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Introduction & Motivation

Bounded Hessian

The space of Bounded Hessian, BH(Ω;Rd) is defined as

BH(Ω;Rd) : = {u ∈ L1(Ω;Rd) : Du ∈ BV (Ω;Rd×n)}
= {u ∈W 1,1(Ω;Rd) : D(∇u) ∈M(Ω;Rd×n×n)}

Of particular note is that although a function u ∈ BH(Ω;Rd) will not
have sharp changes, called ”jumps”, it may have ”kinks”, or jumps in ∇u.

This property in particular makes the space BH the natural setting for
problems in the fields of image processing and material science.
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Introduction & Motivation

Image Processing

Bergounioux and Piffet, 2010: Modification of Rudin-Osher-Fatemi model
for image denoising using functions of Bounded Hessian.

Decompose a noisy image ud ∈ L2(Ω) into ud = u+ v via

F (v) =
1

2
‖ud − v‖2

L2(Ω)
+ λ|D(∇v)|(Ω) + δ‖v‖

W1,1(Ω)

v ∈ BH(Ω) is a regularized second order part which minimizes F (v).

u ∈ L2(Ω), u = ud − v represents noise or texture.

Avoids the so-called ”staircasing effect” observed in ROF by disallowing
jumps.
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Introduction & Motivation

Plate Theory

Models of elastic-perfectly plastic materials:

Demengel, 1984, 1989

Carriero, Leaci, Tomarelli, 1992, 2004

Bleyer, Carlier, Duval, Mirebeau, Peyré, 2016

Introduced by Demengel, involve energy

F (u) =

ˆ
Ω
ψ(∇2u)

|ψ(H)| ≤ C(1 + |H|)

Sequences with F (un) bounded will be compact in BH, making it the
natural setting for such problems.
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BH Relaxation

Relaxation Problem

We approach the general problem of relaxation in BH.

F (u) :=

ˆ
Ω
f(x,∇2u)dx, u ∈W 2,1(Ω;Rd)

Goal: Find integral representation of F : BH(Ω;Rd)→ R via

F(u) := inf

{
lim inf
n→∞

F (un) : un
W 1,1

−−−→ u; ∇2u
?
⇀ D(∇u)

}
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BH Relaxation

A-free measures

Recently studied in the sense of A-free measures introduced by Fonseca &
Müller, 1999.
Rabasa, De Phillipis, & Rindler, 2017: Up to a BH density result,

F(u) =

ˆ
Ω
Q2f(x,∇2u))dx+

ˆ
Ω

(Q2f)∞
(
x,

Ds(∇u)

|Ds(∇u))|

)
d|Ds(∇u)|

where Q2f is the 2-quasiconvex envelope of f and (Q2f)∞ is the
recession function

Q2f(x,H) := inf

{ˆ
Q
f(x,H +∇2φ(y))dy) : φ ∈W 2,∞

0 (Q;Rd)
}

(Q2f)∞(x,H) = lim sup
t→∞

Q2f(x, tH)

t
.
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Area-Strict Density

BH Density Result

To apply Rabasa, De Phillipis & Rindler, we need the following result:

Proposition (BH Density)

For u ∈ BH(Ω;Rd), there exist un ∈ C∞(Ω;Rd) such that un
W 1,1

−−−→ u,

∇2u
〈 · 〉−−→ D(∇u)

This is area-strict convergence, as discussed in Kristensen and Rindler in

2009. We say measures µn
〈 · 〉−−→ µ ∈M(Ω,Rd) if µn

?
⇀ µ and

ˆ
Ω

√
1 + |µnac|2dx+ |µns |(Ω)→

ˆ
Ω

√
1 + |µac|dx+ |µs|(Ω)

We say that functions fn
〈 · 〉−−→ µ if fn LN � Ω

〈 · 〉−−→ µ
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Area-Strict Density

Remark

Area-strict convergence is strictly stronger than the notion of strict
convergence.

Take χ(0, 1
2

) as a function on I = (0, 1). Extend it periodically to some χ̃

and define

ψn(x) := χ̃(nx).

Then, by the Riemann-Lebesgue Lemma we have ψn
?
⇀ ψ = 1

2 . It is clear
that |ψn|(I) = |ψ|(I) = 1

2 , but

ˆ
I

√
1 + |ψn|2dx =

1 +
√

2

2
>

√
5

2
=

ˆ
I

√
1 + |ψ|2dx.
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Area-Strict Density

The power of area-strict convergence is the following Reshetnyak type
result:

Theorem (Kristensen, Rindler)

Let f ∈ E(Ω× Rm×d). Then, the function

G(µ) =

ˆ
Ω
f(µac)dx+

ˆ
Ω
f∞
(
dµs
d|µs|

)
d|µs|, µ ∈M(Ω;Rd)

is continuous with respect to area-strict convergence.

Where E(Ω× Rd×m) consists of functions f ∈ C(Ω× Rd×m) such that
the transformed function

(x, ξ)→ (1− |ξ|) f(x, (1− |ξ|)−1ξ), (x, ξ) ∈ Ω×B(0, 1)

can be extended continuously to to Ω×B(0, 1).
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Area-Strict Density

Results

Theorem (Hagerty)

For all µ ∈M(RN ;Rd) such that |µ|(∂Ω) = 0, there exist smooth
functions µε := µ ∗ φε, where φε are the standard mollifiers, such that

µε
〈 · 〉−−→ µ in Ω.

Corollary

We obtain the density result in BH assuming some boundary regularity.
(Currently C2 but it is believed that this can be extended to Lipschitz.)

A similar area-strict density result for BV functions is a corollary of
existing BV relaxation results, Ambrosio & Dal Maso, 1992, Fonseca &
Müller, 1993.
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Area-Strict Density

Proof of continuity:

Step 1: g(ξ) :=
√

1 + |ξ|2 is convex with linear growth, so

µ→
ˆ

Ω
g(µac)dx+

ˆ
Ω
g∞
(
dµs
d|µs|

)
d|µs|

is lower semicontinuous with respect to strict convergence, ie µn
?
⇀ µ,

|µn|(Ω)→ |µ|(Ω).

Step 2: Use Jensen’s inequality to establish the pointwise inequality

g(µac ∗ φε(x)) ≤ g(µac) ∗ φε(x)

which allows us to employ the blow-up method (Fonseca & Müller 1993)
in the support of |µac|
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Area-Strict Density

Singular part: A slightly more complicated inequality, also established via
Jensen’s inequality,

g(µs ∗ φε(x)) ≤ 1

tε(x)

ˆ
RN

g

(
tε(x)

dµs
d|µs|

(y)

)
φε(x− y)d|µs|(y)

where

tε(x) :=

ˆ
RN

φε(y − x)d|µs|(y) ≈ |µs|(B(x, ε)

εN
.

Since |µs|(B(x,ε)
εN

→∞ for |µs| almost every x ∈ Ω, we can get |µs| a.e.

1

tε(x)

ˆ
RN

g

(
tε(x)

dµs
d|µs|

(y)

)
φε(x− y)d|µs|(y)

≈
ˆ
RN

g∞
(
dµs
d|µs|

(y)

)
φε(x− y)d|µs|(y)

= g∞
(
dµs
d|µs|

(·)
)
|µs| ∗ φε(x)

1

2
x+ 1 (1)

= x (2)

(3)
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Area-Strict Density

Thank you for your attention!
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