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Abstract

We consider two distinct centers which arise in measuring how quickly a random walk
on a tree mixes. Lovász and Winkler [8] point out that stopping rules which “look where
they are going” (rather than simply walking a fixed number of steps) can achieve a desired
distribution exactly and efficiently. Considering an optimal stopping rule that reflects some
aspect of mixing, we can use the expected length of this rule as a mixing measure. On
trees, a number of these mixing measures identify particular nodes with central properties.
In this context, we study a variety of natural notions of centrality. Each of these criteria
identifies the barycenter of the tree as the “average” center and the newly defined focus as
the “extremal” center.
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1 Introduction

What node is most central with respect to a random walk on a tree? Let the hitting time

H(i, j) be the expected time for a random walk starting at node i to get to node j. A natural

definition for centrality is to require that the target node j minimize this hitting time for

an appropriately chosen i. We consider two natural choices for this starting node. First, we

identify the “average” center c by drawing i from the stationary distribution π:

∑

i

πiH(i, c) = min
j

∑

i

πiH(i, j). (1)

Next we choose the worst possible starting node for each target j. Let j′ be a j-pessimal node

satisfying H(j′, j) = maxi H(i, j). A target node a achieving

H(a′, a) = min
j

H(j′, j) = min
j

max
i

H(i, j) (2)

is the “extremal” center of the tree.
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These two notions of centrality are distinct. Let Bn,k denote the broom graph consisting

of a star of n − k vertices centered at c and a path of length k also starting at c. If the nodes

in the path are labeled c = v0, v1, . . . , vk, then simple calculations (see section 2 for methods)

for B10,7 show that node c = v0 is its average center and node v1 is its extremal center. In

general, the barycenter satisfies equation (1), while the newly defined focus (or foci) of the tree

satisfies equation (2). Moreover, we consider a variety of criteria for centrality with respect to

random walks on trees, each of which characterizes an average center or an extremal center.

The barycenter satisfies each average criterion and one of the foci of the tree (or both) satisfies

by each extremal criterion.

For any undirected graph, Coppersmith, Tetali and Winkler [5] define the central node to

be a node c for which H(i, c) ≤ H(c, i) for every node i. This definition of centrality falls into

the average category since we are comparing c with all the other nodes in the graph. Indeed,

we have

Proposition 1 Let G = (V, E) be a tree. The following statements for a node c are equivalent.

(a) The node c is a barycenter of the tree.

(b) The node c satisfies H(i, c) ≤ H(c, i) for every node i.

(c)
∑

i πiH(i, c) = minj
∑

i πiH(i, j).

(d) Every connected component G′ = (V ′, E′) of G\{c} satisfies
∑

v∈V ′ π(v) ≤ 1/2.

This equivalence has been known to the authors of [5].

Given an initial node i and a target distribution τ , we can follow an optimal stopping

rule (see the next section for an exact definition) to halt a random walk starting at i so that

the distribution of the final node is exactly τ . Denote the expected length of this optimal

rule by H(i, τ). A number of parameterless mixing measures defined via stopping rules have

been introduced and studied [1], [8], [9], [2], [3]. Among the most important measures are the

mixing time Tmix = maxi H(i, π) and the reset time Treset =
∑

i πiH(i, π). We interpret Tmix

as the pessimal mixing time and Treset as the average mixing time.

Since the barycenter is so closely related to average mixing, a natural question is how

H(c, π) compares with Treset.

Proposition 2 H(c, π) ≤ 2Treset where c is a barycenter of the tree.
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However, H(c, π) may be considerably smaller than Treset. A rooted m-ary tree of depth r has

its root c as its unique barycenter and unique focus. Fixing m and letting r → ∞, the forget

time (and hence the reset time) for this tree is Θ(mr−1) while the mixing time from the root

c is Θ(r).

Theorem 3 The mixing time from the root c of the m-ary tree of depth r is

H(c, π) =
(m + 1)(mr + 1)

(m − 1)(mr − 1)
r −

m2 + 6m + 1

2(m − 1)2
.

This exact mixing result, complementary to a result of Diaconis and Fill [6] is of independent

interest.

In order to define the foci of the tree, we consider stopping rules for random walks. To

each target distribution τ , we associate one node or two adjacent nodes, called the foci of τ .

Definition. A focus u of a distribution τ on the tree G is a node for which the rule “take

one step from u and then follow an optimal rule from this random neighbor of u to τ” is not

optimal. The focus (foci) of the tree is the focus (foci) for π.

For example, consider the path on 3 nodes and take our target to be π = (1/4, 1/2, 1/4).

Starting from the center, the rule “with probability 1/2 take one step, otherwise stay put” is

a stopping rule which achieves π. Results in the next section show that this rule is optimal,

with expected length 1/2. However, the rule “take one step and then follow an optimal rule

to π” is clearly not optimal since this rule has expected length greater than 1. On the other

hand, starting from an endpoint, the rule “take one step and then follow an optimal rule from

the center to π” turns out to be an optimal rule, so the center is the unique focus for π in the

3-path. An analogous argument shows that the two internal nodes of the 4-path are the foci

for π. A similar phenomenon holds in general.

Theorem 4 Every distribution τ on a tree has either one focus or two adjacent foci.

A key observation is that for any node i, the rule “walk from i to the nearest focus and then

follow an optimal rule from that focus to τ” is an optimal rule from i to τ . In other words,

the foci of τ are central with respect to all walks from nodes to τ . Naturally, we define the

foci of the tree G to be the foci of the stationary distribution π. We call the tree focal if there

it has a single focus, and bifocal if there are two foci. These foci are the extremal center of G:

one of them always achieves the minimum of (2).
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Proposition 5 If the node a minimizes the pessimal hitting time H(a′, a) = mini H(i′, i) then

a is a focus of G.

A focus which minimizes the pessimal hitting time is called a primary focus and we denote it

by a. Otherwise, the node is a secondary focus, denoted b.

