of the basic

securities. Assumption of no arbitrage guarantees the existence of a set of equivalent

martingale measures.2 In this setting, an EMM P ∗ is a probability measure equivalent

to P , under which the discounted price of the defaultable security, e−rtSt1{τ>t} is a

Gt-martingale. At this point, we look for all possible EMM’s P ∗ that allow us to write

the price of a defaultable object as an expectation in terms of the intensity of the

counting process Nt under P ∗.3 Let us call the set of all such measures to be S.

Hence, there is an equivalence between the discounted defaultable price being a P ∗

martingale and the process e
R t
0 (r+λu)duSt being a P ∗-martingale. And this last process

can be interpreted as a non-defaultable security price discounted by interest rates

adjusted by the intensity process. The intensity process has the rule of a spread

process which increases interest rates due to the default risk.

In order to characterize all EMM’s in the set S, we make use of the two versions of the

Girsanov’s theorem, where one is for changes in the Brownian Filtration and one for

the changes in the intensity process λt. In order to construct our argument we state

the standard version of Girsanov’s theorem for a d-dimensional Brownian filtration4

2non-empty, non-unitary.
3More general versions, useful for instance in markets with multiple defaults, would allow the

intensity to depend not only on a Brownian filtration but also on default events.
4For the proof see Karatzas and Shreve [1991].
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and also the Girsanov’s theorem version for counting processes.5

2.2.1 Girsanov’s Theorem for Diffusion Processes:

Given θ ∈ (L2)d, assume that ξθt = e−
R t
0 θsdWs− 1

2

R t
0 θs·θsds is a martingale (Novikov’s

condition is sufficient.) Then the process W θ defined as

W θ
t = Wt +

∫ t

0

θsds, 0 ≤ t ≤ T

is a Standard Brownian Motion under the new measure P ∗.

Moreover, W θ has the martingale representation theorem under the new measure

P ∗ where dP ∗

dP
= ξθT . Hence, any P ∗ martingale can be represented as

Mt = M0 +

∫ t

0

φsdW
θ
s , t ≤ T

for some φ ∈ (L2)d

2.2.2 Girsanov’s Theorem for Counting Processes:

Suppose Nt is a nonexplosive counting process with intensity λt, and φ is a strictly

positive predictable process such that, for some fixed T ,
∫ T

0
φsλsds <∞ almost surely.

Then,

ξφt = e
R t
0 (1−φs)λsds

∏
{i:τ(i)≤t}

φτ(i)

is a well defined local martingale where τ(i) is the ith jump time of Nt. In addition,

if ξφt is a martingale (bounded φ suffices), then an equivalent martingale measure P ∗

is defined by dP ∗

dP
= ξφT . Under this new martingale measure, Nt is still a nonexplosive

counting process with intensity λtφt.

Choosing any probability measure P ∗ under which Nt is still doubly stochastic with

respect to Ft, it is true for s > t that: Suppose the counting process Nt is doubly

5For the proof see the Appendix A.
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stochastic with respect to Ft under measure P ∗, say with an intensity λ∗. Then one

can show that:

E∗{1{τ>s}|Gt ∨ Fs} = E∗{1{τ>t}1{Ns−Nt=0}|Gt ∨ Fs}
= 1{τ>t}E

∗{1{Ns−Nt=0}|Gt ∨ Fs}
= 1{τ>t}e

−
R s

t λ
∗
udu

(2.2)

If we go from P ∗ to a measure P ∗∗ making use of G1, then one can prove that there is

an equivalence between the discounted defaultable price being a Gt P ∗∗−martingale

and the process e
R t
0 (r+λ∗u)duSt being a Gt P ∗∗-martingale as follows

E∗∗{e−rsSs1{τ>s}|Gt} = E∗{ ξs
ξt
e−rsSs1{τ>s}|Gt}

= E∗{E∗{ ξs
ξt
e−rsSs1{τ>s}|Gt ∨ Fs}|Gt}

= E∗{ ξs
ξt
e−rsSsE

∗{1{τ>s}|Gt ∨ Fs}|Gt}
= 1{τ>t}e

R t
0 λuduE∗{ ξs

ξt
e−

R s
0 (r+λ∗u)duSs|Gt}

= 1{τ>t}e
R t
0 λuduE∗∗{e−

R s
0 (r+λ∗u)duSs|Gt}

(2.3)

where we used Bayes rule and equation (2.2).

Let’s first take a look at the problem of analyzing what happens to the counting

process Nt when we make a change of measure just changing the Brownian Motion

Zλt . Let P ∗ be a probability measure equivalent to P defined by the following change

in the Brownian filtration: W ∗S
t = W S

t , Z
∗σ
t = Zσ

t , Z
∗λ
t = Zλt +

∫ t

0
θudu, where θt is

Ft-measurable and in L2.

Using Bayes rule, the Ft-measurability of the process θt and the law of iterated

expectations we obtain:

P ∗{Ns −Nt = k|Gt} =
E{ηs1(Ns−Nt=k)|Gt}

ηt

=
E{ηsE{1(Ns−Nt=k)|Gt∨Fs}|Gt}

ηt

= E{ηs

ηt

e−
R s
t λudu

R s
t λudu

k

k!
|Gt}

= E∗{ e
−

R s
t λudu

R s
t λudu

k

k!
|Gt}

(2.4)

Conditioning on Gt ∨ Fs we see that the process Ns − Nt is Poisson with parameter∫ s

t
λudu.
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Hence, provided that θt is Ft-measurable and in L2, the process Nt preserves its

doubly stochasticity property with respect to Ft, for this simple change of measure.

2.2.3 Market Prices of Risk

How do we characterize the elements in S? The idea is to realize a two step change

of measure, where we first change the intensity of the counting process going from P

to P ∗, using a particular case of G2 where Nt counts up to 1. Then, we apply G1

changing the measure from P ∗ to P ∗∗. The Radon-Nikodym derivative from P to P ∗∗

is, by construction, the product of the two Radon-Nikodym derivatives from P to P ∗

and from P ∗ to P ∗∗. By theorems G1 and G2

dP ∗

dP
= e

R t
0 (1−φs)λsds(1{τ>t} + φ(τ)1{τ≤t}) and

dP ∗∗

dP ∗ = e−
R t
0 θsdWs− 1

2

R t
0 θs·θsds

In general, φ and θ are free parameters, but for simplicity we assume that φ is

deterministic and to guarantee that the process e−rt1{τ>t}St is a Gt martingale, we

choose the θ as follows:

θt =


µ−r−λ∗t
σ(Yt)

γt

δt


where the parameters γ and δ are free. Then the Radon-Nikodym Derivative of the

new measure becomes

dP ∗∗

dP
|Ft = e−

R t
0 θ1(u)dWS

u − 1
2

R t
0 θ

2
1(u)due−

R t
0 θ2(u)dZσ

u− 1
2

R t
0 θ

2
2(u)du

e−
R t
0 θ3(u)dZλ

u− 1
2

R t
0 θ

2
3(u)due

R t
0 (1−φu)λudu(1{τ>t} + φ(τ)1{τ≤t})

where

θ1 =
µ−r−λ∗t
σ(Yt)

θ2 = γt

θ3 = δt
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Then the system (2.1) becomes:
dSt = (r + λ∗t )Stdt+ σ(Yt)StdW

∗S
t

dYt = [α(m− Yt)−
√
αβσ(ρσ

µ−r−λ∗t
σ(Yt)

+ γt
√

1− ρ2
σ)]dt+

√
αβσdW

∗σ
t

dXt = [κ(b−Xt)−
√
κβλ(ρλ

µ−r−λ∗t
σ(Yt)

+ θt
√

1− ρ2
λ)]dt+

√
κβλdW

∗λ
t

λ∗t = φtg(Xt)

Let’s introduce the 3 dimensional vector process Ut as follows.

Ut =


St

Yt

Xt

, then the process followed by Ut can be written as:

dUt =


r + λ∗t

α(m− Yt)−
√
αβσ(ρσ

µ−r−λ∗t
σ(Yt)

+ γt
√

1− ρ2
σ)

κ(b−Xt)−
√
κβλ(ρλ

µ−r−λ∗t
σ(Yt)

+ θt
√

1− ρ2
λ)

 dt

+


σ(Yt)St 0 0
√
αρσβσ

√
α
√

1− ρ2
σβσ 0

√
κβλρλ 0

√
κ
√

1− ρ2
λβλ



dW ∗S

t

dZ∗σ
t

dZ∗λ
t


Then the Feynman-Kac PDE for the function P (u, t) = E{e−

R t
0 (r+λ∗u)dul(Ut)}, where

l(Ut) = h(St), is

Pt + (r + λ∗t )StPS + [α(m− Yt)−
√
αβσ(ρσ

µ−r−λ∗t
σ(Yt)

) + γt
√

1− ρ2
σ]PY

+ [(κ(b−Xt)−
√
κβλ(ρλ

µ−r−λ∗t
σ(Yt)

+ θt
√

1− ρ2
λ)]PX

+ 1
2
σ2(Yt)S

2
t PSS + 1

2
αβ2

σPY Y + 1
2
κβ2

λPXX

+
√
ασ(Yt)StρσβσPSY +

√
κσ(Yt)StρλβλPSX +

√
ακρσβσρλβλPY X = 0

(2.5)

with the boundary condition P (UT , T ) = h(ST ). Let’s introduce the parameters Λ1 =

ρσ
µ−r−λ∗t
σ(Yt)

+ γt
√

1− ρ2
σ and Λ2 = ρλ

µ−r−λ∗t
σ(Yt)

+ θt
√

1− ρ2
λ for notational convenience.
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2.3 Immediate Improvements: Simplistic Case

We first recall how the price of a defaultable bond is computed in BS setting.

dSt = µStdt+ σStdWt

with exogenous default intensity λ, where both σ and λ are constants and the bond

pays no dividend. Using the results from section 1, under the risk neutral measure,

the asset price becomes

St = S0 exp((r + λ− 1

2
σ2)t+ σW ∗

t )

where W ∗
t is a standard BM under the risk neutral measure, and λ∗ = φλ, here we

assume φ is also constant.

In the Merton approach, default occurs if ST < K for some threshold value K. In

this case the price at time t of a defaultable bond is simply the price of a European

digital option which pays 1 if ST exceeds the threshold or 0 otherwise. It is explicitly

given by P d(t, St) where

P d(t, St) = E∗{e−(r+λ∗)(T−t)1{ST>K}|St = s}
= e−(r+λ∗)(T−t)P ∗{ST > K|St = s}
= e−(r+λ∗)(T−t)P ∗{(r + λ− 1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t ) > log K

s
}

= e−(r+λ∗)(T−t)P ∗{W
∗
T−W

∗
t√

T−t > − log s
K

+(r+λ− 1
2
σ2)(T−t)

σ
√
T−t }

= e−(r+λ∗)τN(d2(τ))

(2.6)

with the common notation τ = T − t and the distance to default

d2(τ) =
log s

K
+ (r + λ∗ − 1

2
σ2)τ

σ
√
τ

(2.7)
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In the Black & Cox generalization, the default occurs the first time the underlying

hits the threshold K as described in [6]. From a probabilistic point of view we have

E∗{1inft≤u≤T Su>K |Gt} = P ∗{ inf
t≤u≤T

((r + λ∗ − 1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t ) > log

K

s
)}

which can be calculated by using the distribution of the minimum of a (non-standard)

BM. From a PDE point of view, we have

E∗{e−(r+λ∗)(T−t)1{ST>K}|St = s} = P (t, St)

where P (t, s) is the solution of the following problem.
LBS(σ, r + λ∗)P = 0 on s > K, t < T

P (t,K) = 0 for t ≤ T

P (T, s) = 1 for s > K

(2.8)

which is to be solved for s > K. This problem can be solved by introducing the

solution P d(t, s) of the corresponding digital option problem{
LBS(σ, r + λ∗)P d = 0 on s > 0, t < T

P (T, s) = 1 for s > K, 0 otherwise

The price of an European digital option which pays $1 at maturity if ST > K and

nothing otherwise, is given by the P d(t, s) at time t < T where P d(t, s) is computed

explicitly in (2.6). It can be checked that the solution P (t, s) of the system (2.8) can

be written

P (t, s) = P d(t, s)− (
s

K
)1− 2(r+λ∗)

σ2 P d(t,
K2

s
) (2.9)

The formula was derived in Willmott et al. [69]. Combining (2.9) with (2.6) we get

P (t, s) = e−(r+λ∗)(T−t)(N(d+(τ))− (
s

K
)1− 2(r+λ∗)

σ2 N(d−(τ))
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where we denote

d± + (τ) =
± s
K

+ (r + λ− 1
2
σ2)τ

σ
√
τ

Recall that the yield spread S(0, T ) at time 0 is defined by

exp(−S(0, T )T ) =
P (0, T )

B(0, T )

where B(0, T ) is the default free zero-coupon bond price given here, in the case of

a constant interest rate r, by B(0, T ) = exp(−rT ) and P (0, T ) = P (0, T, s) which

yields the formula

S(0, T ) = − 1

T
log[N(d+(T ))− (

s

K
)1− 2(r+λ∗)

σ2 N(d−(T ))] + λ∗ (2.10)

In figure 2.3 we show the yield spread curve S(0, T ) as a function of maturity T

for some typical values of the constant volatility and default intensity, the other

parameters are the constant interest rate r and the ratio of initial value to default

level s
K

. As is well documented in the literature, in this first passage model the

likelihood of default is essentially zero for short maturities even for highly levered

firms, corresponding to s
K

close to one, as illustrated in figure 2.1. Long term behavior

of the spreads resulting from the hybrid model are clear from equation (2.10) converges

back to the initial level λ∗as opposed to the classical first passage case where it goes

to 0. As discussed in the first section, the challenge for theoretical pricing models is

to raise the average predicted spread relative to crude models such as the constant

volatility model presented in this section, without overstating the risks associated with

volatility or leverage,but many of the extended models proposed in the literature still

have difficulties in predicting realistic credit spreads.

We propose to handle this challenge by introducing a hybrid model with a stochastic

exogenous default intensity and stochastic volatility in the dynamics of the defaultable

asset at the same time. We explain in the following sections that a naive introduction

of stochastic intensity or volatility may modify the credit spreads a little bit, however,

a careful modeling of the time scale content of the default intensity an the volatility

gives the desired modification in the yield spread at both short and long maturities.
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Figure 2.1: Above are two spread curves versus time to maturity. Solid one is the
credit yield spreads produced by the purely structural, first passage model and the
dashed one is the spreads produced by the hybrid model with a first passage type
of structural component and a reduced-form component with a constant default in-
tensity. Additional exogenous default shifts the whole spread curve upwards starting
from time 0, hence takes care of the non-zero short term spreads issue and the magni-
tude of the shift increases for longer maturities. Parameters used are: leverage value
is s

K
= 1.3, the interest rate is 6% and the used volatility level is 12%. Clear from

the initial value of the dashed curve the level of default intensity is 3%.

