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Summary

We obtain solutions of the nonlinear degenerate parabolic equation

∂ s

∂ t
= div

{

s∇c?
[

∇
(

F ′(s) + V
) ]

}

as a steepest descent of an energy with respect to a convex cost functional.
The method used here is variational. It requires less uniform convexity
assumption than that imposed by Alt and Luckhaus in their pioneering work
[2]. In fact, their assumption may fail in our equation. This class of problems
includes the Fokker-Planck equation, the Porous-medium equation, and the
p-Laplacian equation.
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Chapter 1

Preliminaries on Elementary

Analysis

1.1 Introduction

We consider a class of parabolic evolution equations, so-called doubly de-
generate parabolic equations. These equations arise in many applications in
physics and biology [11], [19], [20], [22]. They are used to model a variety
of physical problems: the evolution of a fluid in a certain domain: Porous-
medium equation [18], Fokker-Planck equation [12], etc. In this work, we
focus on these parabolic equations of the form























∂ b(u)
∂ t = div (a (b(u),∇u)) on (0,∞) × Ω

u(t = 0) = u0 on Ω

a (b(u),∇u) · ν = 0 on (0,∞) × ∂ Ω.

(1.1)

where

a (b(u),∇u) := f (b(u))∇c? [∇(u+ V ) ] ,

and c? denotes the Legendre transform of c : IRd → [0,∞), that is,

c?(z) = sup
x∈IRd

{x · z − c(x)},

for z ∈ IRd. Here, Ω is a bounded domain of IRd, ν is the outward unit
normal to ∂Ω, b : IR → IR is a monotone non-decreasing function, V :
Ω̄ → IR is a potential, c : IRd → [0,∞) is a cost function, f is a non-
negative real-valued function, and u0 : Ω → IR is a measurable function.
The unknown is u : [0,∞) × Ω → IR, u = u(t, x).

In a previous work, Alt and Luckhauss [2] proved existence of weak
solutions to (1.1), when V = 0, under the following “p-uniform convexity”
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6 CHAPTER 1. PRELIMINARIES ON ELEMENTARY ANALYSIS

assumption on a(t, z) := f(t)∇c?(z),

〈a(t, z1) − a(t, z2), z1 − z2〉 ≥ λ | z1 − z2 |p, (1.2)

for z1, z2 ∈ IRd and for some λ > 0 and p ≥ 2. This amounts to imposing
that f is bounded below, and the cost function c satisfies the ellipticity
condition

〈∇c?(z1) −∇c?(z2), z1 − z2〉 ≥ λ | z1 − z2 |p. (1.3)

They approximated (1.1) by a time discretization, and they used a Galerkin
type argument to solve the resulting elliptic problems. Then, they obtained
a sequence of functions which converges to a solution of (1.1).
In the same paper, they proved uniqueness of solutions to (1.1) when V = 0,

assuming that (1.2) holds, and the distributional derivative ∂b(u)
∂t of a solu-

tion u of (1.1) is an integrable function. The last condition was removed by
Otto in [16]. The technique used in [16] is called the “doubling of variables”,
and goes as follows: given two solutions u = u(t, x) and v = v(τ, y) of a
PDE, one doubles the variables of u and v, that is, u ≡ u(t, x, τ, y) and
v ≡ v(τ, y, t, x), and then, treats each solution as a constant with respect to
the differential equation satisfied by the other solution. This technique was
introduced by Kružkov in [13], and helped to overcome a lack of regularity
in solutions. In [16], Otto doubled only the time variable of solutions u1 and
u2 of (1.1), and then established the L1-contraction principle

∫

Ω
[ b (u1(t)) − b (u2(t)) ]+ ≤

∫

Ω
[ b (u1(0)) − b (u2(0)) ]+

from which he concludes uniqueness of the solution to (1.1).
Carillo, Jüngel, Markowich, Toscani, and Unterreiter studied the large-time
behavior of solutions to (1.1), under assumption (1.2) [5]. They proved that,
in the absence of a potential V, solutions of (1.1) decay algebraically to the
steady state zero. But, in the case of the Fokker-Planck equation, they
obtained an exponential convergence in relative entropy.

In this work, we eliminate assumption (1.3), and we impose instead, the
following growth condition on the cost function c :

β |z|q ≤ c(z) ≤ α (|z|q + 1) , (1.4)

for z ∈ IRd and for some α, β > 0 and q > 1. Notice that (1.4) is much
weaker than the ellipticity condition (1.3) imposed by Alt and Luckhaus in

[2]; for example, c(z) = | z |3
3 or c?(z) = 2

3 | z |3/2 satisfies (1.4), but not
(1.3). We interpret (1.1) as a dissipative system, and then, we introduce
the internal energy density function F : [0,∞) → IR, satisfying F ′ = b−1.
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Setting s := b(u), s0 := b(u0), and f(x) = max(x, 0), we rewrite (1.1) as























∂ s
∂ t + div (sUs) = 0 on (0,∞) × Ω

s(t = 0) = s0 on Ω

sUs · ν = 0 on (0,∞) × ∂ Ω.