Another important parameterless mixing measure is the forget time Tforget = minτ maxi H(i, τ)

where the minimum is taken over all target distributions. We interpret this quantity as the

minimum expected time to “forget” the node we started from by following an optimal rule to

some distribution. In spite of its rather unorthodox definition, the forget time is intimately

connected to the mixing time and the reset time. For an undirected graph, Treset = Tforget (see

[9]) and they are within a factor of 4 of Tmix (see [2]).

For any graph, Lovász and Winkler [9] show that there is a unique distribution µ achieving

the forget time. This distribution µ is central in an extremal sense: µ minimizes the expected

length of a rule starting from the worst possible node. For a tree, µ is concentrated on the

foci of G:

Proposition 6 If the node a is the unique focus of G = (V, E) then µ is the singleton distri-

bution on the focus a. If the adjacent nodes a and b are the foci of G then

µi =











(H(b′, b) − H(a′, b))/2|E|, i = a
(H(a′, a) − H(b′, a))/2|E|, i = b

0, otherwise.

where H(i′, i) = maxj H(j, i).

Another mixing measure with central properties is Tbestmix = mini H(i, π). The node

achieving Tbestmix is the best possible starting node for achieving the stationary distribution.

This formulation is dual in some sense to that of equation (1). As expected, the foci of the

tree are central for this extremal problem.

Theorem 7 The quantity Tbestmix = mini H(i, π) is achieved by a focus of the tree. Specif-

ically, if H(a′, b) < H(b′, a) then a uniquely achieves Tbestmix, if H(a′, b) > H(b′, a) then b

uniquely achieves Tbestmix and if H(a′, b) = H(b′, a) then Tbestmix is achieved by both a and b.

Consider another mixing measure similar to the forget time. The start-independent time

of a distribution σ is Tsi(σ) = minτ
∑

i σiH(i, τ) where the minimum is taken over all target

distributions. For a walk started from σ, Tsi(σ) is the minimum expected time to obtain a
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sample (from some distribution) that is independent of the initial node of the walk (which was

drawn from σ). We may interpret Tsi(σ) as the fastest way to “forget” that we started our

walk from a node drawn from σ. A natural choice for our initial distribution is the stationary

distribution. For a tree, the target distribution achieving Tsi(π) is central in an average sense

and indeed the optimal target is concentrated on the barycenter.

Proposition 8 If c is a barycenter of the tree G then

Tsi(π) = min
τ

∑

k

πkH(k, τ) =
∑

k

πkH(k, c) = H(π, c).

By definition, Tsi(π) ≤ Treset and there are trees for which Tsi(π) is arbitrarily small when

compared with Treset.

We define the start-independent time of a graph to be Tsi = maxσ Tsi(σ) where the maxi-

mum is taken over all initial distributions. For a tree, the target distribution achieving Tsi is

central in an extremal sense, and indeed Tsi can be achieved by taking either focus as a target.

Furthermore, Tsi = Tforget.

Theorem 9 For a tree G, we have Tsi = Tforget. Moreover, if G has a unique focus a, then

there exists a distribution φ such that Tsi = H(φ, a). If G has two foci a and b then there exists

a distribution φ such that Tsi = H(φ, a) = H(φ, b).

It is an open question how Tsi(π) and Tsi compare to the other mixing measures for general

graphs.

2 Preliminaries

Random walks. Given an undirected, connected graph G = (V, E) a random walk on G is

a sequence of nodes (w0, w1, . . . , wt, . . .) such that the node wt at time t is chosen uniformly

from the neighbors of wt−1. For non-bipartite G, as t tends to infinity the distribution of the

tth node tends to the so called stationary distribution π where πi = d(i)/2|E| and d(i) is the

degree of i. For bipartite G, we have convergence if we consider a “lazy walk” in which at each

step we stay at the current node with probability 1/2.

We define M = {pij} to be the matrix of transition probabilities, so pij = 1/d(i) if ij ∈ E

and pij = 0 otherwise. For two nodes i, j, the hitting time H(i, j) is the expected length of a

walk from i to j. The expected number of steps before a walk started at i returns to i is

Ret(i) =
1

πi
. (3)
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Hitting times for trees. We give a hitting time formula for trees that is equivalent to

those found in [4] and [10]. Given neighboring nodes i and j, let Vi be the nodes in connected

component of G\{j} containing i. Then

H(i, j) =
∑

k∈Vi

d(k) = 2|E|
∑

k∈Vi

πk = 2|E|π(Vi) (4)

where π(S) =
∑

k∈S π(k) for S ⊂ V . Indeed, let G′ be the induced subgraph on the nodes

Vi ∪ {j}. Let d′(k) be the G′-degree of k and HG′(i, j) be the hitting time from i to j for this

graph. By (3), H(i, j) = HG′(i, j) = RetG′(j) − 1 =
∑

k∈G′ d′(k) − 1 =
∑

k∈Vi
d(k).

If i and j are neighbors then equation (4) immediately gives

H(i, j) + H(j, i) = 2|E|. (5)

Furthermore, we can determine a hitting time formula for the general case. Define ℓ(i, k; j) =

1
2(d(i, j)+d(k, j)−d(i, k)), the length of the intersection of the (i, j)-path and the (k, j)-path.

This function is symmetric in i and k and is zero if and only if i = j, k = j, or the nodes i

and k are in different connected components of G \ {j}. Assume d(i, j) = r and the (i, j)-path

is given by (i = i0, i1, i2, . . . , ir = j). Using (4) and ℓ(i, k; j) yields

H(i, j) =
r−1
∑

t=0

H(it, it+1) =
∑

k

ℓ(i, k; j)d(k). (6)

Stopping rules. We briefly summarize some results of Lovász and Winkler [8]. Let V ∗

be the space of finite walks on V , i.e. the set of finite strings w = (w0, w1, w2, . . . , wt), wi ∈ V

and wi adjacent to wi−1. For a given initial distribution σ, the probability of w being the walk

after t steps is

Pr(w) = σw0

t−1
∏

i=0

pwi,wi+1
.