Figure 2.2: As the level of the intensity increases, the hybrid model produces yield
spreads that are higher both in the short run and the long run. The effect is persistent
and grows with the length of the maturity. While the yield spreads for first passage
model, solid curve in this case, converge to 0 for long maturities, they converge to the
initial intensity level for the hybrid model. We use a leverage level of s

K
= 1.2, interest

rate is 6%, level of default intensity for the curves from bottom to top 0%,2%,4% and
6%.

Figure 2.3: As the level of the volatility increases, the hybrid model produces yield
spreads that emerge from the same level but in the short run there is rapid increase
due to the structural part of the defaults. For longer maturities the difference fades
out and they converge to the initial level. We use a leverage level of 1.3, interest rate
is 6%, level of
default intensity is 2% and the level of volatility from bottom to top 10%,15%,20%
and 25%.
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2.4 Default Intensity with Slow Mean Reversion

In the context of credit markets and derivatives pricing, intensity based models are

widely used and in particular stochastic intensity processes are believed to be the

appropriate framework for the underlying dynamics. For an extended discussion we

refer to Duffie and Singleton[19]. In order to illustrate our approach we consider first

the case where the exogenous default intensity process is driven by one factor which

we assume to be a mean-reverting Gaussian diffusion, i.e. an Ornstein-Uhlenbeck

process. The dynamics under the physical measure is described by the following pair

of SDEs

dSt = µStdt+ σStdW
S
t

dXt = κ(b−Xt)dt+ βλ
√

2κdW λ

where the actual default intensity is λt = g(Xt) for a general function g with some

assumptions listed below.

Main assumptions of our framework are

i. The intensity function g is positive, non-decreasing and bounded away and

above from 0.

ii. The invariant distribution of the intensity factor X is the Gaussian distribution

with mean b and standard deviation βλ and it is independent of the parameter

κ.

iii. The important parameter κ > 0 is the rate of mean reversion of the process Xt.

In other words 1/κ is the time scale of this process, meaning that it reverts to

its mean over times of order 1/κ. Small values of κ correspond to slow mean

reversion and large values of κ correspond to fast mean reversion.

Also, the standard Brownian motions W S and W λ are correlated as

E{dW S
t dW

λ
t } = ρλdt
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where ρλ is a constant correlation coefficient satisfying ρλ < 1. We remark that for the

purpose of illustration we choose the intensity factor to be an Ornstein- Uhlenbeck

process, however, one could choose different processes as well. Moreover, in our

simulations we choose particular volatility functions g(x) = x2 so it is almost like a

CIR process.

In order to price defaultable bonds under this model for the underlying we rewrite it

under a risk neutral measure using previous section’s results, chosen by the market

through the market price of volatility risk Λ2 and default risk of φt, as follows
dSt = (r + λ∗t )Stdt+ σStdW

∗S
t

dXt = [κ(b−Xt)−
√
κΛ2]dt+ βλ

√
2κdW ∗λ

t

λ∗t = φtg(Xt)

(2.11)

Here, W ∗S
t and W ∗λ

t are standard Brownian motions under the risk-neutral measure

and correlated under the physical measure. We assume that the market price of

intensity risk Λ2 is constant and φt is deterministic.

In section 2.5, we compute the yield spreads that results when we use the stochastic

intensity model in (2.11). Our focus is the combined role of the mean reversion time
1
κ

and the correlation ρλ on the yield spread curve. We use various values for κ,

corresponding to stochastic intensity that range from slowly mean reverting κ = 0.05

to fast mean reverting κ = 10. For each value of κ we present the uncorrelated case

ρλ = 0 and a negatively correlated case which is ρλ = −0.5. In each figure we plot the

yield spread curves as functions of time to maturity, and the solid curve corresponds to

a constant intensity. The dashed curve is the yield curve under the stochastic intensity

model (2.11), where the initial intensity level g(X0) and reverting mean level of the

intensity are set to the constant intensity case which is 0.01. The constant volatility

yields are computed using the explicit formula (2.10). The stochastic intensity yields

are computed using Monte Carlo simulations of trajectories for the model (2.11). For

these illustrations we choose the following parameter values: Λ2 = 0, s
K

= 1.3, g(Y0) =

0.01, r = 0.06, g(b) = 0.01, βλ = 0.05.

Figure 2.4 illustrates the effects of a fast mean reverting default intensity with no
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correlation between the intensity process and the underlying process and 2.5 is the

same setting with negative correlation which is almost the same. The yields for long

maturities are not significantly affected. There is a mild spread increase for shorter

maturities and this increase is slightly lower with zero correlation. But this feature

of having nonzero short-term spreads are already captured through the nature of the

reduced form models. Figure 2.6 illustrates the effects of stochastic default intensity

that runs on a medium time scale. We observe that the effect is similar to an increase

in constant intensity case as shown in figure 2.2. This effect is again enhanced by

negative correlation as seen in figure 2.7.

Figure 2.8 illustrates the effects of a slow mean reverting intensity, without and and

figure 2.9 with negative correlation. In this case the yields for short maturities are not

significantly affected and the effect is enhanced by the presence of a small negative

correlation. But in the long run, there is a remarkable difference to the constant

intensity case. And this effect is qualitatively and quantitatively very important for

the corporate bond type of securities which have longer maturities. This feature of

the curve will be captured in our analysis of the default intensity model with a slow

mean reverting default intensity in the following section 2.5. We do not conclude

from these numerical experiments that the time scale content of default intensity is

crucial in the shaping of the yield spread curve but at lease have some evidence that if

anybody would like to introduce the notion of time scales to the reduced-form models

framework, more interesting case would be the long time scale effects. In particular,

a long time scale with a negative correlation gives rise to a lot of flexibility for the

maturities, as compared to the constant intensity case.
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Figure 2.4: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a fast mean reverting OU process. Introducing a
fast mean reverting stochastic default intensity, i.e. κ = 10 in system (2.11) increases
the credit yield curve slightly for shorter maturities and converges to the constant
case for longer maturities. In this experiment we have no correlation between the
intensity and the asset process, i.e. ρλ = 0

Figure 2.5: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a fast mean reverting OU process. Dotted curve
is the spread curve produced by the hybrid model when the default intensity is a
fast mean reverting OU process that is also negatively correlated to the asset price
process. Introducing a fast mean reverting stochastic default intensity, i.e. κ = 10
in system (2.11) also having a negative correlation between the asset level process
and the default intensity gives a little more flexibility for shorter maturities and
again converges to the constant intensity spreads for longer maturities just like the
no correlation case. In this experiment we have negative correlation between the
intensity and the asset process, i.e. ρλ = −0.5 for the dotted curve

Figure 2.6: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a mean reverting OU process. Introducing a mean
reverting stochastic default intensity where the speed of mean reversion is medium,
i.e. κ = 0.5 in system (2.11) increases the credit yield curve slightly for mid-range
maturities and is not all that different from the constant intensity case for short or
long maturities. In this experiment we have no correlation between the intensity and
the asset process, i.e. ρλ = 0
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Figure 2.7: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a mean reverting OU process with a medium
speed of mean reversion. Dotted curve is the spread curve produced by the hybrid
model when the default intensity is still the same OU process but it is negatively
correlated to the asset price process. Introducing a mean reverting stochastic default
intensity, i.e. κ = 0.5 in system (2.11) and having a negative correlation between the
asset level process and the default intensity again changes the structure of the credit
yield curve only in the mid-range maturities. In this experiment we have negative
correlation between the intensity and the asset process, i.e. ρλ = −0.5 for the dotted
curve

Figure 2.8: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a slow mean reverting OU process. Having a slow
mean reverting stochastic default intensity, i.e. κ = 0.05 in system (2.11) increases the
credit yield curve slightly for shorter maturities and keeps its influence for the longer
maturities also as opposed to the fast mean reverting case, see figure 2.4. It suggests
that the long time scale for the default intensity is more relevant than the short time
scale in order to generate a broader class of spread curves. In this experiment we
have no correlation between the intensity and the asset process, i.e. ρλ = 0

Figure 2.9: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the default intensity is a slow mean reverting OU process. Dotted curve
is the spread curve produced by the hybrid model when the default intensity is a
slow mean reverting OU process that is also negatively correlated to the asset price
process. Having a slow mean reverting stochastic default intensity, i.e. κ = 0.05 in
system (2.11) gives some room for flexibility to the long end of the curve and the effect
is mildly boosted with the addition of the negative correlation between the asset level
process and the default intensity. The parameter value for correlation between the
intensity and the asset process, i.e. ρλ = −0.5 for the dotted curve
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2.5 Modelling Default Risk

2.5.1 Merton’s Model with Surprise Defaults

Assuming the setting of system (2.11) for the asset price process and the intensity

process. In this section we define the structural component of the default as in

Merton’s case i.e. default happens if St is below the default boundary K at time T

and also we have a stochastic, mean reverting exogenous default intensity. Motivated

by the results of numerical experiments of the previous section 2.4, we choose a slowly

mean reverting one i.e. the system (2.11) looks like
dSt = (r + λ∗t )Stdt+ σStdW

∗S
t

dXt = [δ(b−Xt)−
√
δΛ2]dt+

√
δβλ

√
2κdW ∗λ

t

λ∗t = φtg(Xt)

(2.12)

where δ is a small parameter. So the price of a defaultable zero-coupon bond in this

case would be (2.11).

P δ(t, s, x) = E∗{e−(r+λ(x))(T−t)h(ST )|St = s,Xt = x} (2.13)

where we denote the δ dependence as a super script and also we drop the ∗ notation

for λ for the rest of the section keeping in mind that we are already under the risk

neutral measure. As a particular case of the formula (2.5) we obtain{
∂P δ

∂t
+ L(S,X)P

δ − (r + λ(x))P δ = 0

P δ(T, s, x) = h(s)
(2.14)

where L(S,X) is the infinitesimal generator of the two dimensional Markovian Process

(St, Xt). Then we define the operator Lδ as follows

Lδ =
∂

∂t
+ L(S,X) − (r + λ(x))(·)
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so that the system (2.14) becomes:{
LδP δ(t, s, x) = 0

P δ(T, s, x) = h(s)
(2.15)

If we choose in particular h(s) = 1 then we are in the case of a defaultable bond.

In order to calculate the approximate solutions for P δ we decompose the operator Lδ

according to the powers of
√
δ as follows:

Lδ = L2 +
√
δM1 + δM2

L2 = ∂
∂t

+ 1
2
σ2s2 ∂2

∂s2
+ (r + λ(x))(s ∂

∂s
− ·)

M1 = βλ(ρλσs
∂2

∂s∂x
− Λ2

∂
∂x

)

M2 = δ(b− x) ∂
∂x

+ 1
2
β2
λ
∂2

∂x2

(2.16)

We expand the P δ in powers of
√
δ

P δ = P0 +
√
δP1 + δP2 + · · ·

plugging this in equation (2.15) and using the operator notation introduced in (2.16)

we get

L2P0 +
√
δ(L2P1 +M1P0) + δ(L2P2 +M1P1 +M2P0) + · · · = 0

Hence, matching the first two terms and the terminal conditions we can define the

P0&P1 as a solution of the following two systems of equations:{
L2P0 = 0

P0(T, s, x) = h(s)

{
L2P1 +M1P0 = 0

P1(T, s, x) = 0
(2.17)

Both P0&P1 depend on x as a parameter since the operators L2 = LBS(σ, r + λ(x))

do not take derivatives with respect to x variable. Hence, the leading term is the
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solution of the system {
LBS(σ, r + λ(x))P0 = 0

P0(T, s, x) = h(s)

Note that P0 depends on x only through the adjusted default rate, so x is only a

parameter that defines P0. So the leading term P0 = PBS(σ, r + λ(x)) which is given

by equation (2.6). Next, we derive an expression for P1.

Proposition 1:

Let

M1 = V δ
1 s

∂

∂s
(
∂

∂x
) + V δ

0

∂

∂x
(2.18)

The function P1(t, s, x) is explicitly given by

P1(t, s, x) = (T − t)(V δ
1 s

∂

∂s
(
∂P0

∂x
) + V δ

0

∂P0

∂x
)− 1

2
(T − t)2(

∂λ

∂x
(s
∂

∂s
− ·)2P0) (2.19)

For a proof and the explicit form of the correction term see section AppendixD.

2.5.2 First Passage Model with Surprise Defaults

Now we change the problem slightly. We adopt the setting of the section 2.5.1 and

system (2.12). But we extend the definition of the structural component of the default

to any time the asset process St hits the default boundary level K until maturity,T ,

as opposed to just at time T . Therefore, the price of a defaultable zero-coupon bond

in this case would be

P δ(t, s, x) = E{e−(r+λ(x))(T−t)h(ST )1{inft≤u≤T Su>K}|St = s,Xt = x}
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The price function satisfies almost the same PDE system as in the Merton’s case

except for the additional boundary condition at the default barrier.
∂P δ

∂t
+ L(S,X)P

δ − (r + λ(x))P δ = 0

P δ(t,K, x) = 0

P δ(T, s, x) = h(s)

Using barrier options approach, we introduce the function u(t, s, x) as

P δ(t, s, x) = 1{inf0≤u≤t Su>K}u(t, St = s,Xt = x)

where the function u(t,s,x) satisfies,for s ≥ K, the system
∂u
∂t

+ L(S,X)u− (r + λ(x))u = 0 on s > K, t < T

u(t,K, x) = 0 for t ≤ T

u(T, s, x) = h(s) for s > K

The equation solved by the first term of the asymptotic expansion
LBS(σ, r + λ(x))u0 = 0 on s > K, t < T

u0(t,K, x) = 0 for t ≤ T

u0(T, s, x) = h(s) for s > K

for a frozen value of x. Equation solved by the first correction term
LBS(σ, r + λ(x))u1 +M1u0 = 0 on s > K, t < T

u1(t,K) = 0 for t ≤ T

u1(T, s) = 0 for s > K

(2.20)

The closed-form solution of the system (2.20) is given in Appendix D. In consequence,

we approximate the price of a defaultable zero-coupon bond

P δ(0.T ) ∼ u0(0, s) +
√
δu1(0, s)
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Figure 2.10: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dashed curve is the spreads produced by
the model where the default intensity process is a mean reverting stochastic process
using the approximate solution derived in section 2.5.2. Qualitatively, the correction
to the spreads does not have much short run effect but has a persistent change in the
long run as expected from the simulated results. Quantitatively, although approxi-
mate formula goes only up to the first order, it still fits the simulated data points with
a small least squares error with the calibration of very few parameters. Parameter
values are V δ

0 = 0.002, V δ
1 = −0.008, λ∗ = 0.01, σ∗ = 0.12 and s

K
= 1.3

Resulting spreads from the approximate formula with the fitted parameters are com-

pared to the spreads obtained from the hybrid model with constant intensity in figure

2.10. The difference between the two curves is due to the stochasticity of the default

intensity. As expected from the slowly mean reverting choice for the default inten-

sity, the spreads are almost the same in the short term but rather different for longer

maturities.
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2.6 Stochastic Volatility with Fast Mean Rever-

sion

In the context of equity markets and derivatives pricing and hedging, stochastic

volatility is recognized as an essential feature in the modelling of the underlying dy-

namics. For an extended discussion we refer to Willmott et al.[69] and the references

in there. In order to illustrate our approach we consider first the case where volatility

is driven by one factor which we assume to be a mean-reverting Gaussian diffusion,

i.e. an Ornstein-Uhlenbeck process. The dynamics under the physical measure is

described by the following pair of SDEs

dSt = µStdt+ σ(Yt)StdW
S
t

dYt = α(m− Yt)dt+ ν
√

2αdW Y
t

with a constant exogenous default intensity λ. Main assumptions of our framework

are

i. The volatility function σ is positive, non-decreasing and bounded away and

above from 0.

ii. The invariant distribution of the volatility factor Y is the Gaussian distribution

with mean m and standard deviation ν and it is independent of the parameter

α.

iii. The important parameter α > 0 is the rate of mean reversion of the process Y

. In other words 1/α is the time scale of this process, meaning that it reverts

to its mean over times of order 1/α. Small values of α correspond to slow mean

reversion and large values of α correspond to fast mean reversion.