(1.5)

Here
Us := −∇c?

[

∇
(

F ′(s) + V
) ]

denotes the vector field describing the average velocity of a fluid evolving
with the continuity equation (1.5), s0 : Ω → [0,∞) is the initial mass
density of the fluid, and the unknown s : [0,∞) × Ω → [0,∞), s = s(t, x),
is the mass density of the fluid at time t and position x of Ω. The free energy
associated with the fluid at time t ∈ [0,∞), is given by

E(s(t)) :=

∫

Ω
[F (s(t, x)) + s(t, x)V (x) ] dx.

Problem (1.5) includes the following well-known equations:

• the Fokker-Planck equation

∂ s

∂ t
= ∆s+ div (s∇V )

where c(z) :=
| z |2

2
, z ∈ IRd, and F (x) := x lnx, x ∈ (0,∞),

• the Porous-medium equation

∂ s

∂ t
= ∆sm, m ≥ 1

where c(z) :=
| z |2
2
, F (x) :=

xm

m− 1
, and V = 0,

• the parabolic p-Laplacian











∂ s
∂ t = div

{

|∇sn|p−2∇sn
}

F (x) = nxm

m(m−1) , n := m− p−2
p−1 > 0,

where c(z) :=
| z |p?

p?
,

1

p
+

1

p?
= 1, p > 1, and V = 0.

Note that when n = 1, we obtain the usual p-Laplacian

∂ s

∂ t
= div

{

|∇s |p−2∇s
}

.
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We are interested in the following questions: under what conditions does
(1.5) have solutions? Is the solution unique? What are the most relevant
properties of c, F and V, which ensure that solutions converge asymptoti-
cally to an equilibrium?
In this work, we answer the first and the second questions. We prove the
existence and the uniqueness of solutions to (1.5), when the initial mass
density s0 is bounded below and above, that is, s0 + 1

s0
∈ L∞(Ω). This re-

striction was made to simplify the proofs, and not to bury fundamental facts
into technical computations. More precisely, we construct a weak solution
to (1.5) (see Theorems 3.4.1, 3.4.2) when c, F and V are sufficiently smooth
convex functions satisfying

(HC) c(0) = 0, and (1.4),

(HF): F (0) = 0, F has a super-linear growth at +∞, and
(0,∞) 3 x 7→ xdF (x−d) is convex.

Furthermore, we anticipate the following asymptotic results on solutions
to (1.5): if c(z) := | z |q

q , q > 1, then

Wq (s(t), s∞) ≤ 1

λ
[E (s(t)) −E(s∞) ] ≤ 1

λ
e−(q?λq?

−1)t [E(s0) −E(s∞) ] ,

(1.6)
and for general cost functions c,

Wc (s(t), s∞) ≤ 1

λ
[E (s(t)) −E(s∞) ] ≤ 1

λ
e−t [E(s0) −E(s∞) ] . (1.7)

Here, λ is the constant of the uniform c-convexity of the potential V (see
(4.5)), and s∞ is the equilibrium solution of (1.5). We have not been
able to establish (1.6) and (1.7) rigorously although we think that their
proof are not out of reach. Notice that (1.6) extends the result stated
in [5] on the asymptotic behavior of the Fokker-Planck equation, where

c(z) = | z |2
2 , F (x) = x lnx, and V is uniformly convex with Hess(V ) ≥ λ id.

Our approach in studying the existence of solutions to problem (1.5) was
inspired by the work of Jordan, Kinderlehrer and Otto [12]. In [12], the au-

thors observed that the Fokker-Planck equation
(

c(z) = | z |2
2 , F (x) = x lnx

)

,

can be interpreted as the gradient flow of the entropy functional

H(s) :=

∫

(s ln s+ s V ) dx,

with respect to the Wasserstein metric d2, and then, they proved the exis-
tence of weak solutions to the Fokker-Planck equation. Recall that d2 is a
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metric on the set of probability measures on IRd, with finite second moments,
defined by

d2(µ0, µ1) :=

[

inf
{

∫

IRd×IRd

|x− y|2
2

dγ(x, y) : γ ∈ Γ(µ0, µ1)
}

]1/2

,

where Γ(µ0, µ1) denotes the set of probability measures on IRd×IRd, having
µ0 and µ1 as their marginals (see the definition in Section 1.2.2 below).
Here, the interpretation of our discrete scheme is that at each time, the
system tries to minimize its free energy

E(s) :=

∫

Ω
[F ◦ s+ s V ] dx

against a penalty W h
c (·, s), viewed as the kinetic energy,

W h
c (ρ0, ρ1) := inf

{

∫

IRd×IRd

c

(

x− y

h

)

dγ(x, y) : γ ∈ Γ(ρ0, ρ1)
}

,

where h > 0 is a time-step size, and x−y
h is viewed as a velocity. In other

words, if sh
k−1 is the state of the system at time tk−1 = (k − 1)h, its state

at time tk = kh is the unique minimizer of

E(s) + hW h
c (sh

k−1, s),

over all probability density functions s on Ω. Here, W h
c (sh

k−1, s) is actually

the minimum work required to move the system from the state sh
k−1, to the

state s at time t = kh.