A stopping rule Γ is a map from V ∗ to [0, 1] such that Γ(w) is the probability of continuing

given that w is the walk so far observed. We assume that with probability 1 the rule stops the

walk in a finite number of steps.

Given another distribution τ on V , the access time H(σ, τ) is the minimum expected length

of a stopping rule Γ that produces τ when started at σ. We say Γ is optimal if it achieves this

minimum. Optimal stopping rules exist for any pair σ, τ of distributions and the access time

H(σ, τ) has many useful algebraic properties. When σ and τ are concentrated on nodes i and

j respectively (we write σ = i, τ = j), the access time H(i, j) is the hitting time from i to j.

Clearly, H(σ, j) =
∑

i σiH(i, j) and H(σ, τ) ≤
∑

i σiH(i, τ).
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Given a stopping rule Γ from σ to τ , for each i ∈ S the exit frequency xi(Γ) is the expected

number of times the walk leaves node i before halting. Exit frequencies are fundamental to

virtually all access time results. A key observation, due to Pitman [12], is the “conservation

equation”
∑

i

pijxi(Γ) − xj(Γ) = τj − σj . (7)

It follows that the exit frequencies for two rules from σ to τ differ by Kπi where K is the

difference between the expected lengths of these rules. Hence the distributions σ and τ uniquely

determine the exit frequencies for a mean optimal stopping rule between them and we denote

these optimal exit frequencies by xi(σ, τ). Moreover, a stopping rule Γ is mean-optimal if and

only if there exists a halting state k such that xk(Γ) = 0.

Any three distributions ρ, σ and τ satisfy the “triangle inequality”

H(ρ, τ) ≤ H(ρ, σ) + H(σ, τ) (8)

with equality holding if and only if there is a k that is a halting state from ρ to σ and also a

halting state from σ to τ . In particular, H(σ, j) ≤ H(σ, τ) + H(τ, j) and equality holds if and

only if j is a halting state for an optimal rule from σ to τ . Hence

H(σ, τ) = max
j

(H(σ, j) − H(τ, j)). (9)

In the case σ = i and τ = π, the node j is halting for i if and only if H(j, i) = maxk H(k, i).

Let i′ be such an i-pessimal node. We have another formula for the access time from i to π

(which follows from (9) and (13) below):

H(i, π) = H(i′, i) − H(π, i). (10)

Mixing measures. Stopping rules provide a number of parameterless mixing measures.

We define the mixing time Tmix to be the expected length of an optimal mixing rule starting

from the worst initial node: Tmix = maxi H(i, π). A node achieving this maximum is called

mixing pessimal. The forget time Tforget is the smallest t such that there exists a distribution

µ such that for every starting node, the expected time to attain µ via an optimal rule is at

most t: Tforget = minτ maxi H(i, τ). The unique distribution µ achieving Tforget is called the

forget distribution and is given by

µi = πi



1 +
∑

j

pijH(j, π) − H(i, π)



 . (11)
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Furthermore, if a node is mixing pessimal then it is also pessimal for µ and every mixing

pessimal node is a halting state for an optimal rule from µ to π.

The reset time Treset =
∑

i πiH(i, π) can be viewed as an average mixing time. One of the

main results of [9] is the nontrivial equality Tforget = Treset for a random walk on an undirected

graph. Moreover, for an undirected graph we have Tforget ≤ Tmix ≤ 4Tforget (see [2]).

Start-independence. The following independence condition arises naturally in applica-

tions of random walks. Let Γ be a stopping rule from σ to τ and let w0, w1, . . . , wT be a walk

halted by Γ at time T . The support of σ, denoted Sσ, is the the set of nodes i such that σi > 0.

We associate a conditional distribution τ (i) to each i ∈ Sσ given by τ
(i)
k = Pr{wT = k|w0 = i}.

In other words, τ
(i)
k is the probability that Γ stops the walk at k given that the walk started

at i (which was drawn from σ). Clearly
∑

Sσ
σiτ

(i) = τ and we call the set {τ (i)}Sσ
the

Γ-decomposition of τ .

The rule Γ is start-independent if τ (i) = τ for all i ∈ Sσ. The node at which a start-

independent rule halts is independent of the initial node. Start-independent rules always

exist: the rule “draw w0 from σ and walk optimally from w0 to τ” is a start-independent rule

of expected length
∑

i σiH(i, τ).

While start-independent rules are rarely optimal, they arise naturally in applications re-

quiring multiple independent samples from the stationary distribution of some state space.

We obtain these samples by following an optimal mixing rule, accepting the current state,

and then starting a new optimal mixing walk from this state. In this setting, Treset is the

expected length of a minimal start-independent rule from π to π. (See [3] for an extremal

result concerning start-independent rules whose initial and target distributions are identical.)

We define the start-independent time of a distribution σ to be the minimum expected

length of a start-independent rule with initial distribution σ:

Tsi(σ) = min
τ

∑

i

σiH(i, τ)

A quantity of natural interest is Tsi(π), the start-independent time for the stationary distribu-

tion. We would also like to determine the extremal behavior of Tsi(σ). The start-independent

time of any singleton distribution is zero, so only the maximum case is nontrivial. We define

the start-independent time of the graph to be

Tsi = max
σ

Tsi(σ) = max
σ

min
τ

∑

i

σiH(i, τ).

Centers. There are two classical centers for trees. The node achieving mini maxj d(i, j),
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where d(i, j) is the length of the unique path between i and j, is the center of the tree G (or

bicenter if there are two adjacent nodes achieving this minimum). In other words, the distance

to the furthest node from the center is minimal among all nodes of the tree G. This vertex

does not appear to have any central properties with respect to random walks. The barycenter

is the node (or the two adjacent nodes) which achieves mini
∑

j d(i, j). A barycenter minimizes

the total distance to all other nodes.