Also, the standard Brownian motions W S and W Y are correlated as

E{dW S
t dW

Y
t } = ρσdt
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where ρσ is a constant correlation coefficient satisfying ρσ < 1. We remark that

for the purpose of illustration we choose the volatility factor to be an Ornstein-

Uhlenbeck process, however, in our approach, Y could be any ergodic diffusion with

a unique invariant distribution, as explained in more detail in Fouque et al (2000)[27].

Moreover, in our simulations we choose particular volatility functions σ(y) as being

proportional to max(c1,min(c2, exp(y))), that is the exponential function with lower

and upper cutoffs.

In order to price defaultable bonds under this model for the underlying we rewrite it

under a risk neutral measure using previous section’s results, chosen by the market

through the market price of volatility risk Λ1 and default risk of φ, as follows{
dSt = (r + λ∗)Stdt+ σ(Yt)StdW

∗S
t

dYt = (α(m− Yt)− ν
√

2αΛ1(Yt))dt+ ν
√

2αdW ∗Y
t

(2.21)

with an exogenous default intensity λ∗ = φλ. Here, W ∗S
t and W ∗Y

t are standard

Brownian motions under the risk-neutral measure and correlated under the physical

measure. We assume that the market price of volatility risk Λ1 is bounded and a

function of y only whereas φ is just a constant.

In this section, we compute the yield spreads that results when we use the stochastic

volatility model in (2.21). Our focus is the combined role of the mean reversion time
1
α

and the correlation ρσ on the yield spread curve. We use various values for α,

corresponding to volatility factors that range from slowly mean reverting α = .05 to

fast mean reverting α = 10. For each value of α we present the uncorrelated case

ρσ = 0 and a negatively correlated case which is ρσ = −0.5. In each figure we plot the

yield spread curves as functions of time to maturity, and the solid curve corresponds

to a constant volatility. The dashed curve is the yield curve under the stochastic

volatility model (2.21), where the initial volatility level σ(Y0) and the long-run av-

erage volatility (see (2.22) below) coincide with the volatility level for the constant

volatility case. The constant volatility yields are computed using the explicit formula

(2.10). The stochastic volatility yields are computed using Monte Carlo simulations

of trajectories for the model (2.21). For these illustrations we choose the following

parameter values: Λ1 = 0, s
K

= 1.2, σ(Y0) = 0.12, r = 0.06,m = 0.12, ν = 0.6.



CHAPTER 2. DEFAULT AND EQUITY RISK 52

Figure 2.11 illustrates the effects of a slowly mean reverting volatility with no correla-

tion between the volatility and the underlying processes and 2.12 is the same setting

with negative correlation which is almost the same. The yields for short maturities

are not significantly affected. There is a mild spread increase for longer maturities

and this increase is slightly lower with zero correlation. This feature of the curve was

already captured with the setting of section 2.5.2.

Figure 2.13 illustrates the effects of stochastic volatility that runs on a medium time

scale. We observe that the effect is similar to an increase in volatility as shown in

Figure 2.3. This effect is again enhanced by negative correlation as seen in figure

2.14. This feature of the curve will be captured in the leading order term by choosing

an appropriate effective volatility level σ∗ as explained in section 2.7.3.

Figure 2.15 illustrates the effects of a fast mean reverting volatility, without and and

figure 2.16 with negative correlation. In this case the yields for short maturities are

significantly affected and the effect is enhanced by the presence of a small negative

correlation. It is remarkable that this effect is qualitatively and quantitatively very

different from the effect resulting from an increase in the volatility level as shown in

figure 2.3. This feature of the curve will be captured in our analysis of the stochastic

volatility model with a fast mean reverting volatility factor in the following section

2.7.3. We conclude from these numerical experiments that the time scale content of

stochastic volatility is crucial in the shaping of the yield spread curve. In particular,

a short time scale with a negative correlation gives enhanced spreads at short matu-

rities, as compared with the constant volatility case.

A well separated fast volatility time scale has been observed in equity [30] and fixed

income [11] markets. A main feature of this short time scale is that it can be treated

by singular perturbation techniques as described in detail in [29]. This leads to a

description where the effects of the stochastic volatility can be summarized in terms

of three group market parameters, an effective constant volatility σ∗, leverage s
K

and

a skew parameter V ε
3 . Below we will generalize these results to the case of defaultable

bonds.
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Figure 2.11: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the volatility of the underlying asset level process is a slow mean reverting
OU process. Introducing a slow mean reverting stochastic volatility, i.e. α = 0.05 in
system (2.21) increases the credit yield curve slightly for shorter maturities but lifts
it up more for longer maturities. In this experiment we have no correlation between
the volatility and the asset level process, i.e. ρσ = 0. We also take Λ1 = 0 so there is
no risk premium due to volatility risk

Figure 2.12: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the the volatility of the underlying asset level process is an OU process
with slow mean reversion. Dotted curve is the spread curve produced by the hybrid
model when the volatility is a slow mean reverting OU process that is also negatively
correlated to the asset price process. Introducing a slow mean reverting stochastic
volatility, i.e. α = 0.05 in system (2.21) also having a negative correlation between
the asset level process and the volatility pushed the spread curve further up for longer
maturities as expected while keeping the short term structure unchanged from the
no correlation case. In this experiment we have negative correlation between the
volatility and the asset process, i.e. ρσ = −0.5 for the dotted curve.

2.7 Modelling Equity Risk

2.7.1 Merton’s Model with Stochastic Volatility

We first review the singular perturbation results in the case of a European option.

Let the payoff function at the maturity time T be h(s). The price of the option is

obtained as the expected value of the discounted payoff under the risk neutral measure

in the stochastic volatility model (2.21):

P ε(t, s, y) = E{e−(r+λ∗)(T−t)h(ST )|St = s, Yt = y}

In Fouque et al. (2000)[27] it is shown that in the limit of the volatility time scale

going to zero, or equivalently alpha goes to infinity, the price P ε converges to the
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Figure 2.13: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the volatility of the underlying asset level process is a mean reverting
OU process where the level mean reversion speed is medium, i.e. α = 0.5 in system
(2.21). The shift in the overall shape is spread out and the lift is larger than the slow
mean reverting volatility case which gives more variety overall. In this experiment
we have no correlation between the volatility and the asset level process, i.e. ρσ = 0.

Figure 2.14: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the the volatility of the underlying asset level process is a mean reverting
OU process where the level of mean reversion is medium, i.e. α = 0.5 in system
(2.21). Having mean reversion in the volatility process combined with the effect of
the correlation with the asset level process yields more flexibility to the spread curve
for mid-range maturities while not changing too many things about the short or long
term structure from the no correlation case. In this experiment we have negative
correlation between the volatility and the asset process, i.e. ρσ = −0.5 which resulted
the dotted curve.

Figure 2.15: Solid curve is the benchmark credit yield curve with constant default in-
tensity and volatility. Dashed curve is the spread curve produced by the hybrid model
when the volatility of the underlying asset level process is a a fast mean reverting OU
process, i.e. α = 10 in system (2.21). The short term spreads increase much more
rapidly allowing for sudden changes in short period of times. Although the idea of
having the hybrid model approach takes care of non-zero initial yield spreads, intro-
duction of fast mean reverting stochastic volatility help generating quckly changing
term structures. The setting is not any different than the constant case for longer
maturities. In this experiment we have no correlation between the volatility and the
asset level process, i.e. ρσ = 0.
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Figure 2.16: Solid curve is the benchmark credit yield curve with constant default
intensity and volatility. Dashed curve is the spread curve produced by the hybrid
model when the the volatility of the underlying asset level process is a mean reverting
OU process where the level of mean reversion is fast, i.e. α = 10 in system (2.21).
Having fast mean reversion in the volatility process combined with the effect of the
correlation with the asset level process yields more dramatic changes to the short end
of the spread curve but still converges to the constant volatility case as the maturities
get larger. In this experiment we have negative correlation between the volatility and
the asset process, i.e. ρσ = −0.5 which pushed up the dashed and resulted the dotted
curve.

Black-Scholes price computed with an effective constant volatility σ given by

σ2 =< σ2(·) >=
1√
2πν

∫
σ2(y)e−

(y−m)2

2ν2 dy (2.22)

where σ2 is averaged with respect to the invariant distribution of the OU process.

This limiting price, denoted by PBS(t, s) satisfies the following system

LBS(σ, r + λ∗)PBS = 0

PBS(T, s) = h(s)

where LBS(σ, r + λ∗) is given by

LBS(σ, r + λ∗) =
∂

∂t
+

1

2
σ2s2 ∂

2

∂s2
+ (r + λ∗)(s

∂

∂s
− ·)

The main effects of stochastic volatility are captured by the first order correction

proportional to 1/α = ε and denoted by P 1(t, s). It is given as the solution of the

problem {
LBS(σ, r + λ∗)P 1 = −V ε

2 s
2 ∂2PBS

∂s2
− V ε

3 s
∂
∂s

(s2 ∂2PBS

∂s2
)

P 1(T, s) = 0
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where the parameters V ε
2 and V ε

3 are small of order ε, and are complicated functions

of the original model parameters. Note that the first order price approximation

P ε(t, s, y) ∼ PBS(t, s) + P 1(t, s)

does not depend on the current level y of the volatility factor which is not directly

observed. The calibration is simplified by introducing the corrected effective volatility:

σ∗2 = σ2 + 2V ε
2 (2.23)

and the BS price P
∗
BS computed at the volatility level σ∗. We define the correction

term P
∗
1 by {

LBS(σ∗, r + λ∗)P
∗
1 = −V3s

∂
∂s

(s2 ∂
2P

∗
BS

∂s2
)

P
∗
1(T, s) = 0

so that

P (t, s, y) ∼ P
∗
BS(t, s) + P

∗
1(t, s)

The accuracy of this approximation is of order 1
α

in the case of a smooth payoff h,

and of order logα
α

in the case of call options as proved in Fouque et al (2003)[31].

Observe that σ∗,λ∗ and V ε
3 are the only parameters needed to compute this approxi-

mation, in fact, they can be calibrated from implied volatilities as explained in Fouque

(2004)[34].

2.7.2 First Passage Model with Stochastic Volatility

Here we consider an option that pays h(ST ) at maturity time T if the the underlying

stays above a level K before time T and zero otherwise. Under the model (2.21) for

the underlying, the price at time zero of this down and out barrier option is given by

P ε(0, s, y) = e−(r+λ∗)TE∗{h(ST )1{inf0≤u≤T Su>K}|S0 = s, Y0 = y}
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We define u(t, s, y) by

u(t, s, y) = e−(r+λ∗)(T−t)E∗{h(ST )1{inft≤u≤T Su>K}|St = s, Yt = y}

so that the price of the barrier option at time t is given by

P ε(t) = 1{inf0≤u≤0 Su>K}u(t, St, Yt)

The function u(t, s, y) satisfies for s ≥ K the problem
( ∂
∂t

+ LS,Y − (r + λ∗))u = 0 on s > K, t < T

u(t,K) = 0 for t ≤ T

u(T, s) = h(s) for s > K

where LS,Y is the infinitesimal generator of the two dimensional process (S, Y ) given

by (2.21).

Following Fouque et al (2000)[27], in the limit as ε approaches zero we find that

u(t, s, y) converges to u0(t, s) which solves the constant volatility problem
LBS(σ, r + λ∗)u0 = 0 on s > K, t < T

u0(t,K) = 0 for t ≤ T

u0(T, s) = h(s) for s > K

As in the European case, for calibration purposes, it is convenient to use the adjusted

effective volatility σ∗ defined in (2.23). Hence, we define u∗0(t, s) as the solution of

the problem 
LBS(σ∗, r + λ∗)u∗0 = 0 on s > K, t < T

u∗0(t,K) = 0 for t ≤ T

u∗0(T, s) = h(s) for s > K

(2.24)



CHAPTER 2. DEFAULT AND EQUITY RISK 58

and we define the correction u∗1(t, s) by
LBS(σ∗, r + λ∗)u∗1 = −V ε

3 s
∂
∂s

(s2 ∂
2u∗0
∂s2

) on s > K, t < T

u∗1(t,K) = 0 for t ≤ T

u∗1(T, s) = 0 for s > K

(2.25)

Note that, the small parameter V ε
3 is the same as in the European case.