Outline of methods

For the sake of illustration, we outline the proof of the existence theorem
to problem (1.5), assuming that V = 0, and s0 + 1

s0
∈ L∞(Ω). By standard

approximation arguments (see Proposition 1.4.2), one can extend the result
to the case where 1

s0
fails to be bounded. Once (1.5) is solved for special

initial data s0, one can look for a-priori estimates to extend the existence of
solutions to a wider class of initial data, s0 ∈ Lp(Ω), p ≥ q. The proof of
our existence theorem consists of three main parts:

1. We interpret (1.5) as a “steepest descent” of the internal energy func-
tional

Pa(Ω) 3 s 7→ Ei(s) :=

∫

Ω
F (s(x)) dx

against the Monge-Kantorovich work W h
c , where h > 0 is the time-step

size, and Pa(Ω) denotes the set of all probability density functions s : Ω →
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[0,∞). In other words, given a mass density sh
k−1 of the fluid at time tk−1 =

(k − 1)h , we define the mass density sh
k at time tk = kh, to be the unique

minimizer of the variational problem

(P h
k ) : inf

s∈Pa(Ω)

{

hW h
c

(

sh
k−1, s

)

+Ei(s)
}

(1.8)

(see Proposition 2.1.1). So, at each time t, the system tends to decrease its
internal energy Ei(s), while trying to minimize the work to move from state
s(t) to state s(t+ h).

2. We write the Euler-Lagrange equation of (P h
k ), and then, deduce

that
sh
k − sh

k−1

h
= div

{

sh
k∇c?

[

∇
(

F ′(sh
k)
)]}

+Ak(h) (1.9)

weakly, for k ∈ IN (Proposition 2.3.1), where Ak(h) tends to 0, as h goes to
0. The subsequent equality (1.9) shows clearly why (1.8) is a discretization
of (1.5).

3. We define the approximate solution sh to (1.5), as the time-discrete
function







sh(t, x) = sh
k(x) if t ∈ ((k − 1)h, kh]

sh(0, x) = s0(x),

and we deduce from (1.9) that, sh satisfies










∂sh

∂t = div
{

sh ∇c?
[

∇
(

F ′(sh)
) ]

}

+A(h) on (0,∞) × Ω

sh(t = 0) = s0 on Ω

(1.10)

in the weak sense (Proposition 2.5.1), where A(h) is shown to be 0
(

hε(q)
)

,
ε(q) := min(1, q − 1), as h goes to 0. (Proposition 3.1.2).

4. We let h go to 0 in (1.10), and we wish to show that the sequence
(sh)h converges to a function s, which solves (1.5) in the weak sense. Here,
two convergence results are established:

4.1. the weak convergence of (sh)h to s in L1 ((0, T ) × Ω) (up to a

subsequence) for 0 < T < ∞, which clearly proves that
(

∂sh

∂t

)

h
converges

weakly to ∂s
∂t in

[

C∞
c (IR× IRd)

]′
, and

4.2 the weak convergence of the nonlinear term
{

sh∇c?
[

∇
(

F ′(sh)
) ]

}

h

to s∇c? [∇ (F ′(s)) ] in L1 ((0, T ) × Ω) , for a subsequence.
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(4.1) follows from the fact that Ei

(

sh(t)
)

≤ Ei(s0), and F has a super-
linear growth at +∞. But, since we require here that s0 is bounded above,
we use instead, the maximum principle stated in Proposition 2.2.1, to obtain
(4.1) (see Lemma 3.2.1). Indeed, starting with an initial probability density
function s0 which is bounded above, that is, s0 ≤ N, we prove that, at
any time tk = kh, k ∈ IN, the probability density function sh

k - solution of
(P h

k ) - is bounded above, as well, that is, sh
k ≤ N. As a consequence, we ob-

tain that (sh)h is bounded in L∞ ((0,∞) × Ω) , and then, we conclude (4.1).

(4.2) is one of the most difficult tasks in the proof of the existence
theorem. Its proof requires elaborated intermediate results. We proceed as
follows:

(i). First, we improve (4.1) by showing that, in fact, (sh)h converges
strongly to s, for a subsequence, in L1 ((0, T ) × Ω) for 0 < T < ∞
(Proposition 3.2.5).

(ii). Next, we show that
{

∇c?
[

∇
(

F ′(sh)
) ]

}

h
converges weakly to

∇c? [∇ (F ′(s)) ] in Lq ((0, T ) × Ω) , for a subsequence (Theorem 3.3.3).