For any undirected graph G (not necessarily a tree), Coppersmith, Tetali and Winkler

[5] define a central node c of G to be a node which satisfies H(i, c) ≤ H(c, i) for all i. The

existence of such a node for an undirected graph follows from their cycle reversing identity

H(i, j) + H(j, k) + H(k, i) = H(i, k) + H(k, j) + H(j, i). (12)

The equivalence of (a) and (b) in proposition 1 follows from the “random target identity” (see

[7] for example) : the sum
∑

j πjH(i, j) is independent of the initial node i. Multiplying (12)

by πk, summing over all k and using this identity gives

H(π, i) + H(i, j) = H(π, j) + H(j, i) (13)

for any nodes i, j. Hence H(i, c) ≤ H(c, i) for all i if and only if H(π, c) ≤ H(π, i) for all i.

3 The barycenter of the tree

For any S ⊂ V and a distribution τ on V , let τ(S) =
∑

k∈S τk and S̄ = V \S.

Proof of proposition 1. By equation (13), (b) and (c) are equivalent.

We show that (c) and (d) are equivalent. Assume π(V ′) ≤ 1/2 for each component G′ =

(V ′, E′) of G\{c}. For i ∈ V ′, H(i, c) ≤ d(i, c)
∑

V ′ d(k) ≤ d(c, i)
∑

V̄ ′ d(k) ≤ H(c, i) by (6), so

c is the central node. Now assume that c is the central node and that π(V ′) > 1/2. If c0 is the

unique neighbor of c in V ′ then H(c0, c) =
∑

V ′ d(k) >
∑

V̄ ′ d(k) = H(c, c0), a contradiction.

If π(V ′) = 1/2 for some component G′ of G\{c} then the neighbor of c in V ′ is also a central

node. Finally we prove the equivalence of (a) and (d). Let j be a node such that some

component G′ of G\{j} has π(V ′) > 1/2. Let j0 be the unique neighbor of j in V ′. We have
∑

i d(i, j0) =
∑

i d(i, j) − |V ′| + |V̄ ′| <
∑

i d(i, j), so j is not the barycenter of the tree. 2

The barycenter is the average center for random walks on trees, so it is natural to compare

H(c, π) and Treset = Tforget. Mixing from the barycenter never takes more than twice as long

as the average mixing time.
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Proof of proposition 2. Let u be the unique neighbor of c on the path from c to a c-pessimal

node c′, and let G′ be the connected component of G \ {u} containing c. By proposition 1,

π(G′) ≥ 1/2. For any node i ∈ V (G′), we have H(i, π) = H(i, c) + H(c, π) since c′ will also be

i-pessimal. Therefore

Treset ≥
∑

i∈G′

πiH(i, π) =
∑

i∈G′

πi (H(i, c) + H(c, π)) ≥ π(G′)H(c, π) ≥
1

2
H(c, π).

2

There are trees for which H(c, π) > Treset. Consider a broom graph Bk,k where k is divisible

by 4, with path nodes (c = v0, v1, . . . vk). Some simple calculations using (6) show that vk/4

and vk/4+1 are the foci of Bk,k and therefore the forget time (and hence the reset time) is not

greater than (1 + 3k/4)2. Using (6) and (10), the expected time to mix from the barycenter is

H(c, π) = H(c, c′)−H(π, c′) = (4k2 − 1)/6 which is strictly greater than (1 + 3k/4)2 for large

k. Of course, (4k2 − 1)/6 ≤ 2(3k/4)2 ≤ 2Treset as stipulated by proposition 2.

On the other hand, H(c, π) may be markedly smaller than the forget time (and hence the

reset time) of the tree. Consider an m-ary tree of depth r with root c. Of course c is the center,

the barycenter and the focus of this tree. We adopt the following notation: Sk = {i|d(i, c) = k}

is the set of all nodes at level k. Let c = i0, i1, . . . , ir be a path from c to a leaf ir. The expected

behavior of the walk at a node only depends on the level of the node, so we may use ik as a

representative for all nodes in Sk. A node is halting for this mixing walk if and only if it lies

in Sr. We explicitly calculate H(c, π) = H(ir, c)−H(π, c) as per equation (10). Counting the

degrees level-wise, the total number of edges in an m-ary tree of depth r is

1

2
(m + m(m + 1) + m2(m + 1) + · · · + mr−1(m − 1) + mr) =

m(mr − 1)

m − 1
.

Proof of theorem 3. We start by showing that

H(ir, ir−s) = s +
2m

(m − 1)2
(ms − sm + s − 1). (14)

We partition G into sets Tk = {j|ℓ(ir, j; ir−s) = k} so that

H(ir, ir−s) =
s
∑

k=1

k
∑

j∈Tk

d(j)

by (6). We have Ts = {ir} and for 2 ≤ k ≤ r−1, Tk consists of the node ik connected to m−1

copies of m-ary trees of depth r − k − 1. Hence,

∑

j∈Tk

d(j) = (m + 1) + (m − 1)

(

1 +
2m(ms−k − 1)

m − 1

)

= 2ms−k+1

10



for 2 ≤ k ≤ r − 1 so that

H(ir, ir−s) = s +
s−1
∑

1

k(2ms−k) = s + 2
s−1
∑

1

(s − j)mj

= s + 2s
s−1
∑

1

mj − 2
s−1
∑

1

jmj = s + 2m
ms − sm + s − 1

(m − 1)2
.

Now, we denote π(Sk) =
∑

Sk
πj . By equation (10),

H(c, π) = H(ir, c) − H(π, c) = H(ir, c) −
∑

j

πjH(j, c)

= H(ir, c) −
r
∑

k=0

π(Sk)H(ik, c) =
r
∑

k=0

π(Sk)H(ir, ik)

=
m − 1

2m(mr − 1)

(

mH(ir, i0) +
r−1
∑

k=1

mk(m + 1)H(ir, ir−(r−k)) + mrH(ir, ir)

)

.