2.7.3 Pricing Formulas and Implied Spreads

In this section we consider the case h(s) = 1 corresponding to a defaultable zero-

coupon bond. From formula (2.6) (2.25) in section 2.7.2 we find that u∗0 defined in

(2.24) is explicitly given by

u∗0(t, s) = e−(r+λ∗)(T−t)(N(d+)− (
s

K
)pN(d−)) (2.26)

with the notation

p = 1− 2(r + λ∗)

σ∗2
, d± =

± log( s
K

)− pσ∗2

2
τ

σ∗
√
τ

where we dropped the ∗ and τ inside d± for notational simplicity. As a result of all,

the price of the defaultable bond at time 0 is approximated by

P (0.T ) ∼ u∗0(0, s) +
√
εu∗1(0, s)

where u∗0(t, s) is given in equation (2.26) and u∗1(t, s) = y1(t, s) + y2(t, s) which are

derived in Appendix E. Here we state the final answer.

y1(t, s) = (T − t)V ε
3 e

−(r+λ(x))(T−t)[N ′(d+)[
d2+−1

(σ∗
√
τ)3

+ d+
(σ∗

√
τ)2

]

+ N ′(d−)[
d2−−1

(σ∗
√
τ)3

+ (3p−1)d−
(σ∗

√
τ)2

+ p(3p−2)
(σ∗

√
τ)

]( s
K

)p

+ N(d−)[(1− p)p2]( s
K

)p]
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Figure 2.17: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dotted curve is the spreads produced by
the model where the default intensity process is a mean reverting stochastic process
using the approximate solution derived in section 2.7.3. Qualitatively, the correction
to the spreads does not have much long run effect as we observed numerical experi-
ments the fast mean reverting stochastic volatility converges to the constant volatility
case as the maturity gets large but has a dramatic effect to the short end of the curve.
Quantitatively, although approximate formula goes only up to the first order, it still
fits the simulated data points with a small least squares error with the calibration
of very few parameters. Used parameter values are V ε

3 = −0.003 and σ∗ = 0.12 and
s
K

= 1.2

and

y2(t, s) =
( s
K

)p/2

σ∗
√

2π

∫ T

t

log s
K

(z − t)3/2
e
−

log( s
K

)2

2σ∗2(z−t) e(
(σ∗p)2

8
+r+λ∗)(z−t)g(z)dz
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Figure 2.18: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dotted curve is the spreads produced by
the model where the stochastic volatility process is a mean reverting one using with
a speed of mean reversion parameter α = 10. Qualitatively, the correction to the
spreads does not have much long run effect and converges to the constant volatility
case as the maturity gets large but has a dramatic effect to the short end of the curve.
Dotted curve is the exact same setting with an even faster mean reverting process
where α = 20. although the short term yields increase a little more, the long run
behavior is still the same. Existence of a long time scale is important in having long
term flexibility for credit yield spreads.

2.8 Modelling Default and Equity Risk:

2.8.1 Combined Framework and Mathematical Derivations

Just like the previous section’s approach, we start from the case of pricing of a Eu-

ropean derivative this time under the setting of (2.5) where we have both stochastic

volatility and the intensity at the same time. Therefore we have the slow and fast

time scales together, we will carry out a two dimensional version of the asymptotic

analysis done in sections 2.5 and 2.7. As a result of the analysis we will have two

correction terms, one due to short scale and another one due to long. And they would

separately represent the additional default risk for the stochastic intensity and the

addition equity risk for the stochastic volatility.

Before we move on to the mathematical analysis part, we run simulations to test

the flexibility of each factor and the interaction between the two factors. As seen in

figure 2.18, no matter how big the speed of mean reversion for the volatility factor it

always converges to a constant volatility model in the long run. Although it pushed

the short term spreads upwards, has almost no long term effect.

On the other hand as figure 2.19 suggests, the slow mean reversion factor takes over

in the long run and provides some freedom to the long end of the spread curve with-

out changing it much in the short end. And the effect is boosted by the negative

correlation parameter as in figure 2.20 We start with computing
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Figure 2.19: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dotted curve is the spreads produced by
the model where the stochastic volatility process is a mean reverting one using with a
speed of mean reversion parameter α = 10. Dotted curve is the hybrid model where
we also a stochastic default intensity. A slow mean reverting process is used,κ = 0.1
and we observe the effect of the addition to the long end of the curve without changing
too much the short end of the curve.

Figure 2.20: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dashed curve is the hybrid model where
we have a fast mean reverting stochastic volatility and slow mean reverting default
intensity, that is α = 10 and κ = 0.1 in (2.5). We further boost the effect of the
stochastic default intensity with the introduction of a negative correlation of 50%
with the underlying state process. It effects the curve overall both in the long run
and short run. The combination of the time scales and the correlation parameters
yields a broad set of credit yield spreads with realistic features. Parameter value for
correlation is ρλ = −0.5

P ε,δ(t, St, Yt, Xt) = E∗{e−(r+λ∗)(T−t)h(ST )|St, Yt, Xt} (2.27){
∂P ε,δ

∂t
+ L(S,Y,X)P

ε,δ − (r + λ∗)P ε,δ = 0

P ε,δ(T, s, y, x) = h(s)
(2.28)

where L(S,Y,X) is the infinitesimal generator of the Markovian Process (St, Yt, Xt).

Then we define the operator Lε,δ as follows

Lε,δ =
∂

∂t
+ L(S,Y,X) − (r + λ(x))(·)

so that the system (2.28) becomes:{
Lε,δP ε,δ = 0

P ε,δ(T, s, y, x) = h(s)
(2.29)
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If we choose in particular h(s) = 1 then we are in the case of defaultable bond.

In order to calculate the approximate solutions for P ε,δ we decompose the operator

Lε,δ according to the powers of
√
ε and

√
δ as follows:

Lε,δ = 1
ε
L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ
ε
M3

L0 = (m− y) ∂
∂y

+ 1
2
β2
σ
∂2

∂y2

L1 = βσ(ρσσ(y)s ∂2

∂s∂y
− Λ1(y, x)

∂
∂y

)

L2 = ∂
∂t

+ 1
2
σ2(y)s2 ∂2

∂s2
+ (r + λ(x))(s ∂

∂s
− ·)

M1 = βλ(ρλσ(y)s ∂2

∂s∂x
− Λ2(y, x)

∂
∂x

)

M2 = δ(b− x) ∂
∂x

+ 1
2
β2
λ
∂2

∂x2

M3 = βσρσρλβλ
∂2

∂y∂x

(2.30)

We expand the P ε,δ in powers of
√
δ first

P ε,δ = P ε
0 +

√
δP ε

1 + δP ε
2 + · · ·

plugging this in equation (2.29) and using the operator notation introduced in (2.30)

we get

(
1

ε
L0+

1√
ε
L1+L2)P

ε
0+
√
δ{(1

ε
L0+

1√
ε
L1+L2)P

ε
1+(M1+

1√
ε
M3)P

ε
0}+· · · = 0 (2.31)

Hence, matching the first two terms and the terminal conditions we can define the

P ε
0&P

ε
1 as a solution of the following two systems of equations:{

(1
ε
L0 + 1√

ε
L1 + L2)P

ε
0 = 0

P ε
0(T, s, y, x) = h(s)

{
(1
ε
L0 + 1√

ε
L1 + L2)P

ε
1 + (M1 + 1√

ε
M3)P

ε
0 = 0

P ε
1(T, s, y, x) = 0
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Both P ε
0&P

ε
1 depend on x as a parameter since the operators L0,L1,L2 do not take

derivatives with respect to x. Consider the first term P ε
0 and expand it as

P ε
0 = P0 +

√
εP1,0 + εP2,0 + ε3/2P3,0 + · · · (2.32)

In the notation Pi,j i corresponds to power of
√
ε and j corresponds to the power of

√
δ. Our ultimate goal in this section would be calculating the approximate formula

P ε,δ ≈ P0 +
√
εP1,0 +

√
δP0,1

Inserting (2.32) in (2.31) we get

1
ε
L0P0 + 1√

ε
(L0P1,0 + L1P0)

+(L0P2,0 + L1P1,0 + L2P0)

+
√
ε(L0P3,0 + L1P2,0 + L2P1,0)

+ · · · = 0

(2.33)

Matching the first term and using (2.30) we get

L0P0 = (α(m− y)
∂

∂y
+

1

2
β2
σ

∂2

∂y2
)P0 = 0

Here we choose P0 to be independent of y so that we do not get any unreasonable

growth, i.e. P0 = P0(t, s, x)). Also matching the second term gives us

L0P1,0 + L1P0 = 0 (2.34)

But since the operator L1 takes derivatives with respect to y and P0 is constant in y

L1P0 = 0 and the equation (2.34) reduces to

L0P1,0 = 0
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Now, we also choose P1,0 not to depend on y, i.e. P1,0 = P1,0(t, s, x)). Then, order 1

terms in (2.33) gives

L0P2,0 + L2P0 = 0 (2.35)

Notice that (2.35) is a Poisson equation in P2,0 with respect to y variable. So only

reasonable solution occurs in case of L2P0 being in the orthogonal complement of L∗
0.

Namely,

< L2P0 >= 0 (2.36)

where the <> denotes the integration with respect to the invariant distribution Φ of

the process Yt. Since, P0 does not depend on y < L2P0 >=< L2 > P0 and

< L2 >=
∂

∂t
+

1

2
< σ2(·) > s2 ∂

2

∂s2
+ (r + λ(x))(s

∂

∂s
− .)

which is the LBS(σ, r + λ(x)) where σ is the effective volatility and r + λ(x) is the

default adjusted short rate.

σ2 =< σ2(·) >=

∫
σ2(y)Φ(dy)

Hence, the leading term is the solution of the system{
LBS(σ, r + λ(x))P0 = 0

P0(T, s, x) = h(s)
(2.37)

Note that P0 depends on x only through the adjusted default rate, so x is only a

parameter that defines P0 Next, we derive an expression for P1,0.
√
ε term in (2.33)

gives

L0P3,0 + L1P2,0 + L2P1,0 = 0

Then, the same averaging condition gives

< L1P2,0 > + < L2 > P1,0 = 0
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Then, (2.35) and (2.36) gives

P2,0 = −L−1
0 (L2− < L2 >)P0

Introduce the notation

A = − < L1L−1
0 (L2− < L2 >) > (2.38)

Then, we can define the P1,0 as the solution of the system of system{
LBS(σ, r + λ∗(x))P1,0 +AP0 = 0

P1,0(T, s, x) = 0

Observe that, P1,0 is the solution of a Black-Scholes equation with a source term and

zero terminal condition.

Computation of the operator A:

Let ψ(y) be the solution of the Poisson Equation with respect to y

L0ψ(y) = σ2(y)− σ2

then

L−1
0 (L2− < L2 >) =

1

2
ψ(y)s2 ∂

2

∂s2

and therefore

L1L−1
0 (L2− < L2 >) = βσ(ρσσ(y)s ∂2

∂s∂y
− Λ1(y, x)

∂
∂y

)1
2
ψ(y)s2 ∂2

∂s2
(2.39)

= ρσβσσ(y)
2

∂ψ
∂y
s ∂
∂s

(s2 ∂2

∂s2
)− βσΛ1(y,x)

2
∂ψ
∂y
s2 ∂2

∂s2
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By averaging in y with respect to the invariant distribution and using (2.38) of the

operator A we get

A = 1
2
< βσΛ1(y, x)

∂ψ
∂y
> s2 ∂2

∂s2
− ρσ

2
< βσσ(y)∂ψ

∂y
> s ∂

∂s
s2 ∂2

∂s2
(2.40)

≡ V ε
3 s

2 ∂2

∂s2
− V ε

2 s
∂
∂s
s2 ∂2

∂s2
(2.41)

where the bracketed terms are functions of x

Proposition 1:

The function P1,0(t, s, x) is explicitly given by

P1,0 = (T − t)AP0

where the operator A is as in equation (2.38) and P0 as in equation (2.37).

Consider the term P ε
1 and expand it as

P ε
1 = P0,1 +

√
εP1,1 + εP2,1 + ε3/2P3,1 + ... (2.42)

Inserting (2.42) in (2.33) we get

1
ε
L0P0,1 + 1√

ε
(L0P1,1 + L1P0,1 +M3P0)

+(L0P2,1 + L1P1,1 + L2P0,1) +M1P0 +M3P1,0

+
√
ε(L0P3,1 + L1P2,1 + L2P1,1 +M1P1,0 +M3P2,0)

+ · · · = 0

(2.43)

Matching the first term and using (2.30) we get

L0P0,1 = (α(m− y)
∂

∂y
+

1

2
β2
σ

∂2

∂y2
)P0,1 = 0

Here we choose P0,1 to be independent of y just like for P0. Also matching the second

term gives us

L0P1,1 + L1P0,1 +M3P0 = 0 (2.44)
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But since the operator L1 takes derivatives with respect to y and P0,1 is constant in y

L1P0,1 = 0. Similarly, M3 takes derivative with respect to y and P0 does not depend

on y. Hence, the equation (2.44) reduces to

L0P1,1 = 0

Now, we also choose P1,1 not to depend on y, i.e. P1,1 = P1,1(t, s, x)). Then, order 1

terms in (2.43), using the facts L1P1,1 = M3P1,0 gives us

L0P2,1 + L2P0,1 +M1P0 = 0 (2.45)

Notice that (2.45) is a Poisson equation in P2,1 with respect to y variable. Then, the

averaging condition in this case turns out to be

< L2P0,1 +M1P0 >=< L2 > P0,1+ <M1 > P0 = 0

where <M1 > is

<M1 > = ρλ < βλ(·)σ(·) > s ∂2

∂s∂x
− < βλ(·)Λ2(·, x) > ∂

∂x
(2.46)

≡ V δ
0 s

∂2

∂s∂x
− V δ

1
∂
∂x

(2.47)

since the terminal condition h(x) is taken care of by the P0 term, we can write the

P0,1 as a solution to the system{
LBS(σ, r + λ(x))P0,1+ <M1 > P0 = 0

P0,1(T, s, x) = 0

In fact, we can explicitly calculate the term P0,1 as in the following proposition. See

Appendix D for the actual derivation.
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Proposition 2:

The function P0,1(t, s, x) is explicitly given by

P0,1 = (T − t) <M1 > P0 −
1

2
(T − t)2(

∂λ

∂x
(s
∂

∂s
− ·)2P0) (2.48)

We start writing the first order approximation again by using the propositions of the

previous section

P ε,δ ≈ P0 +
√
εP1,0 +

√
δP0,1

= P0 + (T − t)(
√
εA+

√
δ <M1 >)P0 − 1

2
(T − t)2(∂λ

∂x
(s ∂

∂s
− ·)2P0)

2.8.2 Risk due to Equity Risk

The short time scale contribution to P ε,δ is (T − t)
√
εAP0 so we consider the operator

√
εA =

√
ε

2
< βσΛ1(·, x)

∂ψ

∂y
> s2 ∂

2

∂s2
)− ρσ

√
ε

2
< βσσ(·)∂ψ

∂y
> s

∂

∂s
s2 ∂

2

∂s2
)

Then, we introduce the following notation for two parameters{
V ε

2 =
√
ε

2
< βσΛ1(·, x)∂ψ∂y >

V ε
3 = −ρσ

√
ε

2
< βσσ(·)∂ψ

∂y
>

(2.49)

Now, we can rewrite the short time scale contribution to P ε,δ as

(T − t)
√
εAP0 = (T − t)(V ε

2 s
2 ∂

2

∂s2
) + V ε

3 s
∂

∂s
s2 ∂

2

∂s2
))P0 (2.50)

2.8.3 Risk due to Default Risk

The long time scale contribution to P ε,δ is (T − t)
√
ε <M1 > P0− 1

2
(T − t)2(∂λ

∂x
(s ∂

∂s
−

·)2P0) so we consider the operator

√
δ <M1 >= [

ρλ
√
δ

2
< βλσ(·) >]s

∂

∂s
(
∂

∂x
) + [−

√
δ

2
< βλΛ2(·, x) >]

∂

∂x
(2.51)
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Then, we introduce the following notation for two parameters{
V δ

0 = −
√
δ

2
< βλΛ2(·, x) >

V δ
1 = ρλ

√
δ

2
< βλσ(·) >

Now, we can rewrite the long time scale contribution to P ε,δ as

(T − t)
√
ε <M1 > P0 = (T − t)(V δ

1 s
∂

∂s
(
∂

∂x
) + V δ

0

∂

∂x
)P0 (2.52)

In summary, for the European case we calculate the default risk contribution as follows

(T − t)
√
ε <M1 > P0 −

1

2
(T − t)2(

∂λ

∂x
(s
∂

∂s
− ·)2P0)

where the three terms on RHS are respectively given by the equations (2.51) and

(D.10).