To prove (i) and (ii), one needs to have a good control on the spatial

derivative of sh, for example, to show that
{

∇
(

F ′(sh)
)

}

h
is bounded

in Lq?
((0, T ) × Ω) , for T < ∞. The main ingredient needed to establish

this fact is the following Monge-Kantorovich type energy inequality:

Ei(ρ0) −Ei(ρ1) ≥
∫

Ω
〈∇
(

F ′(ρ1)
)

, S(y) − y〉ρ1(y) dy, (1.11)

for ρ0, ρ1 ∈ Pa(Ω). Here, S denotes the c-optimal map that pushes ρ1

forward to ρ0 (see the definition in Proposition 1.2.1). A more general
statement of the energy inequality can be found in Theorem 2.4.2. In fact,
(1.11) is a direct consequence of the displacement convexity of the energy
functional Pa(Ω) 3 ρ 7→ Ei(ρ), that is, the convexity of

[0, 1] 3 t 7→ Ei(ρ1−t),

where,
ρ1−t := ((1 − t) id + tS)# ρ1

is the shortest path joining ρ1 and ρ0 in Pa(Ω). When c(z) = | z |2
2 , in which

case S is the gradient of a convex function, the above interpolation in ρ1−t

was introduced by R.McCann in [14].
Indeed, setting ρ0 := sh

k−1 and ρ1 := sh
k, in (1.11), and using the Euler-

Lagrange equation of (P h
k ), that is,

Sh
k − id

h
= ∇c?

[

∇
(

F ′(sh
k)
) ]

, (1.12)
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where Sh
k is the c-optimal map pushing sh

k forward to sh
k−1, we obtain that

h

∫

Ω
〈∇
(

F ′(sh
k)
)

,∇c?
[

∇
(

F ′(sh
k)
) ]

〉 sh
k ≤ Ei(s

h
k−1) −Ei(s

h
k). (1.13)

We integrate (1.13) over t ∈ [0, T ], T <∞, and we use Jensen’s inequality,
to deduce that

∫ T

0

∫

Ω
〈∇
(

F ′(sh)
)

,∇c?
[

∇
(

F ′(sh)
) ]

〉sh

≤ Ei(s0) − |Ω |F
(

1

|Ω |

)

. (1.14)

We combine (1.4), (1.14), and the fact that (sh)h is bounded in
L∞ ((0,∞) × Ω) , to conclude that

∫ T

0

∫

Ω
sh
∣

∣

∣∇
(

F ′(sh)
) ∣

∣

∣

q?

≤ cst.

And since
(

1
sh

)

h
is bounded in L∞ ((0,∞) × Ω) - by the minimum princi-

ple of Proposition 2.2.1 -, we deduce that
{

∇
(

F ′(sh)
)

}

h
is bounded in

Lq?
((0, T ) × Ω) , for T <∞.

Organization of the work

This work consists of five chapters. In sections 1.1 and 1.2, we include
the introduction, notations, assumptions and definitions used in the work.
Some important results of previous authors are also collected in section 1.2.
In sections 1.3 and 1.4, we recall two approximation results: the approxi-
mation of a convex cost function by regular cost functions, and the approx-
imation of a probability density by probability densities which are bounded
below and above. The first approximation is used to establish the energy
inequality (2.58), and the second approximation is needed in the proof of the
maximum/minimum principle of Proposition 2.2.1. In chapter 2, we study
problem (1.5) by discretizing in time. In section 2.1, we prove the existence
and uniqueness of the solution to the variational problem

(P ) : inf
{

W h
c (sh

k−1, s) +
1

h
E(s) : s ∈ Pa(Ω)

}

.

In section 2.2, we establish a maximum/minimum principle for the mini-
mizer sh

k of (P ), that is, sh
k is bounded below and above, provided sh

k−1 is
bounded below and above. We use the maximum principle in Lemma 3.2.1,
to prove the weak convergence in L1 ((0, T ) ×∞) , T < ∞, of the approx-
imate sequence (sh)h to a solution s of (1.5), and the minimum principle,
in Lemma 3.2.2, to control the spatial derivative of sh, namely, (∇sh)h is
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bounded in Lq?
((0, T ) × Ω) , T <∞. Moreover, we show in section 2.2 that

the interpolant probability density s1−t between two probability densities s0

and s1 which are bounded above, is also bounded above. This result will be
used in Lemma 3.2.3 to establish the time-compactness of the approximate
sequence (sh)h, one of the ingredients needed to prove the strong conver-
gence of a subsequence of (sh)h to s in L1 ((0, T ) × Ω) , T < ∞. In section
2.3, we establish the Euler-Lagrange equation for (P ) and some useful prop-
erties of sh

k. In section 2.4, we prove the energy inequality for smooth cost
functions, and then, extend it to general cost functions. In section 2.5, we
define the approximate solution sh to (1.5), and we show that sh satisfies