Using (14) and simplifying (we omit the details) yields the theorem. 2

The forget time for the m-ary tree of depth r is H(ir, c) = H(ir, i0) = Θ(mr−1). Theorem

3 shows that H(c, π) = Θ(r). We compare the asymptotic behavior of this exact mixing result

with a similar approximate mixing result of Diaconis and Fill [6]. Let σt denote the distribution

achieved by walking t steps from the root c. Diaconis and Fill (example 4.20 of [6]) show that

for a fixed m, as r → ∞, ||σt − π|| becomes small after r(m + 1)/(m− 1) + αr1/2 steps with α

large. Theorem 3 shows that these two two mixing measures are asymptotically equivalent.

4 The foci of a distribution

The node k is τ -halting for i if xk(i, τ) = 0. Two nodes i, j have a common halting state

for τ when there exists a node k such that xk(i, τ) = 0 and xk(j, τ) = 0. Recall that a

focus u of a distribution τ on the tree G to be a node for which the rule “take one step

from u and then follow an optimal rule from this random neighbor of u to τ” is not optimal,

i.e. H(u, τ) < 1 +
∑

i puiH(i, τ). This is equivalent to saying that there is no node that is

simultaneously τ -halting for u and all of its neighbors.

For example, the focus for the singleton distribution τ = u is the node u. Considering

mixing walks, equation (10) shows that k is a π-halting state for i if and only if H(k, i) =

maxj H(j, i) = H(i′, i). Hence for a path of even length the unique center is the only π-focus,

and for a path of odd length, the two central nodes are the π-foci. Also, the center of a star

graph is the only π-focus.
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Theorem 4 states that for any tree G and any distribution τ , every τ has one focus or two

adjacent foci. Fixing τ , let i∗ denote a halting state for an optimal stopping rule from i to τ .

Proof of theorem 4. The case when τ is a singleton is trivial, so assume τ is not a singleton.

We claim that if i∗ is a τ -halting state for i and j and i∗ are in different components of

G\{i} then i∗ is a τ -halting state for j. We are guaranteed that i is on the unique (j, i∗)-path,

so the rule “walk from j to i and then follow and optimal rule from i to τ” has i∗ as a halting

state and hence this composite rule from j to τ is optimal.

Next, consider the path (j1, . . . , i1, i2, . . . , j2) in the tree G. We claim that the nodes j1, j2

cannot both be τ -halting states for each of the nodes i1, i2. Otherwise, equation (9) yields

H(ik, τ) = H(ik, j1) − H(τ, j1) = H(ik, j2) − H(τ, j2) for k = 1, 2 and therefore −H(i2, i1) =

H(i1, j1) − H(i2, j1) = H(i1, τ) − H(i2, τ) = H(i1, j2) − H(i2, j2) = H(i1, i2), a contradiction.

Now there are two cases to consider. For two adjacent nodes u, v, let Vu = {k | d(u, k) < d(v, k)}

and Vv = {k | d(v, k) < d(u, k)} = V̄u.

Case 1: There exists an edge uv such that u and v do not share a halting state for τ .

Note that u∗ ∈ Vv and v∗ ∈ Vu. Consider a set of optimal rules from the singletons to τ. As

shown above, every node in Vu has u∗ as a halting state, and u∗ is not a halting state for any

node in Vv. Similarly v∗ is halting for all of Vv and is not halting for all of Vu. Hence u and v

are the only foci of τ .

Case 2: Every neighboring pair of nodes share a τ -halting state. Since τ is not a singleton,

there exists a path of the form (u∗, . . . , i, u, . . . , i∗) where u∗ is a halting state for u but not for

i, and u separates i from all of its τ -halting states. If u is not a focus, then the neighbors of u

have a common halting state j∗. Let j 6= i be the neighbor of u on the (u, j∗)-path. The path

(u∗, . . . , u, j, . . . , j∗) is of the form forbidden above, a contradiction. So u must be a focus and

u is unique. Indeed, u shares a τ -halting state with each of its neighbors, so u must have a

halting state in at least two components of G\{u}. If there were another focus v, this would

again imply the existence of a path forbidden above. 2

When τ has two foci u and v, we will continue to use the notation Vu = {k | d(u, k) < d(v, k)}

and Vv = {k | d(v, k) < d(u, k)} = V̄u. The following corollary is immediate from the proof.

Corollary 10 If τ has a unique focus u then H(i, τ) = H(i, u)+H(u, τ) for all i. If τ has two

foci u, v then for i ∈ Vu, H(i, τ) = H(i, u)+H(u, τ) and for i ∈ Vv, H(i, τ) = H(i, v)+H(v, τ).

Proof of proposition 5. Recall that a halting state i′ for an optimal rule from i to π must

12



be i-pessimal (that is H(i′, i) = maxj H(j, i)). The node a is not a focus for π if and only if a′

is halting for every neighbor of a. Let i be the neighbor of a on the (a, a′)-path. The node a′

is i-pessimal and H(i, a′) < H(a, a′), a contradiction. 2

We say that this node a is a primary focus of G. We call G focal if π has a unique focus.

Otherwise we call G bifocal and we denote the other focus by b. A bifocal tree may have two

primary foci (for example, a path of odd length), but typically H(b′, b) > H(a′, a) and we refer

to b as the secondary focus of G. This new notion of center does not coincide with either the

center or the barycenter of the tree: a few simple calculations for the broom graph B10,7 shows

that none of these nodes coincide.

Proof of proposition 6. By (11), when i is not a focus of π we have µi = 0, If G is focal

then µ is the singleton distribution on a. For G bifocal, rewrite (11) as

µi = πi



1 +
∑

j

pij(H(j, π) − H(i, π))



 .