2.8.4 Bond Price and Yield Approximations

Again, we go to the case of pricing of the defaultable zero coupon bond where the

default could occur any time until the maturity. This time we simply write out the

final equations as we derived them separately in sections 2.5 and 2.7. Objective is

the compute the expectation

P ε,δ(t, St, Yt, Xt) = E∗{e−(r+λ∗)(T−t)h(ST )1inft≤u≤T Su>K |St, Yt, Xt}

We introduce the new function u(t, s, y, x)

P (t) = 1inf0≤u≤t Su>Ku(t, St, Yt, Xt)
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where the function it satisfies,for s ≥ K, the system
∂u
∂t

+ L(S,Y,X)u− (r + λ(x))u = 0 on s > K, t < T

u(t,K) = 0 for t ≤ T

u(T, s) = h(s) for s > K

The equation solved by the first term of the asymptotic expansion
LBS(σ, r + λ(x))u0 = 0 on s > K, t < T

u0(t,K) = 0 for t ≤ T

u0(T, s) = h(s) for s > K

for a frozen value of x. Equation solved by the first correction term from the short

time scale contribution
LBS(σ, r + λ(x))u1,0 +Au0 = 0 on s > K, t < T

u1,0(t,K) = 0 for t ≤ T

u1,0(T, s) = 0 for s > K

(2.53)

Introducing the u∗1,0 = u1,0 + (T − t)Au0 the system becomes
LBS(σ, r + λ(x))u∗1,0 = 0 on s > K, t < T

u∗1,0(t,K) = m(t) for t ≤ T

u∗1,0(T, s) = 0 for s > K

(2.54)

where m(t) = lims↓K(T − t)Au0 Equation solved by the first correction term from the

long time scale contribution
LBS(σ, r + λ∗(x))u0,1+ <M1 > u0 = 0 on s > K, t < T

u0,1(t,K) = 0 for t ≤ T

u0,1(T, s) = 0 for s > K

(2.55)
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Solution of the system (2.55) is a bit more involved than the (2.53) which we do in

Appendix D, but at the end it boils down to solving a similar homogeneous system
LBS(σ, r + λ(x))u∗0,1 = 0 on s > K, t < T

u∗0,1(t,K) = n(t) for t ≤ T

u∗0,1(T, s) = 0 for s > K

(2.56)

for some function n(t) defined in (D.18). In consequence, we approximate the price

of a defaultable zero-coupon bond

P (0.T ) ∼ u0(0, s) + u∗1,0(0, s)− (T − t)Au0(0, s)

+ u∗0,1(0, s)− (T − t) <M1 > u0(0, s)

+ 1
2
(T − t)2(∂λ

∂x
(s ∂

∂s
− ·)2P0)

The integral formulas

u∗1,0(t, s) =
( s
K

)p/2

σ∗
√

2π

∫ T

t

log s
K

(z − t)3/2
e
−

log( s
K

)2

2σ∗2(z−t) e(
(σ∗p)2

8
+r+λ∗)(z−t)m(z)dz (2.57)

and

u∗0,1(t, s) =
( s
K

)p/2

σ∗
√

2π

∫ T

t

log s
K

(z − t)3/2
e
−

log( s
K

)2

2σ∗2(z−t) e(
(σ∗p)2

8
+r+λ∗)(z−t)n(z)dz (2.58)

along with the functions m(t) and n(t) are calculated explicitly in Appendix D.
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Figure 2.21: Solid curve is the spreads produced by the simple hybrid model with
constant default intensity and the volatility. Dotted curve is the spreads produced
by the model where both the default intensity and the stochastic volatility are mean
reverting stochastic processes with slow and fast mean reversions respectively using
the approximate solution derived in section 2.8.4. Qualitatively, the correction to
the spreads both have short term and long term effects. We have the non-zero short
term spreads due to default intensity, quick changes in the short run due to fast mean
reverting stochastic volatility and the necessary flexibility over the long run due to
slow fast mean reverting stochastic intensity. And quantitatively, all the pricing and
parameter fitting are done through approximate formula which goes only up to the
first order and it still fits the simulated data points with a small least squares error
with the calibration of the few parameters. The parameters obtained for the dotted
curve V ε

3 = −0.003,V δ
0 = 0.0003,V δ

1 = −0.0005 and σ∗ = 0.12 and s
K

= 1.2



Chapter 3

Credit Default Swap Pricing

This problem explores the expectation of the credit market by developing a parsi-

monious four-factor credit default swap model. In particular, it is tempting to ask

following questions:

i. What were the default probabilities, both risk-neutral and physical, expected

by the credit market during different periods?

ii. What was the expected rate of recovery in the underlying reference given de-

fault?

iii. How did a default swap model perform over different phases of period?

iv. What economic and financial factors are potentially important in pricing default

swaps?

To be able to answer these type of problems, we propose a valuation framework for

credit default swaps that admits flexible correlation between underlying state variable

processes. The framework is versatile enough to separate the the default probabilities

and the expected recovery rates. We develop a four-factor default swap model, where

the first two factors are economy-wide ones intended to capture the dynamics of the

U.S. term structure of interest rates and the third factor is name-specific to the credit

risk of a particular entity. The fourth factor represents an exogenous default source

which is global or market-wide. In the model, we relate the hazard rate to the four

73
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state variables, and explicitly specify market prices of risk so that the parameters of

the underlying factor dynamics and that of the market risk premiums can be identi-

fied individually.

In this chapter we propose a relatively simple closed form approximations to the credit

spreads and bond prices with realistic short maturity spreads that are related to the

structural characteristics of the firm’s economic environment and accommodates sto-

chastic interest rates. The distinguishing feature of the model is that it incorporates

the attractive features of the Longstaff-Schwartz(1995)[52] with hazard rate approach

Jarrow-Turnbull(1995)[45], Madan-Unal(1998)[55] and Duffie-Singleton(1999)[19].

Diffusion-based models of pricing risky debt define default as occurring either at matu-

rity (Merton(1974)[59]) or when the firm’s asset value diffuses to a prespecified default

boundary for the first time(Longstaff-Schwartz(1995)[52]). An attractive feature of

these models is that they express the default time in terms of firm specific structural

variables. These models can then answer questions about the implications of debt

pricing of changes in firm specific variables such as capital structure reorganizations.

However, this important feature is compromised by their inability to generate realistic

credit spreads in the shorter term although Longstaff-Schwartz(1995)[52] did succeed

in obtaining such spreads in the medium term. In these models, time needs to pass

to allow assets to diffuse for the default probability to materialize. Equivalently, the

probability of a positive-equity firm defaulting in the near term is negligible leading

to near zero spreads for short maturities.

The recent hazard rate approach to pricing risky debt of Jarrow and Turnbull(1995)[45],

Madan and Unal(1998)[55] and Duffie and Singleton(1999)[19], develops a class of

models that allow for the possibility of default in the immediate future. This litera-

ture proposes an exogenous model for the hazard rate, which we also adopt in this

chapter, which is the likelihood of the firm defaulting over the next period.

A major advantage of this approach is that they generate realistic short maturity

credit spreads. However, these models lack a structural definition of the default

event. As a consequence, the resulting hazard rate model is a reduced form with

parameters that lack a structural interpretation and hence offers no guidance in the

presence of a structural change in firm specific variables.
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This chapter seeks to propose a two factor hazard rate process in approximate closed

form. The key difference of the model is the interpretation of these two factors. The

default occurs due to one of these factors, One of them is the firm-specific default

probability. For instance, the default is a consequence of a single jump loss event that

drives the equity value to zero and requires cash outlays that cannot be externally

financed. A case in point is the near default of Long Term Capital Management,

resulting from an adverse movement in interest rates. Or another case could be of

Barings where a large trading loss forced bankruptcy. Both these examples illustrate

the phenomena of default arising from the arrival of an unforeseen loss. Such a sudden

fatal loss can be caused by numerous surprise events including the outcome of law-

suits, unexpected devaluations, sudden default of a creditor, supplier or a customer,

and catastrophes in production lines.

The model has a number of attractive features. First, consistent with the hazard-rate

literature, the probability of such sudden loss arriving unexpectedly is captured in

the pricing equations by discounting the promised payments by the hazard rate. Also

the default intensities are in correlation with the stochastic interest rates. To achieve

this we simply correlate the stochastic differential equations that drive the factors

through their Brownian Motions.

Second, our treatment of the interest rate risk differ from the literature that ex-

plicitly allows for the relationship between credit spreads and default-free interest

rates(Longstaff-Schwartz(1995)[52] and Kim, Ramaswamy and Sundaresan(1993)[49]).

Because in this literature current asset values are assumed not to be interest sensitive.

And these models would predict that an increase in interest rates benefits the firm’s

equity and reduces credit spreads. This is an overly simplified assumption and for

some specific firms it simply would not be correct. We allow in our model for both

negative and positive correlation between the interest rates and default intensities.

Finally, the proposed model, by virtue of its closed form, enables the researcher to

undertake comparative statistics analysis and enhances the empirical applicability of

the model.
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3.1 Credit Default Swap Valuation

Let us fix a Probability space (Ω,F , P ) and the σ− algebra Ft = σ(W S
t , Z

σ
t , Z

λt)

where W S
t , Z

σ
t , Z

λt are independent standard Brownian Motions. Let’s also introduce

the σ− algebra Gt = σ(Ft ∨ Nt) where Nt is a nonexplosive doubly stochastic (with

respect to Ft) counting process with intensity λt, i.e.

i. λt is Ft predictable and
∫ t

0
λsds <∞ a.s.

ii. Nt −
∫ t

0
λsds is a Gt local martingale

iii. P{Ns −Nt = k|Gt ∨ Fs} =
e−

R s
t λudu(

R s
t λudu)k

k!

We first derive the formula for CDS premium, where the short rate process is modelled

as a two factor process and the default event is modelled by the stopping time τ , the

first jump of the counting process Nt, χ(t) = 1τ≤t. The default intensity process

is modelled as a positive bounded function of an Ornstein-Uhlenbeck process. The

Brownian Motions that drive the dynamics of the short rate process are correlated

among themselves and with the Brownian Motion that drives the default intensity.

The present value of the premium of CDS

EQ{
∫ T

t

e
R u

t −rsds(1− χ(u))pdu|Gt}

where p is the continuous premium paid by the CDS buyer for the default swap

contract with maturity T . The present value of the payoff at default can be expressed

as

EQ{
∫ T

t

e
R u

t −rsds(1− χ(u))luλudu|Gt}

Therefore, the fair value of the CDS premium is

p =
EQ{

∫ T

t
e
R u

t −rsds(1− χ(u))luλudu|Gt}
EQ{

∫ T

t
e
R u

t −rsds(1− χ(u))du|Gt}
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which by doubly stochasticity assumption turns out to be

p =
EQ{

∫ T

t
e
R u

t −(rs+λs)dsluλudu|Gt}
EQ{

∫ T

t
e
R u

t −(rs+λs)dsdu|Gt}
(3.1)

Equation (3.1) states that, given the processes for interest rate rt, the default intensity

λt, the expected loss at default lt, the ratio of these two expectations gives the fair

market CDS premium at the beginning of the contract.

3.2 Parametric Credit Default Swap Model

Following Duffee (1999) and Zhang(2003), we model the default free interest rate

process as sum of a constant and two economic stochastic variables, Xt and Yt, that

each follow a CIR process. Xt represents the short term component of the interest

rates and Yt represents the long term component. And they are correlated through

their Brownian Motions by a constant parameter ρ1
rt = c0 + c1Xt + c2Yt

dXt = 1
ε
(x−Xt)dt+ 1√

ε
σX
√
XtdW

X
t

dYt = δ(y − Yt)dt+
√
δσY

√
YtdW

Y
t

The default intensity is also a function of two state processes. The instantaneous

likelihood of default depend both on firm-specific distress variables, represented by

Zt and systematic risk Ut. The firm-specific component is correlated with Xt by

a constant parameter ρ2 and Ut is uncorrelated with the rest since it is related to

actuarial defaults, not necessarily related to firm specific or market specific issues.

Hence the overall setting is
λt = g(Zt) + h(Ut)

dZt = 1
ε
(z − Zt)dt+ 1√

ε
σZ
√
ZtdW

Z
t

dUt = δ(u− Ut)dt+
√
δσU

√
UtdW

U
t
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where rt is the short rate process and λt is the instantaneous probability of default

of the bond, g and h are positive bounded functions which are bounded away from

zero.

Following Madan and Zhang(2001) we model the recovery rate related to the under-

lying processes of the hazard rate.

lt = l0 + l1e
−g(Zt) (3.2)

We may note that as g(Z) → 0, l → l0 + l1 and g(Z) → inf, l → l0. Hence, we

require the restrictions that l0 ≥ 0, l1 ≥ 0 and 0 ≤ l0 + l1 ≤ 1. Equation (3.2)

is attractive from both theoretical and empirical viewpoints. First, consistent with

extant empirical evidence, recovery is negatively related to default probability. That

is, ∂l
∂z

= −l1e−g(Z) ≤ 0. The set-up is guided by the belief that financial distress can

diminish the ability of the borrower to pay its creditors in the event of default. In

the paper they model the interest rate by a one factor CIR process and the default

intensity as a linear function of the interest rate.