∂sh

∂t = div
{

sh ∇c?
[

∇
(

F ′(sh) + V
) ]

}

+A(h)

sh(t = 0) = s0,

(1.15)

in the weak sense. Chapter 3 deals with the limit of (1.15), when s0 is
bounded below and above. In section 3.1, we show that A(h) = 0

(

hε(q)
)

, as
h goes to 0, where ε(q) := min(1, q−1). In section 3.2, we prove that the ap-
proximate sequence (sh)h converges strongly to some s in L1 ((0, T ) × Ω) ,

for a subsequence. In section 3.3, we show that
{

∇c?
[

∇
(

F ′(sh)
)]

}

h
con-

verges weakly to ∇c? [∇ (F ′(s))] in Lq ((0, T ) × Ω) , for a subsequence. In
section 3.4, we state and prove the existence and uniqueness theorem to
problem (1.5), when s0 is bounded below and above. In chapter 4, we com-
ment on few open problems related to (1.5), namely, the asymptotic behavior
of solutions of (1.5), and the contraction in the Wasserstein metric of two
solutions of (1.5). The appendix is presented in chapter 5. In section 5.1, we
collect some previous results of other authors which are used in this work.
In section 5.2, we establish some intermediate results needed in the previous
chapters.

1.2 Notations, Definitions, and Assumptions

1.2.1 Notations

The following notations will be used in this work.

• Ω denotes an open bounded convex and smooth subset of IRd, where
d ≥ 1.

• BR(x) denotes the open ball of IRD of radius R, centered at x ∈ IRd,
and BR(x)c := IRD \ BR(x), for some D ≥ 1.

• Pa(Ω) denotes the set of all probability measures on Ω, which are ab-
solutely continuous with respect to the Lebesgue measure. We identify



14 CHAPTER 1. PRELIMINARIES ON ELEMENTARY ANALYSIS

these probability measures with their density functions;

Pa(Ω) :=
{

s : Ω → [0,∞) measurable,

∫

Ω
s(x) dx = 1

}

• |A | denotes the Lebesgue measure of a Borel set A of IRd.

• ‖ϕ ‖Lq(Ω) denotes the Lq-norm of a function ϕ : Ω → IR.

• spt (ϕ) denotes the support of a real-valued function ϕ, that is, the
closure of the set {x ∈ Ω : ϕ(x) 6= 0}.

• p? denotes the conjugate index of a positive real p, that is, 1
p + 1

p? = 1.

• If x = (x1, · · · , xd), and y = (y1, · · · , yd) are vectors in IRd, then
〈x, y〉 denotes the scalar product of x and y, that is,

〈x, y〉 =

d
∑

i=1

xiyi.

• If x = (x1, · · · , xd), then |x | denotes the norm of x in IRd, that is,

|x | =
√

〈x, x〉 .

• If G : IRd → IR is convex, then G? : IRd → IR denotes the Legendre
transform of G, that is,

G?(y) := sup
x∈IRd

{〈x, y〉 −G(x)}.

• If A is a Borel subset of IRd, IIA denotes the characteristic function of
A, that is,

IIA(x) :=

{

1 if x ∈ A
0 otherwise.

Throughout this work, M and N are positive reals, a.e. refers to the d-
dimensional Lebesgue measure, and

ch(z) := c
( z

h

)

.

The following definitions are needed in the work.
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1.2.2 Definitions

1.2.2.1 Probability measures with marginals

Let µ0 and µ1 be probability measures on IRd. A Borel probability measure
γ on the product space IRd×IRd is said to have µ0 and µ1 as its marginals,
if one of the following equivalent conditions holds:

(i). for Borel A ⊂ IRd,

γ[A× IRd] = µ0[A ],

and

γ[IRd ×A] = µ1[A ].

(ii).

∫

IRd×IRd

[ϕ(x) + ψ(y) ] dγ(x, y) =

∫

IRd

ϕ(x) dµ0(x) +

∫

IRd

ψ(y) dµ1(y),

for all (ϕ,ψ) ∈ L1
µ0

(IRd)×L1
µ1

(IRd), where L1
µi

(IRd) denotes the space

of µi-integrable functions on IRd (i = 1, 2).
We denote by Γ(µ0, µ1), the set of all probability measures satisfying
(i) or (ii). If µ0 and µ1 are absolutely continuous with respect to
Lebesgue, and ρ0, ρ1 denote their respective density functions, we
simply write Γ(ρ0, ρ1).

1.2.2.2 Push-forward mapping

Let µ0 and µ1 be probability measures on IRd. A Borel map T : IRd → IRd

is said to push µ0 forward to µ1, if

(i). µ1[A ] = µ0[T
−1(A) ] for Borel A ⊂ IRd, or equivalently

(ii).
∫

IRd ϕ(y) dµ1(y) =
∫

IRd ϕ (T (x)) dµ0(x) for all ϕ ∈ L1
µ1

(IRd).