Let Va = {k | d(k, a) < d(k, b) When i ∈ Va is a neighbor of a, corollary 10 shows H(i, π) −

H(a, π) = H(i, a). Equation (4) gives

∑

Va

pai(H(i, π) − H(a, π)) =
∑

Va

paiH(i, a) =
1

d(a)
(H(a, b) − d(a)).

Considering the final neighbor b, equations (10) and (13) give

H(b, π) − H(a, π) = H(b′, b) − H(π, b) − H(a′, a) + H(π, a)

= H(b′, a) + H(a, b) − H(a′, b) − H(b, a) + H(π, a) − H(π, b)

= H(b′, a) − H(a′, b)

Thus our formula for µa becomes

µa =
d(a)

2|E|

[

1 +
1

d(a)

(

H(a, b) − d(a) + H(b′, a) − H(a′, b)
)

]

=
1

2|E|

(

H(a, b) + H(b′, a) − H(a′, b)
)

=
1

2|E|

(

H(b′, b) − H(a′, b)
)

.

We can calculate µb directly as above, or use µb = 1 − µa and equation (5). 2

Corollary 11 For a focal tree, Tforget = H(a′, a). For a bifocal tree,

Tforget = H(a′, µ) = H(b′, µ)

=
1

2|E|
(H(a, b)H(b, a) + H(a, b)H(a′, b) + H(b, a)H(b′, a)).

13
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Figure 1: Trees with different foci achieving Tbestmix. (a) H(a′, b) = H(b′, a) so Tbestmix =
H(a, π) = H(b, π). (b) H(a′, b) < H(b′, a) so Tbestmix = H(a, π). (c) H(a′, b) > H(b′, a) so
Tbestmix = H(b, π).

Proof. Since a′ and b′ are mixing pessimal, Tforget = H(a′, µ) = H(b′, µ) and the first

statement is obvious. If G is bifocal, the following stopping rule is optimal from a′ to µ:

walk until you hit b, then stop with probability µb and walk to a with probability µa. Hence,

H(a′, µ) = H(a′, b) + µaH(b, a) and

Tforget = H(a′, b) +
H(b, a)

2|E|
(H(b′, b) − H(a′, b)).

Equation (5) completes the proof. 2

Proof of theorem 7. We quickly narrow our search down to the foci of the tree. Recall that

a stopping rule is optimal if and only if it has a halting state. Lovász and Winkler [9] show

that every mixing pessimal node is a halting state for an optimal rule from µ to π. Hence on

a tree, both a′ and b′ are halting states for an optimal rule from µ to π. Therefore, for any

node i, the rule “follow an optimal rule from i to the forget distribution µ and then follow

an optimal rule from µ to π” has either a′ or b′ as a halting state. This rule is optimal and

H(i, π) = H(i, µ) + H(µ, π). We may minimize H(i, µ) rather than H(i, π), which is clearly

minimized by a focus of the tree.

If G has a unique focus, there is nothing to prove. Assume that G is bifocal with primary

focus a and secondary focus b. Then

H(a, µ) − H(b, µ) = µbH(a, b) − µaH(b, a) =
1

2|E|
(H(a′, b) − H(b′, a))(H(a, b) + H(b, a)).

Thus H(a, µ) ≥ H(b, µ) if and only if H(a′, b) ≥ H(b′, a). 2

The broom graphs B2,2, B2,3 and B4,4 in figure 1 show that all three possibilities do occur.
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5 Start-independent times

Start independent stopping rules also identify central nodes: we now prove proposition 8 and

theorem 9, which show that the target distributions achieving Tsi(π) and Tsi are concentrated

on a barycenter and the foci of the tree, respectively. We continue to employ the notation

σ(S) =
∑

k∈S σ(k) and S̄ = V \S for S ⊂ V . The following lemma allows us to restrict

ourselves to singleton targets.

Lemma 12 Let σ and τ be distributions on the tree G. If τ has only one focus, denote this

node by u. Otherwise let the foci u, v of τ satisfy σ(Vu)π(Vu) ≥ σ(Vv)π(Vv) where Vu = {i ∈

V | d(i, u) < d(i, v)} and Vv = {i ∈ V | d(i, v) < d(i, u)} = V̄u. Then

∑

k

σkH(k, τ) ≥
∑

k

σkH(k, u) = H(σ, u).

Proof. If u is the only focus for τ then
∑

k σkH(k, τ) =
∑

k σk(H(k, u) + H(u, τ)) ≥
∑

k σkH(k, u). If τ has two foci with σ(Vu)π(Vu) ≥ σ(Vv)π(Vv), equation (4) implies that

σ(Vu)H(u, v) ≥ σ(Vv)H(v, u). By corollary 2,

∑

V

σkH(k, τ) =
∑

Vu

σk(H(k, u) + H(u, τ)) +
∑

Vv

σk(H(k, v) + H(v, τ))

=
∑

Vu

σkH(k, u) +
∑

Vv

σkH(k, v) + σ(Vu)H(u, τ) + σ(Vv)H(v, τ)

=
∑

V

σkH(k, u) − σ(Vv)H(v, u) + σ(Vu)H(u, τ) + σ(Vv)H(v, τ).

For any rule from u to τ , we must step from u to Vv with probability τ(Vv) before halting,

hence H(u, τ) ≥ τ(Vv)H(u, v). Likewise, H(v, τ) ≥ τ(Vu)H(v, u). Therefore

σ(Vu)H(u, τ) + σ(Vv)H(v, τ) ≥ σ(Vu)τ(Vv)H(u, v) + σ(Vv)τ(Vu)H(v, u)

≥ σ(Vv)H(v, u)

so
∑

V σkH(k, τ) ≥
∑

V σkH(k, u). 2

Proof of proposition 8. Taking σ = π in lemma 12, a singleton target achieves Tsi(π).