Under risk-neutral measure the above systems looks like
rt = c0 + c1Xt + c2Yt

dXt = (1
ε
(x−Xt)− 1√

ε
ηxσX

√
Xt)dt+ 1√

ε
σX
√
XtdW

X
t

dYt = (δ(y − Yt)−
√
δΛyσY

√
Yt)dt+

√
δσY

√
YtdW

Y
t

(3.3)

and 
λt = φ(g(Zt) + h(Ut))

dZt = (1
ε
(z − Zt)− 1√

ε
ΛzσZ

√
Zt)dt+ 1√

ε
σZ
√
ZtdW

Z
t

dUt = (δ(u− Ut)−
√
δηuσU

√
Ut)dt+

√
δσU

√
UtdW

U
t

(3.4)

We will try to calculate the numerator and denominator of expression (3.1) separately,

which are very similar. First consider the denominator and call f(t, x, y, z, u;T ) =

E{
∫ T

t
e−

R u
t (rs+λs)dsdu}. Then, the Feynman-Kac PDE satisfied by f is
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Figure 3.1: CDS Premiums produced by the one factor reduced-form model where
the default intensity processe is a one factor CIR process with level of mean reversion
0.01. The structure of the curve for the premiums is either decreasing to its mean
level as in the solid case or decreasing to its mean level depending on the initial value
of the intensity. Interest rate is assumed to be constant to derive the results used to
generate the above curves.

Figure 3.2: CDS Premiums produced by the two factor reduced-form model where
the total mean level of the default intensity processe is low, i.e. z + u = .006 in
system (3.4). Hence, the structure of the curve for the premiums is likely to be one
of the highly rated bonds. With the two factor model we can generate structures of
premiums that could change direction along the way as opposed to the monotonic
premiums induced by the one-factor CIR models.

ft + (1
ε
(x− x)− 1√

ε
ηxσX

√
x)fx + (δ(y − y)−

√
δΛyσY

√
y)fy

+(1
ε
(z − z) 1√

ε
ΛzσZ

√
z)fz + (δ(u− u)−

√
δηuσU

√
u)fu

+1
ε

1
2
σ2
Xxfxx +

√
δ
ε
ρ1σXσY

√
xyfxy

+1
ε
ρ2σXσZ

√
xzfxz + δ 1

2
σ2
Y yfyy +

√
δ
ε
ρ1ρ2σY σZ

√
yzfyz

+1
ε

1
2
σ2
Zzfzz + δ 1

2
σ2
Uufuu − (c0 + c1x+ c2y + φg(z) + φh(u))f + 1 = 0

(3.5)

with the boundary condition f(T, x, y, z, u;T ) = 0.

Figure 3.3: CDS Premiums produced by the two factor reduced-form model where
the total mean level of the default intensity processe is high, i.e. z + u = 0.03 in
system (3.4). Hence, the structure of the curve for the premiums is likely to be one of
the bonds that is considered rather risky. With the two factor model we can generate
structures of premiums that are monotonic like the one-factor CIR models. In this
case a financial interpretation of the curve would be that the default risk that the
bond carries is high and so accumulating over the time.
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Figure 3.4: Blue curve is our benchmark curve where the used mean interest rate level
is 4%. Above dashed curve is the CDS premiums generated when the mean interest
rate level is relatively low, 2% and the below dashed curve when the mean interest
rate level is 6%. As the interest rates go down the effect of the default intensity takes
over. Used parameters for the simulations are x + y = 0.02, 0.04, 0.06 from top to
bottom in system (3.3)

Figure 3.5: Blue curve is our benchmark curve where the used mean interest rate
level is 4%. The dashed one is the structure of the CDS Premiums when the mean
interest rate level is 6% and there is no correlation between the short rate and default
intensity processes. We already know as the interest rates go up the CDS premiums
tend to decrease and the effect is amplified with the introduction of 50% positive
correlation with the fast mean reverting factor Zt in (3.4). Used parameters for the
simulations are x + y = 0.04 for the solid curve, x + y = 0.06 for the dashed and
dotted curves, and ρZ = 0 for the dashed and ρZ = 0.5 for the dotted curve.

Figure 3.6: Blue curve is our benchmark curve where the used mean interest rate
level is 4%. The dashed one is the structure of the CDS Premiums when the mean
interest rate level is 6% and there is no correlation between the short rate and default
intensity processes. We already know as the interest rates go up the CDS premiums
tend to decrease and the effect is amplified with the introduction of 50% positive
correlation with the fast mean reverting factor Zt in (3.4) and the dashed curve is
the resulting premium curve. We further introduce 50% correlation also in the long
scale. Dotted curve is a little different than the dashed one due to that correlation.
Used parameters for the simulations are x+ y = 0.04 for the solid curve, x+ y = 0.06
for the dashed and dotted curves, and ρZ = 0.5 for the dashed and ρZ = ρU = 0.5 for
the dotted curve.
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3.3 Closed-form Approximate Solutions and Im-

plied Spreads

We rewrite the system (3.5) as{
Lε,δf ε,δ = 0

f ε,δ(T, x, y, z, u;T ) = 0
(3.6)

In order to calculate the approximate solutions for f ε,δ we decompose the operator

Lε,δ according to the powers of
√
ε and

√
δ as follows:

Lε,δ = 1
ε
L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ
ε
M3

L0 = [(x− x) ∂
∂x

+ 1
2
σ2
Xx

∂2

∂x2 ] + [(z − z) ∂
∂z

+ 1
2
σ2
Zz

∂2

∂z2
] + ρ2σXσZ

√
xz ∂2

∂x∂z

L1 = −(ηxσX
√
x ∂
∂x

+ ΛzσZ
√
z ∂
∂z

)

L2 = ∂
∂t
− (c0 + c1x+ c2y + φg(z) + φh(u))(·) + 1

M1 = −(ΛyσY
√
y ∂
∂y

+ ηuσU
√
u ∂
∂u

)

M2 = [(y − y) ∂
∂y

+ 1
2
σ2
Y y

∂2

∂y2
] + [(u− u) ∂

∂u
+ 1

2
σ2
Uu

∂2

∂u2 ]

M3 = ρ1σXσY
√
xy ∂2

∂x∂y
+ ρ1ρ2σY σZ

√
yz ∂2

∂y∂z

(3.7)

3.3.1 The Long Term Interaction

We expand the f ε,δ in powers of
√
δ

f ε,δ = f ε0 +
√
δf ε1 + δf ε2 + · · · (3.8)

plugging (3.8) in equation (3.6) and using the operator notation introduced in (3.7)

we get

(
1

ε
L0 +

1√
ε
L1 + L2)f

ε
0 +

√
δ{(1

ε
L0 +

1√
ε
L1 + L2)f

ε
1 + (M1 +

1√
ε
M3)f

ε
0}+ · · · = 0
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Hence, matching the first two terms and the terminal conditions we can define the

f ε0&f
ε
1 as a solution of the following two systems of equations:{

(1
ε
L0 + 1√

ε
L1 + L2)f

ε
0 = 0

f ε0(T, x, y, z, u;T ) = 0
(3.9)

{
(1
ε
L0 + 1√

ε
L1 + L2)f

ε
1 + (M1 + 1√

ε
M3)f

ε
0 = 0

f ε1(T, x, y, z, u;T ) = 0

3.3.2 The Short Term Interaction

Consider the first term f ε0 and expand it as

f ε0 = f0 +
√
εf1,0 + εf2,0 + ε3/2f3,0 + · · · (3.10)

In the notation fi,j i corresponds to power of
√
ε and j corresponds to the power of

√
δ. We will first derive the first order approximation

f ε,δ ≈ f0 +
√
εf1,0 +

√
δf0,1

Inserting (3.10) into (3.9) we get
1
ε
L0f0 + 1√

ε
(L0f1,0 + L1f0)

+(L0f2,0 + L1f1,0 + L2f0)

+
√
ε(L0f3,0 + L1f2,0 + L2f1,0)

+ · · · = 0

(3.11)

Matching the first term and using (3.7) we get

L0f0 = ([(x−x) ∂
∂x

+
1

2
σ2
Xx

∂2

∂x2
]+ [(z− z) ∂

∂z
+

1

2
σ2
Zz

∂2

∂z2
]+ρ2σXσZ

√
xz

∂2

∂x∂z
)f0 = 0
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Here we choose f0 to be independent of both x and z so that we do not get any

unreasonable growth, i.e. f0 = f0(t, y, u;T )). Also matching the second term gives us

L0f1,0 + L1f0 = 0 (3.12)

But since the operator L1 takes derivatives with respect to x and z, hence L1f0 = 0

and the equation (3.12) reduces to

L0f1,0 = 0

So we also choose f1,0 not to depend on x and z, i.e. f1,0 = f1,0(t, y, u;T ). Then,

order 1 terms in (3.11) gives

L0f2,0 + L2f0 = 0 (3.13)

Notice that (3.13) is a Poisson equation in f2,0 with respect to x and z variables. So

only reasonable solution occurs in case of L2f0 being in the orthogonal complement

of L∗
0. Namely,

< L2f0 >=< L2 > f0 = 0 (3.14)

where the <> denotes the integration with respect to the invariant distribution Φ

of the two dimensional process (Xt, Zt). Since, f0 depends neither on x nor on z

< L2f0 >=< L2 > f0 and

< L2 >=
∂

∂t
+−(c0 + c1 < x > +c2y + φ < g(z) > +φh(u))(·) + 1

Hence to get the f0 we need to solve the ODE{
ft − (c0 + c1 < x > +c2y + φ < g(z) > +φh(u))f + 1 = 0

f0(t, y, u;T ) = 0

Therefore, {
α = α(y, u) ≡ −(c0 + c1 < x > +c2y + φ < g(z) > +φh(u))

f0(t, y, u;T ) = eα(T−t)−1
α
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Next, we derive an expression for f1,0.
√
ε term in (3.11) gives

L0f3,0 + L1f2,0 + L2f1,0 = 0

Then, the same averaging condition gives

< L1f2,0 > + < L2 > f1,0 = 0

Then, by (3.13) and (3.14) we get

f2,0 = −L−1
0 (L2− < L2 >)f0

Introducing the notation

A = − < L1L−1
0 (L2− < L2 >) >

Then, we can define the f1,0 as the solution of the system of system{
L2f1,0 +Af0 = 0

f1,0(T, y, u;T ) = 0

And the solution to that is

f1,0 = (T − t)Af0

3.3.3 Calculated CDS Premiums

Consider the term f ε1 and expand it as

f ε1 = f0,1 +
√
εf1,1 + εf2,1 + ε3/2f3,1 + · · · (3.15)
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Inserting (3.15) in (3.6) we get
1
ε
L0f0,1 + 1√

ε
(L0f1,1 + L1f0,1 +M3f0)

+(L0f2,1 + L1f1,1 + L2f0,1) +M1f0 +M3f1,0

+
√
ε(L0f3,1 + L1f2,1 + L2f1,1 +M1f1,0 +M3f2,0)

+ · · · = 0

(3.16)

Matching the first term, we get

L0f0,1 = 0

Hence, we choose f0,1 to be independent of x and z just like for f0. Also matching

the second term gives us

L0f1,1 + L1f0,1 +M3f0 = 0 (3.17)

But since the operator L1 takes derivatives with respect to x and z, and f0,1 is constant

in those variables L1f0,1 = 0. Similarly, M3 takes derivative with respect to x and

z,and f0 does not depend on those. Hence, the equation (3.17) reduces to

L0f1,1 = 0

Now, we also choose f1,1 not to depend on x or z, i.e. f1,1 = f1,1(t, y, u;T )). Then,

order 1 terms give , using the facts L1f1,1 = M3f1,0 = 0

L0f2,1 + L2f0,1 +M1f0 = 0 (3.18)

Notice that (3.18) is a Poisson equation in f2,1 with respect to x and z variables.

Then, the solubility condition in this case turns out to be

< L2f0,1 +M1f0 >=< L2 > f0,1 +M1f0 = 0
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Therefore we can write f0,1 as a solution of the system{
< L2 > f0,1 +M1f0 = 0

f0,1(T, y, u;T ) = 0

And solution of that system is given by the formula
f0,1 = −f0 +K(y, u)[− eα(T−t)T−t

α
+ f0

α
+ f0

α2 + eα(T−t)(T−t)
α2 ]

α = −(c0 + c1 < x > +c2y + φ < g(z) > +φh(u))

f0 = eα(T−t)−1
α

Kδ(y, u) = −
√
δ(c2ΛyσY

√
y + φh′(u)ΛuσU

√
u)

Therefore we got the approximate result for the denominator. A similar calculation

can be done for the numerator of the term in (3.1). And we get the approximate

formula for the CDS premium p as follows:

p =
EQ{

∫ T

t
e
R u

t −(rs+λs)dsluλudu|Gt}
EQ{

∫ T

t
e
R u

t −(rs+λs)dsdu|Gt}
≡ top

bottom
(3.19)

top ∼ (V ε
1 (T − t) + V ε

2 )(β e
α(T−t)−1

α
)

+Kδ[− eα(T−t)T−t
α

+ eα(T−t)−1
α2 + eα(T−t)(T−t)

α2 + eα(T−t)−1
α3 ]

bottom ∼ (V ε
1 (T − t) + V ε

2 )( e
α(T−t)−1

α
)

+Kδ[− eα(T−t)T−t
α

+ eα(T−t)−1
α2 + eα(T−t)(T−t)

α2 + eα(T−t)−1
α3 ]

where

α(y, u) = −(c0 + c1 < x > +c2y + φ < g(z) > +φh(u))

β(u) =< l(z)φg(z) > + < l(z)φ > h(u)

Kδ(y, u) = −
√
δ(c2ΛyσY

√
y + φh′(u)ΛuσU

√
u)
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Figure 3.7: Above is the default-swap rates for a selected convertible bond issued by
an entity which is rated Aaa by Moody’s in 1999. Data is available at the website
www.neatideas.com. Solid curve is the CDS premium curves produced by the model
(3.3) and (3.4) using the asymptotic aproximation obtained in (3.19). Fitted para-
meter values are α = −0.06, β = 0.6, V ε

1 = 0.004, V ε
2 = 0.002 and Kδ = −0.0091.

The parameters α corresponds to the adjusted average interest rate of 6% and β
corresponds to 40% expected recovery. The superscript ε refers to short time scale
correction and δ refers to long time scale correction. Our multi-factor CIR equipped
with time scales captures the premium structure that the one factor CIR models
would not be able to generate.



Appendix A

Girsanov’s Theorem for Counting

Processes

Claim : Suppose Nt is a nonexplosive counting process with intensity λt, and φt is

a strictly positive predictable process such that, for some fixed T ,
∫ T

0
φsλsds < ∞

almost surely. Then,

ξφt = e
R t
0 (1−φs)λsds

∏
{i:τ(i)≤t}

φτ(i)

is a well defined local martingale where τ(i) is the ith jump time of Nt.