Whenever (i) or (ii) holds, we write that µ1 = T#µ0, and we say that T
pushes µ0 forward to µ1.

The next proposition is due to Caffarelli [3], and Gangbo-McCann [10].
It asserts the existence and uniqueness of the minimizer for the Monge-
Kantorovich problem.

Proposition 1.2.1 (Existence of optimal maps.)
Let c : IRd → [0,∞) be strictly convex, and ρ0, ρ1 ∈ Pa(Ω). Then

(i). there is a function v : Ω → IR such that, T := id− (∇c?)◦∇u pushes

ρ0 forward to ρ1, where u(x) = infy∈Ω

{

c(x− y) − v(y)
}

for x ∈ Ω.
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(ii). T is the unique minimizer (a.e. with respect to ρ0) of the Monge
problem

(M) : inf
{

∫

Ω
c (x− Tx) ρ0(x) dx, T#ρ0 = ρ1

}

.

(iii). The joint measure γ := (id × T )#ρ0 uniquely solves the Kantorovich
problem

(K) : inf
{

∫

IRd×IRd

c (x− y) dγ(x, y), γ ∈ Γ(ρ0, ρ1)
}

.

(iv). T is one-to-one, that is, there exits a map S pushing ρ1 forward to
ρ0, such that T (S(y)) = y a.e. with respect to ρ1, while S (T (x)) =
x a.e. with respect to ρ0.

Moreover, S = id+∇c?(−∇v), where v(y) = infx∈Ω

{

c(x−y)−u(x)
}

for y ∈ Ω.
v is called the c-transform of u, and it is denoted by v := uc.

We will refer to T (respectively S ) as the c-optimal map that pushes
ρ0 (respectively ρ1 ) forward to ρ1 (respectively ρ0 ), and γ will be called
the c-optimal measure in Γ(ρ0, ρ1).

1.2.2.3 Wasserstein metric

Let c : IRd → [0,∞) be strictly convex, h > 0, and ρ0, ρ1 ∈ Pa(Ω). We
define

W h
c (ρ0, ρ1) := inf

{

∫

IRd×IRd

c

(

x− y

h

)

dγ(x, y) : γ ∈ Γ(ρ0, ρ1)
}

.

If c(z) = |z|q
q , we denote W h

c by W h
q . When c(z) = |z|2

2 and h = 1,

d2 :=
√

W h
2 is called the Wasserstein metric.

We deduce from Proposition 1.2.1 that, there exist a unique probability
measure γ ∈ Γ(ρ0, ρ1), and a unique mapping T pushing ρ0 forward to
ρ1, whose inverse S pushes ρ1 forward to ρ0 , such that

W h
c (ρ0, ρ1) =

∫

IRd×IRd

c

(

x− y

h

)

dγ(x, y)

=

∫

Ω
c

(

x− Tx

h

)

ρ0(x) dx

=

∫

Ω
c

(

Sy − y

h

)

ρ1(y) dy.

The following assumptions will be needed in this work.
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1.2.3 List of assumptions

(HC1) : c : IRd → [ 0,∞) is strictly convex.

(HC2) : 0 = c(0) < c(z), for z 6= 0.

(HC3) : lim|x|→∞
c(x)
|x| = ∞, i.e. c is coercive.

(HC4) : β | z |q ≤ c(z) ≤ α (| z |q + 1), for z ∈ IRd, where
α, β > 0 and q > 1.

(HF1) : limx→+∞
F (x)

x = +∞, i.e. F : [0,∞) → IR has a super-linear
growth at infinity.

(HF2) : (0,∞) 3 x 7→ xdF (x−d) is convex.

Examples of cost and energy density functions

• Any finite, positive, linear combination of cost functions | z |qi , qi >
1, i ∈ IN, satisfies (HC1) - (HC4). For example, if c(z) =

∑n
i=1Ai | z |qi ,

where n ∈ IN, qi > 1, and the Ai ≥ 0 are not all zeros, then
q = max{i=1,···,n}(qi) = qi0 , β = Ai0 , and α =

∑n
i=1Ai.

• The following energy density functions satisfy (HF1) - (HF2):
F (x) = x lnx, F (x) = xm, where m > 1, and F (x) =

∑n
i=1Ai Fi(x),

where n ∈ IN, the Ai ≥ 0 are not all zeros, and the Fi are like the
previous F .

1.3 Approximation of convex costs by smooth costs

Throughout this section, c : IRd → [0,∞) denotes a convex function. We
prove that c can be approximated by a sequence (gε)ε↓0 of strictly convex
and smooth functions, such that the Legendre transforms g?

ε are twice con-
tinuously differentiable. This approximation will be used in section 2.4 to
extend the energy inequality (2.21) to general cost functions (see Theorem
2.4.2).