Proposition 1 shows that Tsi(π) = mini
∑

k πkH(k, i) = mini H(π, i) = H(π, c). 2

Obviously Tsi(π) ≤ Treset and in fact Tsi(π) can be arbitrarily small in comparison. Consider

the tree consisting of a path of length 2k with k4 leaves connected to the central node c. The

focus, center and barycenter of G are all located at c, so the forget distribution is concentrated

on this central node. Tforget = k2 while H(π, c) becomes arbitrarily close to 1/2 for large k.
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On the other hand, theorem 9 states that the forget time and the start-independent time

of a tree are identical. The theorem is clearly true for the path on two nodes, so we restrict

our proof to trees on three or more nodes. We make the important observation that Tsi need

not be achieved by a unique pair of distributions. For example, consider a star graph with n

leaves. Clearly Tsi ≤ 1 since we may always choose the central node c as our target. For any

distribution σ concentrated on the leaf set such that σi ≤ (2n − 1)/2n for every node i, we

have Tsi = minj H(σ, j) = H(σ, c) = 1.

We prove theorem 9 by constructing a particular initial distribution φ concentrated on two

leaves such that minj H(φ, j) = Tsi. Once we have identified such a φ, we show that we may

choose the target node to be a focus of G.

Lemma 13 The node u is such that H(σ, u) = minj H(σ, j) if and only if for each neighbor

vi of u, 1 ≤ i ≤ d(u), we have

σ(Vi)H(vi, u) ≤ σ(V̄i)H(u, vi)

where Vi = {k ∈ V | d(k, v) < d(k, u)}. We have equality if and only if H(σ, u) = H(σ, vi) so

that vi is also a best target for σ.

Proof. For any neighbor vi of u,

H(σ, vi) =
∑

V̄i

σkH(k, u) + σ(V̄i)H(u, vi) +
∑

Vi

σkH(k, vi).

We have σ(Vi)H(vi, u) ≤ σ(V̄i)H(u, vi) if and only if H(σ, vi) ≥
∑

V̄i
σkH(k, u)+σ(Vi)H(vi, u)+

∑

Vi
σkH(k, vi) = H(σ, u). Furthermore, equality holds in the first if and only if equality holds

in the second. 2

We employ the following terminology for the remainder of the section. Let φ be a dis-

tribution, Sφ = {v|φv > 0} ⊂ V and u a node such that H(φ, u) = minj H(φ, j) = Tsi. Let

v1, v2, . . . , vd(u) be the neighbors of u. Let Gi = (Vi, Ei) be the connected component of G\{u}

with vi ∈ Gi, and let wi ∈ Vi be a leaf such that H(wi, u) = maxj∈Vi
H(j, u).

Proof of theorem 9. Let Tsi =
∑

i φiH(i, u).

Claim 1: Sφ intersects more than one component of G\{u}.

Assume that Sφ intersects exactly one of V1, V2, . . . Vd(u).

Case 1: φu = 0. We may assume Sφ ⊂ G1. Then H(φ, v1) < H(φ, u) where v1 ∈ V1 is

adjacent to u, contradicting minj H(φ, j) = H(φ, u).
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Case 2: φu 6= 0. We may assume Sφ ⊂ V1 ∪ {u}. We have φ(V̄1)H(u, v1) ≥ φ(V1)H(v1, u)

by lemma 13. If we have equality here, we may take v1 as our target, proving the lemma. If we

have strict inequality, there exists ǫ > 0 such that the distribution φ′ defined by φ′

u = φu − ǫ,

φ′

v1
= φv1

+ ǫ and φ′

i = φi otherwise satisfies φ′(V̄1)H(u, v1) > φ′(V1)H(v1, u). Lemma 13

shows that mini H(φ′, i) = H(φ′, u), while H(φ′, u) > H(φ, u) = Tsi, a contradiction.

Claim 2: φ may be chosen so that Sφ is contained in the leaf set {w1, w2, . . . , wd(u)}.

Assume instead that Sφ 6⊂ {w1, w2, . . . , wd(u)}.

Case 1: φu = 0. Let φ′ be the distribution given by φ′

wi
= φ(Vi) for 1 ≤ i ≤ d(u) and zero

elsewhere. Lemma 13 and H(φ, u) = mini H(φ, i) imply that H(φ′, u) = mini H(φ′, i) as well.

Clearly, H(φ′, u) ≥ H(φ, u), so we may use φ′ in place of φ.

Case 2: φu 6= 0. Arguing similarly to case 1, we may choose φ so that Sφ ⊂ {u, w1, w2, . . . , wd(u)}.

If φ(V̄i)H(u, vi) = φ(Vi)H(vi, u) for some i, we may take vi as our target node in lieu of u by

lemma 13. In this case, φvi
= 0 and we have reduced ourselves to case 1.

If φ(V̄i)H(u, vi) > φ(Vi)H(vi, u) for 1 ≤ i ≤ d(u) then there exists ǫ > 0 such that

the distribution φ′ given by φ′

u = φu − ǫ, φ′

w1
= φw1

+ ǫ and φ′

i = φi otherwise satisfies

φ′(V̄i)H(u, vi) > φ′(Vi)H(vi, u) for 1 ≤ i ≤ d(u). By lemma 13, mini H(φ′, i) = H(φ′, u) >

H(φ, u), a contradiction.

Claim 3: φ may be chosen to be concentrated on two leaves in {w1, w2, . . . wd(u)}.

Case 1: φ(V̄i)H(u, vi) = φ(Vi)H(vi, u) for some i. By lemma 13, H(φ, u) = H(φ, vi).

Notice that φ is supported in two components of G\{vi}, so using the proof of claim 2, we may

define a new distribution φ′ concentrated on two leaves such that mink H(φ′, k) = H(φ′, vi) ≥

H(φ, vi) = H(φ, u) = Tsi.

Case 2: φ(V̄i)H(u, vi) > φ(Vi)H(vi, u) for all i. We show by induction that there exists

a distribution φ′ supported on two leaves such that mini H(φ′, i) ≥ H(φ, u). The base case

|Sφ| = 2 is trivial. Assume that if |Sφ| = k − 1 then there exists a φ′ concentrated on two

leaves satisfying minj
∑

i φ′

iH(i, j) =
∑

i φ′

iH(i, u) =
∑

i φiH(i, u) = Tsi.