Proof : Define

Xt = e
R t
0 (1−φs)λsds and Yt =

∏
{i:τ(i)≤t}

φτ(i) and Mt = Nt − λtdt

Then

i. ξφt = XtYt

ii. Mt is a local martingale

iii. dXt = (1− φt) ≤
R t
0 (1−φs)λsds dt = (1− φt)λtXtdt

iv. dYt = (
∏

{i:τ(i)<t} φτ(i))(φt − 1)dNt = Yt(φt − 1)dNt

v. dMt = dNt − λtdt

88



APPENDIX A. GIRSANOV FOR COUNTING PROCESSES 89

By the above five facts and general Ito formula with jumps, ξφt is calculated as:

dξφt = d(XtYt)

= dXtYt− +Xt−dYt + ∆Xt∆Yt

= (1− φt)λtXtYt−dt+Xt−Yt−(φt − 1)dNt

= (1− φt)λtξ
φ
t− + (φt − 1)ξφt−dNt

= (1− φt)λtξ
φ
t− + (φt − 1)ξφt−(dMt + λtdt)

= (φt − 1)ξφt−dMt

In the third equation we made use of the fact that Xt is a continuous process which

implies ∆Xt = 0. Since Mt is a local martingale, we know that an integral against

a local martingale is also a local martingale under certain conditions(?) for the

integrand �
Claim : If ξφt is a martingale, then an equivalent martingale measure P ∗ is defined

by dP ∗

dP
= ξφT . Under this new martingale measure, Nt is still a nonexplosive counting

process with intensity λtφt.

Proof : To say that Nt is counting process with intensity λtφt what we need to show

is At = Nt −
∫ t

0
λsφs is P ∗ local martingale where dP ∗

dP
= ξφT . Or equivalently we can

show that the process Zt = ξφt At is a P local martingale.

By the first claim

dAt = dNt − λtφtdt and dξφt = (φt − 1)ξt−dMt

Then by the Ito’s formula with jumps we get

dZt = dξφt At− + ξφt−dAt + ∆ξφt ∆At

= (φt − 1)ξφt−At−dMt + ξφt−(dNt − λtφtdt) + (φt − 1)ξt−dNtdNt

= (φt − 1)ξφt−At−dMt − ξφt−λtφtdt+ φtξt−dNt

= (φt − 1)ξφt−At−dMt − ξφt−λtφtdt+ φtξt−(dMt + λtdt)

= [(φt − 1)ξφt−At− + φtξt−]dMt
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Hence Zt can be written as an integral against a local martingale, which would imply

Zt itself is a P local martingale. Therefore, At is a P ∗ local martingale and therefore

Nt is a counting process with intensity λtφt under the new measure P ∗ �



Appendix B

Defaultable Bond Pricing via HJM

An alternative approach to the one given in section 1.1.2 for pricing of defaultable

bonds is based on the term structure forward spread rates as in HJM [39] type models.

Let us consider a defaultable zero-coupon bond maturing at s has a price at time t,

as in section 1.1.2, of the form

P (t, s) = exp(−
∫ s

t

(F (t, u) + S(t, u))du) (B.1)

where F (t, s) is the default free forward rate in HJM sense, and likewise S(t, u) is

the credit yield spread forward rate in HJM sense. For a fixed maturity date s, we

assume that the process {F (t, s) : 0 ≤ t ≤ s} follows

dF (t, s) = µF (t, s)ds+ σF (t, s)dWt

Assuming µF and σF satisfying the HJM technical conditions, we have the drift

restriction

µF (t, s) = σF (t, s)

∫ s

t

σF (t, u)du

We also assume the spread forward rates process follow a similar model

dS(t, s) = µS(t, s)ds+ σS(t, s)dWt
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By using Stochastic Calculus, we can compute an implied default intensity λt =

S(t, t)/lt, lt being the lost ratio of market value of the bond in case of a default. And

the corresponding drift restriction turns out

µS(t, s) = σS(t, s)

∫ s

t

σF (t, u)du+ σF (t, s)

∫ s

t

σS(t, u)du

One might ask about the asymmetry of the drift conditions for the default free forward

rate and the spread forward rate despite the symmetric appearance in the expression

(B.1). But they are different because they do not appear symmetrically in the gain

process which has to be a martingale under the risk neutral measure. We remind you

that the fain process, Gt looks like

Gt = (1− Λt)B(0, t)P (t, T ) +

∫ t

0

(1− ls)B(0, s)P (s−, T )dΛs

Having calculated the implied default intensity, one can simulate the forward rates

and the actual default times at the same time, which could be important for example

pricing of spread options. Obviously, the simulation of default times is not necessary

to price defaultable bonds. Hence, given the forward rate F , the volatility of spread

process σs and the initial yield spread curve {S(0, t) : t ≥ 0}, S(t, u) is known. There

are some restrictions on the initial yield curve to get non-negative spread all the time.

Bielecki and Rutkowski (2000) [4] takes this approach and extends to model spreads

by rating.

Extended Framework with Stochastic Interest Rates

Let us consider a more generalized version of the same problem with stochastic interest

rate. Let us assume instead of a constant r, we have an Ft measurable process rt.
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Then, our SDE system for the prices will be

dSt = µStdt+ σtStdW
S
t

σt = f(Yt)

dYt = α(m− Yt)dt+ βσdW
σ
t dW σ

t = ρσdW
S
t +

√
1− ρ2

σdZ
σ
t

dλt = a(b− λt)dt+ βλdW
λt dW λt = ρλdW

S
t +

√
1− ρ2

λdZ
λt

drt = αr(mr − rt)dt+ βrdW
r
t dW r

t = ρrdW
S
t +

√
1− ρ2

rdZ
r
t

We would like to find a measure P ∗ under which the process e−rtSt1{τ>t} is a Gt-
martingale. As we showed earlier this is equivalent to have the process e−

R t
0 (ru+λu)duSt

a Gt-martingale.

Using this and the two step change of measure described in the notes we obtain the

system under consideration under P ∗ using the following change in the Brownian

filtration

W ∗
t = Wt +

∫ t

0

θudu

where

Wt =


W S
t

Zσ
t

Zλt

Zr
t

 and θt =


µ−r−λ∗t
f(Yt)

γt

δt

κt


where the parameters γ, δ and κ are free. Finally the system becomes,

dS(t) = (r + λ∗t )Stdt+ σtStdW
∗S
t (t)

σt = f(Yt)

dY (t) = [α(m− Yt)− βσ(ρσ
µ−r−λ∗t
f(Yt)

+ γt
√

1− ρ2
σ)]dt+ βσdW

∗σ
t

dλ∗t = [(a− φ′t
φt

)( abφt

a−φ′t
φt

− λ∗t )− βλφt(ρλ
µ−r−λ∗t
f(Yt)

+ δt
√

1− ρ2
λ)]dt+ βλφtdW

∗λ
t

drt = [αr(mr − rt)− βr(ρr
µ−rt−λ∗t
f(Yt)

+ κt
√

1− ρ2
r)]dt+ βrdW

∗r
t



Appendix C

Extended Framework, Intensity as

a Function of Underlying

Let us consider a more generalized version of the same problem where intensity rate

process depends also upon the process of the underlying. Let us assume that λt =

g(Xt, St) where the function g has a certain form, but kept general for now, and Xt

is some state process. Then, our SDE system for the prices will be

dSt = µStdt+ σtStdW
S
t

σt = f(Yt)

dYt = α(m− Yt)dt+ βσdW
σ
t dW σ

t = ρσdW
S
t +

√
1− ρ2

σdZ
σ
t

dXt = a(b−Xt)dt+ βλdW
λt dW λt = ρλdW

S
t +

√
1− ρ2

λdZ
λt

λt = g(Xt, St)

We would like to find a measure P ∗ under which the process e−rtSt1{τ>t} is a Gt-
martingale. As we showed earlier this is equivalent to have the process e−

R t
0 (r+λ∗u)duSt

a Gt-martingale, where λ∗t is the intensity process under the measure P ∗.

Using this and the two step change of measure described in the notes we obtain the

system under consideration under P ∗ using the following change in the Brownian

filtration

W ∗
t = Wt +

∫ t

0

θudu
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where

Wt =


W S
t

Zσ
t

Zλt

 and θt =


µ−r−φtg(Xt,St)

f(Yt)

γt

δt


where the parameters γ, δ and φ are free. Finally the system becomes,

dSt = (r + φtg(Xt, St))Stdt+ σtStdW
∗S
t

σt = f(Yt)

dYt = [α(m− Yt)− βσ(ρσ
µ−r−λ∗t
f(Yt)

+ γt
√

1− ρ2
σ)]dt+ βσdW

∗σ
t

dXt = a(b−Xt)− βλ(ρλ
µt−r−φtg(Xt,St)

f(Yt)
+ δt

√
1− ρ2

λ)dt+ βλdW
∗λ
t

Modelling the Default Correlation in Multi-Name Products

In today’s financial markets there are lots of multi-name products whose pricing is

critically dependent on the correlation of defaults of these different names. Basket

default swaps, CDO’s, CBO’s are such examples. In this section we try to develop

a model to price this kind of products paying particular attention to the default

correlations. We try to combine the capital structure models and reduced form models

by modelling the default intensities of different names as both a function of the overall

market and a function of its individual structure. Modelling the effect of overall

market is done through a proxy like a big common index, e.g. S&P 500 and the effect

of individual structure is like a surprise default.

The straight forward intuition behind the setting is when the overall market is not

doing well, the default probability of each name tend to go up together, not necessarily

with the same rate. Or there could be something happening not in the whole market

but in a specific sector which would bump up all the default probabilities of names

in that sector. In addition to that there could be also something happening within a

firm which would only effect that particular firm but not the others. So it is natural

to assume the default probabilities(intensities) have two different components, one

for the overall market effect and one for the individual firm effect.

In the typical setting of the model, the proxy used to capture the overall market

impact is modelled as a Geometric Brownian Motion with stochastic volatility. The
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stochastic volatility process is defined as a positive, bounded function of an OU

process. All the default intensities are modelled as product of a state process, which is

an OU process with appropriate parameters and a positive function of the index level

above. The Brownian Motions that drive the dynamics of all the state processes that

effect the intensities are correlated with each other. One can, in general, introduce

the correlation between the Brownian Motions of the index level and state processes

but we rather capture that effect in the specific form that we choose for the intensity

processes.

Now suppose we try to price a product that depends on N different names. Then the

SDE’s that describe the event look as follows:
dSt = µStdt+ σtSdW

S
t

λit = X i
tgi(St, K

i) for i = 1, 2, ..., N

dX i
t = ai(bi −X i

t)dt+ βiXdW
i
t E{dW i

t dW
j
t } = ρXijdt

where S is the common index level, σ is the volatility of the index level, λi is the

instantaneous probability of default of name i. X is the state process that effects all

the intensity processes and the function g is some power function which blows up at

a certain fixed boundary level Ki. Although one can keep the function g general for

the rest of the section we will assume that g(St, K) = ( St−K
S0−K )n where S0 − K is a

normalization factor and S0 is the initial value of the index in the period of interest.

Although there seems to be a lot of parameters in the general setting, as far as the

correlation of default times are concerned there are just a few key parameters. The

most important one is the actual exponent in the function g. Clearly a positive power

corresponds to a positive and negative power corresponds to a negative correlation

between the market and the default intensity of the individual name. If we assume

same type of g, i.e. the same power and the same boundary level for two different

names and keeping the other variables fixed we observe that the correlation is almost

a linear function of the square root of this power parameter. (See figure C.1) 1. And

the difference between the two pictures is the level of the volatility of the common

1At this point all our observations are based on simulated data with parameters chosen from the
published literature (see Duffie and Singleton (2003)).
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index process. So the first one corresponds to a market with high volatility and the

second one with a low volatility. As we can see from the figures above through this

Figure C.1: Correlation effect of the parameter in the exponent of the function g,
under low volatile and high volatile environments

model we get correlation between default times up to 90%. Here the correlation is

defined in the classical sense. In the market, it is also of interest the correlation

between the consecutive defaults, i.e. the defaults happened within the same year.

But one get just similar results for that definition of correlation too.

At this point we see that in the above pair of figures although each of them are

almost straight lines, the slopes of those lines are different. This means that the

level of correlation introduced by the specific form of the function g creates different

effects in different regimes in the market. Note that, besides the exponent and the

volatility parameters, another very effective parameter is the explosion boundaryK in

the function g. We call it explosion boundary because once the value of the common

index gets close to this level, it increases all the intensities by incredible amount and

we get simultaneous defaults. Also the more we are further away from this level, the

smaller the intensities are, i.e. when the market is doing well all the default intensities

tend to go lower. And the closeness of this level to the index level is basically the

sensitivity of the individual to the overall market. But in order to create a uniform

effect of this exponent under different regimes of the process St, we also define this

explosion boundary as a function of S0 and σ and we let K = S0 − L ∗ σ. Then

if we generate the first two pictures with this new definition of the boundary we

observe the same level of correlation effect under both regimes, as shown in figure

C.2. Regarding the other set of parameters that could possibly effect the default time

Figure C.2: Correlation effect of the parameter in the exponent of the function g,
without the effect of the volatility of the index process
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correlation2, we experimented the same phenomena under different sets of values of

all those parameters. We observe that in all possible values of these parameters we

get the same effect on the correlation of the default times. For instance, below in

figure C.3, we show the effect of the correlation parameter between the state processes

to the premium of a First-to-Default insurance contract which is explained in more

details in the following example. As it is clear from the picture, there is almost no

effect of the parameter to the price.

Figure C.3: Correlation between Brownian Motions vs. the premium of a First-to-
Default contract

Example: First to default valuation

Under our general setting, we now price a simple product that is a contingent claim

that pays off at the time of the first of the n names defaults. And the payoff of the

product is exactly $1 at the time of the default. Although the example is pretty

simple we still do not have a closed form answer or some kind of theoretical result

because of the way we described the defaults. But intuitively we have an idea of

the correlation to the price of this simple derivative. Namely, if we have n perfectly

uncorrelated default intensities then the intensity of the first-to-default event is the

sum of all intensities. On the other hand if they are all perfectly correlated then

having an insurance against the first-to-default or the any one of them would be the

same if we assume that each name has the same default intensity. Therefore the

price of the contract should be much less in the case of the perfectly correlated case

then the uncorrelated case. By a similar argument, one can convince himself that

actually the price of this contract is a decreasing function of the correlation of the

default times. Hence in our model a decreasing function of the square root of the

exponent parameter. Figure C.4 shows the impact of the exponent on the price of

2for example, the correlation parameter of the Brownian Motions in the state processes or the
reverting mean level of the state processes
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the first-to-default contract.