Proposition 1.3.1 Assume that c is of class C1 and satisfies c(0) = 0
and (HC4). Then, there exists a sequence (gε)ε↓0 of non-negative, strictly
convex functions on IRd, satisfying:
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(i). gε ∈ C∞(IRd), and g?
ε ∈ C2(IRd).

(ii). (gε)ε↓0 converges to c, locally in C1(IRd).

(iii). 0 = gε(0) < gε(z), for z 6= 0.

Proof. Because c ∈ C1(IRd) is convex and has a super-linear growth as
|x | → ∞, we have that c? ∈ C(IRd). Let ρ ∈ C∞

c (IRd) be such that ρ ≥ 0,
spt (ρ) ⊂ B1(0), and

∫

IRd ρ(x) dx = 1. For ε > 0, consider

cε(z) := ρε ? c(z) +
ε

2
| z |2, ∀ z ∈ IRd,

where ρε(z) := 1
εd ρ(

z
ε ) is the standard mollifier, and ρε ? c denotes the

convolution of ρε and c . It is clear that cε ∈ C∞(IRd) is non-negative and
strictly convex, as the sum of the convex function ρε ? c and the strictly
convex function z 7→ ε

2 |z|2. Also, (cε)ε↓0 converges to c locally in C1(IRd).
Furthermore, standard arguments show that c?ε ∈ C1(IRd), and

∇cε[∇c?ε (z) ] = z, ∀ z ∈ IRd.

As a consequence, the function

z 7→ cof
(

D2cε[∇c?ε (z) ]
)

det (D2cε[∇c?ε (z) ])
:= Aε(z),

is well-defined, continuous on IRd, and D2c?ε = Aε; here, cof (A) denotes
the matrix of the cofactors of a matrix A . Therefore, c?

ε ∈ C2(IRd). Now,
let R and ε be such that Rq > α

β , and 0 < εq ≤ min(Rq, β
αR

q−1). Because

of (HC4), we have that c(z) ≥ βRq, for z ∈ IRd \BR(0). So, for | z | ≥ 2R,
we deduce that

cε(z) > ρε ? c(z) =

∫

Bε(z)
ρε(z − y)c(y) dy

≥ βRq

∫

Bε(z)
ρε(z − y) dy = βRq,

where, the last inequality holds because Bε(z) ⊂ IRd \ BR(0). Hence,

inf
| z |≥2R

cε(z) ≥ βRq. (1.16)

Furthermore, due to (HC4), we have that

cε(0) =

∫

Bε(0)
ρε(y)c(y) dy ≤ α(εq + 1) ≤ βRq. (1.17)

Combining (1.16) and (1.17), we conclude that

inf
z∈B2R(0)

cε(z) ≤ cε(0) ≤ inf
| z |≥2R

cε(z).
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Therefore, cε attains its minimum over IRd at some zε ∈ B2R(0). Let z̄
denote the limit of (zε)ε↓0, which exists because (zε)ε is bounded. We have
that

c(z̄) = lim
ε↓0

cε(zε) ≤ lim
ε↓0

cε(z) = c(z), ∀ z ∈ IRd,

and then, z̄ = 0, because 0 = c(0) < c(z) for all z 6= 0. Now, define gε as
follows:

gε(z) := ḡε(z) − ḡε(0), where ḡε(z) := cε(z + zε).

Clearly, gε is strictly convex and satisfies (i). Moreover, the non-negativity
of gε and (iii) follow easily from the following inequality:

ḡε(0) < ḡε(z), ∀ z 6= 0, (1.18)

which we prove next. For all z ∈ IRd, we have that

ḡε(0) = cε(zε) ≤ cε(z + zε) = ḡε(z),

with strict inequality, unless z = 0. Indeed, if ḡε(z) = ḡε(0), we have that
∇ḡε(z) = 0 = ∇ḡε(0), which implies that z = 0, by the strict-convexity of
ḡε.
To prove (ii), let r > 0. It is straightforward to check that

sup
z∈Br(0)

| ḡε(z) − c(z) |

≤ sup
Br+2R(0)

| cε(z) − c(z) | + sup
Br(0)

| c(z + zε) − c(z) |.