Considering |Sφ| = k, order Sφ = {w1, w2, . . . , wk} so that wi ∈ Vi and H(w1, u) ≥

H(w2, u) ≥ · · · ≥ H(wk, u). There exists ǫ > 0 such that the distribution φ∗ defined by

φ∗

w1
= φw1

+ ǫ, φ∗

wk
= φwk

− ǫ and φ∗

i = φi otherwise satisfies φ∗(V̄i)H(u, vi) > φ∗(Vi)H(vi, u)

for all i. If H(w1, u) > H(wk, u) then by lemma 13, mini H(φ∗, i) = H(φ∗, u) > H(φ, u) = Tsi,

a contradiction.
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Otherwise, we have H(wi, u) = H(wj , u) for all i, j. If there exists 0 < ǫ < φwk
such that

φ∗(V̄k)H(u, vk) = φ∗(Vk)H(vk, u) we have H(φ∗, vk) = H(φ∗, u) = H(φ, u) = Tsi. Hence we

may take φ∗ as our starting distribution and vk as our target node. The support of φ∗ is

contained in two connected components of V̄k, and so the proof of claim 2 shows that there

exists a distribution φ′ supported on two leaves such that Tsi = mini H(φ′, i). Finally, if

φ∗(V̄k)H(u, vk) > φ∗(Vk)H(vk, u) for all 0 ≤ ǫ ≤ φwk
, taking ǫ = φwk

we have a distribution

supported on k − 1 leaves such that mini H(φ∗, i) = Tsi and we are done by induction.

Claim 4: φ may be chosen so that Sφ concentrated on two leaves w1 and w2 such that

H(w1, u) ≥ H(w2, u) and the target node u is a focus of G. If the tree G is focal, then φ

is concentrated on two u-pessimal leaves. If the tree G is bifocal, then w1 is u-pessimal, v1

is the other focus of G and w2 is v1-pessimal. In this case, φ is given by φw1
= π(V̄1) and

φw2
= π(V1) and H(φ, v1) = H(φ, u) = Tsi.

By claim 3, we may assume without loss of generality that φ is concentrated on leaves

w1 ∈ V1 and w2 ∈ V2 where H(w1, u) ≥ H(w2, u). In order to maximize the access time, the

distribution φ must weight w1 as much as possible while still keeping u as the best target node.

By lemma 13, we must have φw1
H(v1, u) ≤ φw2

H(u, v1) and φw2
H(v2, u) ≤ φw1

H(u, v2). By

(4),
{

φw1
π(V1) ≤ φw2

π(V̄1)
φw2

π(V2) ≤ φw1
π(V̄2)

(15)

and the optimal choice is φw1
= π(V̄1) and φw2

= π(V1). Note that

H(φ, v1) = H(φ, u) (16)

by lemma 13. By claim 2, H(w1, u) = maxV1
H(i, u), so if H(w1, u) < H(u′, u) then a u-

pessimal node u′ must lie in one of V2, V3, . . . Vd(u). Since H(w2, u) ≤ H(w1, u), w2 cannot

be u-pessimal, so consider the distribution φ′ given by φ′

w1
= φw1

, φ′

u′ = φw2
and φ′

i = 0

otherwise. This distribution φ′ satisfies the inequalities analogous to (15) so mini H(φ′, i) =

H(φ′, u) > H(φ, u) = Tsi, a contradiction. Hence, w1 is u-pessimal. By a similar argument,

w2 must satisfy H(w2, u) = maxV̄1
H(i, u).

If u is the unique focus of G then w2 must also be u-pessimal. If u is a focus of a bifocal

G then v1 must be the other focus of G and w2 is v-pessimal. If u is not a focus, then the

foci of G must be on the unique path between u and the u-pessimal node w1. Hence w1 is

v1-pessimal and H(w1, v1) ≥ H(w2, v1). By (16) we may take v1 as our target node instead of

u. If H(w1, v1) = H(w2, v1) then v1 must be the unique focus of G since w1 is a v1-pessimal

node, and Tsi = H(φ, v1) as required.
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Otherwise H(w1, v1) > H(w2, v1). Let H1, H2, . . . Hd(v) be the connected components of

G\{v} where Hi = (Wi, Fi) and w1 ∈ W1 and w2 ∈ W2. Consider the distribution φ′ given

by φ′

w1
= π(W̄1), φ′

w2
= π(W1) and φ′

i = 0 otherwise. By lemma 13, H(φ′, v1) = mini H(φ′, i)

and

H(φ′, v1) = π(W̄1)H(w1, v1) + π(W1)H(w2, v1)

= (π(V̄1) + π(W̄1))H(w1, v1) + π(W1)H(w2, v1)

> π(V̄1)H(w1, v1) + (π(W̄1) + π(W1))H(w2, v1)

= H(φ, v1) = H(φ, u) = Tsi,

a contradiction, so u must be a focus of G.

Completion of proof. If G has a single focus a, then by claim 4, we may take φ to be

concentrated on two a-pessimal leaves in different components of G\{a} and Tsi = H(φ, a) =

H(a′, a) = Tforget by corollary 11. If G is bifocal with foci a and b, then by claim 4, we

may take φ to be concentrated on an a-pessimal node a′ and a b-pessimal node b′. Also,

Tsi = H(φ, a) = H(φ, b) by (16). Finally,

Tsi = µaTsi + µbTsi = µaH(φ, a) + µbH(φ, b)

= φa′(µaH(a′, a) + µbH(a′, b)) + φb′(µaH(b′, a) + µbH(b′, b))

= φa′H(a′, µ) + φb′H(b′, µ) = (φa′ + φb′)Tforget = Tforget

by proposition 6. 2
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