Figure C.4: Correlation of Default Times vs. the premium of a First-to-Default
contract



Appendix D

Slow Scale Correction Formulas

without Default Boundary

In this appendix we derive the explicit solution for the slowly mean reverting default

intensity, when there is no default boundary. Using straight forward calculus we

compute the following five quantities which are needed. Using the shorthand notation

τ = T − t 

e(r+λ(x))τP0 = N(d+)

e(r+λ(x))τ ∂P0

∂s
= 1

s
N ′(d+)
σ
√
τ

e(r+λ(x))τ ∂2P0

∂s2
= 1

s2
[−d+N

′(d+)
(σ
√
τ)2

− N ′(d+)
σ
√
τ

]

e(r+λ(x))τ ∂P0

∂x
= −∂λ

∂x
τ [N(d+)− N ′(d+)

σ
√
τ

]
∂
∂s

(e(r+λ(x))τ ∂P0

∂x
) = −∂λ

∂x
τ 1
s
[N

′(d+)
σ
√
τ

+ d+N ′(d+)
(σ
√
τ)2

]

(D.1)

We first show how we convert the system (2.17) to a homogeneous system and how

to solve that. First through a change of variables we convert (2.17) to another non-

homogeneous system (D.4) and then through another change of variable to a homo-

geneous system, (D.8), where the solution is known. First define

w1(t, s) = (T − t)M1P0 = (T − t)(V δ
1 s

∂

∂s
(
∂P0

∂x
) + V δ

0

∂P0

∂x
) (D.2)

and then consider

w2(t, s) = P1(t, s)− w1(t, s) (D.3)
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Note that, {
LBS(σ, r + λ(x))(∂P0

∂x
) = ∂λ

∂x
(s∂P0

∂s
− P0)

LBS(σ, r + λ(x))(s ∂
∂s

(∂P0

∂x
)) = ∂λ

∂x
s ∂
∂s

(s∂P0

∂s
− u0)

(D.4)

Therefore w2 solves the system{
LBS(σ, r + λ(x))w2 = (T − t)∂λ

∂x
(s ∂

∂s
− ·)2P0 on t < T

P1(T, s) = 0
(D.5)

Now we are in position to eliminate the inhomogeneous term as in the fast scale

case because we do not have derivatives with respect to x variable anymore in the

source term. All the partial derivative operators commute with the BS operator. So

following the same idea we introduce

w3(t, s) = −1

2
(T − t)2(

∂λ

∂x
(s
∂

∂s
− ·)2P0) (D.6)

and then consider

w4(t, s) = w2(t, s)− w3(t, s) (D.7)

Finally, w4 solves the system{
LBS(σ, r + λ(x))w4 = 0

P1(T, s) = 0
(D.8)

But clearly because of the terminal condition the solution is the trivial one which is

0. Hence

P1 = w1 + w3

Let us calculate w1 and w3 as they are explicitly given by the equations (D.2) and

(D.6). Also using (D.1)

w1(t, s) = e−(r+λ(x))(T−t)(T − t)2(−∂λ
∂x

)[V δ
1 (N

′(d+)

σ
√
T−t

+ d+N ′(d+)

(σ∗
√
T−t)2 ) + V δ

0 (N(d+)− N ′(d+)

σ∗
√
T−t)]

(D.9)
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Similarly, we obtain

w3(t, s) = −1
2
e−(r+λ(x))(T−t)(T − t)2 ∂λ

∂x
[N(d+)− N ′(d+)

σ∗
√
T−t

+ −d+N ′(d+)

(σ∗
√
T−t)2 −

N ′(d+)

σ∗
√
T−t ]

(D.10)

Slow Scale Correction Formulas with Default Boundary:

In this appendix we derive the integral formulas for the correction terms rising both

in section 2.5.2 and 2.8.4. Using straight forward calculus we compute the following

five quantities which are needed.

e(r+λ(x))(T−t)u0 = N(d+)− ( s
K

)pN(d−)

e(r+λ(x))(T−t) ∂u0

∂s
= 1

s
[ N

′(d+)

σ∗
√
T−t − p( s

K
)pN(d−) + ( s

K
)p N ′(d−)

σ∗
√
T−t ]

e(r+λ(x))(T−t) ∂2u0

∂s2
= 1

s2
[−d+N

′(d+)

(σ∗
√
T−t)2 −

N ′(d+)

σ∗
√
T−t ] + 1

s2
( s
K

)p[(p− p2)N(d−)

+ (2p−1)N ′(d−)

σ∗
√
T−t + d−N ′(d−)

(σ∗
√
T−t)2 ]

e(r+λ(x))(T−t) ∂u0

∂x
= −∂λ

∂x
(T − t)[N(d+)− ( s

K
)pN(d−)− N ′(d+)

σ∗
√
T−t

− 2N(d−)

(σ∗
√
T−t)2 log( s

K
)( s
K

)p + N ′(d−)

σ∗
√
T−t(

s
K

)p]

∂
∂s

(e(r+λ(x))(T−t) ∂u0

∂x
) = −∂λ

∂x
(T − t)1

s
[ N

′(d+)

σ∗
√
T−t − p( s

K
)pN(d−) + ( s

K
)p N ′(d−)

σ∗
√
T−t

+ d+N ′(d+)

(σ∗
√
T−t)2 + 2N ′(d−)

(σ∗
√
T−t)3 (

s
K

)p log( s
K

)− 2pN(d−)

(σ∗
√
T−t)2 (

s
K

)p log( s
K

)

− 2N(d−)

(σ∗
√
T−t)2 (

s
K

)p − d−N ′(d−)

(σ∗
√
T−t)2 (

s
K

)p + pN ′(d−)

σ∗
√
T−t(

s
K

)p]

(D.11)

We first show how the solution of the inhomogeneous PDE system (2.55) to the

solution of the homogeneous system (2.56) and then by the help of the above set of

formulas we calculate the resulting n(t) appearing in the solution. And finally the

integral formula for the solution of the final homogeneous system is calculated as in

section E. First define

v1(t, s) = (T − t)M1u0 = (T − t)(V δ
1 s

∂

∂s
(
∂u0

∂x
) + V δ

0

∂u0

∂x
) (D.12)

and then consider

v2(t, s) = u0,1(t, s)− v1(t, s) (D.13)
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Note that, {
LBS(σ, r + λ(x))(∂u0

∂x
) = ∂λ

∂x
(s∂u0

∂s
− u0)

LBS(σ, r + λ(x))(s∂u0

∂s
(∂u0

∂x
)) = ∂λ

∂x
s ∂
∂s

(s∂u0

∂s
− u0)

Therefore v2 solves the system
LBS(σ, r + λ∗(x))v2 = (T − t)∂λ

∂x
(s ∂

∂s
− ·)2u0 on s > K, t < T

u0,1(t,K) = n2(t) for t ≤ T

u0,1(T, s) = 0 for s > K

(D.14)

where n2(t) = lims↓K v2(t, s) = lims↓K u0,1(t, s)− v1(t, s) = − lims↓K v1(t, s) since the

first part of the limit is 0 by equation (2.55). Now we are in position to eliminate the

inhomogeneous term as in the fast scale case because we do not have derivatives with

respect to x variable anymore in the source term. All the partial derivatives commute

with the BS operator. So following the same idea we introduce

v3(t, s) = −1

2
(T − t)2(

∂λ

∂x
(s
∂

∂s
− ·)2u0) (D.15)

and then consider

v4(t, s) = v2(t, s)− v3(t, s) (D.16)

Finally, v4 solves the system
LBS(σ, r + λ∗(x))v4 = 0

u0,1(t,K) = n(t) for t ≤ T

u0,1(T, s) = 0 for s > K

(D.17)

where

n(t) = n2(t)− lim
s↓K

v3(t, s) (D.18)

And once we get the result for v4

u0,1 = v1 + v3 + v4
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Let us calculate v1 and v3 as they are explicitly given by the equations (D.12) and

(D.15). Also using (D.11)

v1(t, s) = e−(r+λ(x))(T−t)(T − t)2(−∂λ
∂x

)(V δ
1 ( N ′(d+)

σ∗
√
T−t − p( s

K
)pN(d−) + ( s

K
)p N ′(d−)

σ∗
√
T−t

+ d+N ′(d+)

(σ∗
√
T−t)2 + 2N ′(d−)

(σ∗
√
T−t)3 (

s
K

)p log( s
K

)− 2pN(d−)

(σ∗
√
T−t)2 (

s
K

)p log( s
K

)

− 2N(d−)

(σ∗
√
T−t)2 (

s
K

)p − d−N ′(d−)

(σ∗
√
T−t)2 (

s
K

)p + pN ′(d−)

σ∗
√
T−t(

s
K

)p)

+ V δ
0 (N(d+)− ( s

K
)pN(d−)− N ′(d+)

σ∗
√
T−t

− 2N(d−)

(σ∗
√
T−t)2 log( s

K
)( s
K

)p + N ′(d−)

σ∗
√
T−t(

s
K

)p)

Therefore,

lims↓K v1(t, s) = e−(r+λ(x))(T−t)(T − t)2V δ
1
∂λ
∂x

[(p

+ 2
(σ∗

√
T−t)2 )N(d)− (2+p)N ′(d)

σ∗
√
T−t ]

(D.19)

Similarly, we obtain

v3(t, s) = −1
2
e−(r+λ(x))(T−t)(T − t)2 ∂λ

∂x
(N(d+)− ( s

K
)pN(d−)

− [ N
′(d+)

σ∗
√
T−t − p( s

K
)pN(d−) + ( s

K
)p N ′(d−)

σ∗
√
T−t ]

+ [−d+N
′(d+)

(σ∗
√
T−t)2 −

N ′(d+)

σ∗
√
T−t ] + ( s

K
)p[(p+ p2 − 1)N(d−) + d−N ′(d−)

σ∗
√
T−t ])

Hence,

lims↓K v3(t, s) = −1
2
e−(r+λ(x))(T−t)(T − t)2 ∂λ

∂x
[(p2 + 2p− 1)N(d)

+ dN ′(d)

σ∗
√
T−t −

3N ′(d)

σ∗
√
T−t −

dN ′(d)

(σ∗
√
T−t)2 ]

(D.20)

Last step is the calculation of v4(t, s). It is done exactly the same way as in section

E, only g(t) replaced by n(t). Hence,

v4(t, s) =
( s
K

)p/2

σ∗
√

2π

∫ T

t

log s
K

(z − t)3/2
e
−

log( s
K

)2

2σ∗2(z−t) e(
(σ∗p)2

8
+r+λ∗)(z−t)n(z)dz (D.21)



Appendix E

Fast Scale Correction Formulas

without Default Boundary

For a detailed derivation and explicit form of the functions P
∗
0 and P

∗
1 see section

(8.1) of [28] in the context of European binary option pricing.

Fast Scale Correction Formulas with Default Boundary

In this appendix we derive the integral formulas, in particular the functions g(t) in

section 2.7.3. Using straight forward calculus we compute the following four quantities

which are needed. Keeping the notation τ = T − t

e(r+λ(x))τu0 = N(d+)− ( s
K

)pN(d−)

e(r+λ(x))τ ∂u0

∂s
= 1

s
[N

′(d+)
σ∗
√
τ
− p( s

K
)pN(d−) + ( s

K
)p N

′(d−)
σ∗
√
τ

]

e(r+λ(x))τ ∂2u0

∂s2
= 1

s2
[−d+N

′(d+)
(σ∗

√
τ)2

− N ′(d+)
σ∗
√
τ

] + 1
s2

( s
K

)p[(p− p2)N(d−)

+ (2p−1)N ′(d−)
σ∗
√
τ

+ d−N ′(d−)
(σ∗

√
τ)2

]

e(r+λ(x))τ ∂
∂s

(∂
2u0

∂s2
) = N ′(d+)[

d2+−1

(σ∗
√
τ)3

+ d+
(σ∗

√
τ)2

]

+ N ′(d−)[
d2−−1

(σ∗
√
τ)3

+ (3p−1)d−
(σ∗

√
τ)2

+ p(3p−2)
(σ∗

√
τ)

]( s
K

)p

+ N(d−)[(1− p)p2]( s
K

)p

(E.1)

We first show how we convert the system (2.53) to the system (2.54) and by the help

of the above set of formulas, in particular the last one, we calculate the resulting g(t).
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Then we write out the solution of the homogeneous equation as an integral formula

and that is as close as we can get to a closed form solution. First define

y1(t, s) = τV ε
3 u

∗
0 = τV ε

3 s
∂

∂s2
(
∂2u∗0
∂s2

) (E.2)

and then consider

y2(t, s) = u∗1(t, s)− y1(t, s) (E.3)

Note that,

LBS(σ∗, r + λ)y1(t, s) = −V ε
3 s

∂

∂s2
(
∂2u∗0
∂s2

) (E.4)

Therefore y2 solves the system
LBS(σ∗, r + λ)y2 = 0

y2(t,K) = g(t) for t ≤ T

y2(T, s) = 0 for s > K

(E.5)

where g(t) = lims↓K(u∗1(t, s)− y1(t, s)) = − lims↓K(y1(t, s)) since the first part of the

limit is 0 by 2.53. Hence, the only part needs to be solved is the system E.5. Then

u∗1 = y1 + y2

Let us calculate y1 first, it is given by the equations (E.2). Also using (E.1)

y1(t, s) = τV ε
3 e

−(r+λ(x))τ [N ′(d+)[
d2+−1

(σ∗
√
τ)3

+ d+
(σ∗

√
τ)2

]

+ N ′(d−)[
d2−−1

(σ∗
√
τ)3

+ (3p−1)d−
(σ∗

√
τ)2

+ p(3p−2)
(σ∗

√
τ)

]( s
K

)p

+ N(d−)[(1− p)p2]( s
K

)p]

(E.6)

Therefore,

g(t) = − lims↓K y1(t, s)

= −e−(r+λ(x))ττ 2V ε
3 {N ′(d)[ 2(d2−1)

(σ∗
√
τ)3

+ 3pd
(σ∗

√
τ)2

+ p(3p−2)
σ∗
√
τ

] +N(d)(1− p)p2}
(E.7)
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Last step is the calculation of y2(t, s). If you consider the system (E.3), we can write

it as an expectation as follows

y2(t, s) = E{g(τ)1{τ<T}|St = s} (E.8)

where the process St is a Geometric Brownian Motion with volatility mean r+λ and

σ∗. On the other hand, τ is the hitting time of the process St the level K. By a series

of change of variables, first taking the logs and then applying Girsanov, the problem

turns out to be simply the hitting time of a Standard Brownian Motion a level log( s
K

)

and using the distribution of the hitting time of Brownian Motion (see section 2.8 in

[48]) we obtain

y2(t, s) =
( s
K

)p/2

σ∗
√

2π

∫ T

t

log( s
K

)

(z − t)3/2
e
−

log( s
K

)2

2σ∗2(z−t) e(
(σ∗p)2

8
+r+λ∗)(z−t)g(z)dz (E.9)
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