The limit as ε goes to 0 of the above inequality shows that (ḡε)ε↓0 converges
to c, uniformly on Br(0). And since c(0) = 0, we conclude that (gε) con-
verges to c, locally in C(IRd). Furthermore, because ∇gε(z) = ∇cε(z + zε),
(zε)ε↓0 converges to 0, and ∇cε converges to ∇c locally in C(IRd), we have
that (∇gε)ε↓0 converges to ∇c locally in C(IRd). This proves (ii), and then
completes the proof of the proposition �

1.4 Approximation of probability densities

In 1.4.1, we prove that a probability density function s on Ω, which belongs
to Lp(Ω) for some 1 ≤ p ≤ ∞, can be approximated in Lp(Ω), by a sequence
(sR)R↑∞ ⊂ L∞(Ω) of probability densities. Furthermore, if F : [0,∞) →
IR is convex, and

∫

Ω F (s(x)) dx is finite, we show that
∫

Ω F (sR(x)) dx is
bounded, uniformly in R. In 1.4.2, we prove that sR can be approximated
by probability densities which are bounded below and above.
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1.4.1 Approximation of a probability density by probability

densities that are bounded above

Proposition 1.4.1 Let s ∈ Pa(Ω)∩Lp(Ω), 1 ≤ p ≤ ∞, and F : [0,∞) →
IR be convex. Assume that

∫

Ω F (s(x)) dx < ∞. Then, there exists a se-
quence (sR)R↑∞ in Pa(Ω) ∩ L∞(Ω), such that

(i). (sR)R↑∞ converges to s, in Lp(Ω), and

(ii).
∫

Ω F (sR(x)) dx ≤
∫

Ω F (s(x)) dx.

Proof. To avoid trivialities, we assume that s 6∈ L∞(Ω). Since
∫

Ω s(x) dx =
∫

[s>0] s(x) dx, we assume without loss of generality that s is

positive a.e. on Ω; otherwise, we use the restriction of s to the subset [s > 0]
of Ω . For R > 0, we define AR := {x ∈ Ω : s(x) > R }, and

sR(x) :=







s(x) if x ∈ Ω \ AR

1
|AR |

∫

AR
s(y) dy if x ∈ AR.

Clearly, sR ∈ Pa(Ω) (because s ∈ Pa(Ω) ), and

0 ≤ sR(x) ≤ max

(

R,
1

|AR |

∫

AR

s(x) dx

)

:= εR ≥ R.

Since | a + b |p ≤ 2p( | a |p + | b |p) for all a, b ∈ IR, we have, because of
Jensen’s inequality, that

∫

Ω

∣

∣

∣
s(x) − sR(x)

∣

∣

∣

p
dx

≤ 2p

(
∫

AR

s(x)p dx+

∫

AR

[

1

|AR |

∫

AR

s(y)p dy

]

dx

)

= 2p+1

∫

AR

s(x)p dx.

And, because s ∈ Lp(Ω) and limR↑∞ |AR | = 0, we conclude that (sR)R↑∞
converges to s in Lp(Ω). Furthermore, by Jensen’s inequality, we have that

∫

Ω
F (sR(x)) dx ≤

∫

Ω\AR

F (s(x)) dx+

∫

AR

[

1

|AR |

∫

AR

F (s(y)) dy

]

dx

=

∫

Ω
F (s(x)) dx.

This completes the proof of the proposition �
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1.4.2 Approximation of a probability density by probability

densities that are bounded below and above

Proposition 1.4.2 Let s ∈ Pa(Ω) be such that 0 ≤ s ≤ R, for some R >
0. Let F : [0,∞) → IR be convex, and let 1 ≤ p ≤ ∞. Then, there exists a
sequence (sδ)δ↓0 in Pa(Ω) ∩ L∞(Ω) satisfying the following properties:

(i). ηδ ≤ sδ ≤ R, for some 0 < ηδ ≤ δ.

(ii). (sδ)δ↓0 converges to s in Lp(Ω).

(iii).
∫

Ω F (sδ(x)) dx ≤
∫

Ω F (s(x)) dx.

Proof. The proof is analogue to that of Proposition 1.4.1. Indeed, with-
out loss of generality, we assume, as before, that s is positive a.e. For δ > 0,
we define Bδ := {x ∈ Ω : s(x) < δ}, and

sδ(x) :=







s(x) if x ∈ Ω \ Bδ

1
|Bδ |

∫

Bδ
s(x) dx if x ∈ Bδ.

We have that, sδ ∈ Pa(Ω), and

sδ(x) ≥ min

(

δ,
1

|Bδ |

∫

Bδ

s(x) dx

)

:= ηδ ∈ (0, δ].

Moreover, sδ ≤ R, because s ≤ R. Hence, (i) holds. Next, we observe that
limδ↓0 |Bδ | = 0 (because s > 0 a.e.), and then, we follow the lines of the
proof of Proposition 1.4.1 to conclude (ii) and (iii) �

Combining Proposition 1.4.1 and Proposition 1.4.2, we deduce the fol-
lowing corollary:

Corollary 1.4.3 Let s ∈ Pa(Ω)∩Lp(Ω), 1 ≤ p ≤ ∞, and F : [0,∞) → IR
be convex. Assume that

∫

Ω F (s(x)) dx < ∞. Then, there exists a sequence
(sR)R↑∞ in Pa(Ω), such that

(i). ηR ≤ sR ≤ εR, for some 0 < ηR ≤ 1
R , and εR ≥ R.

(ii). (sR)R↑∞ converges to s, in Lp(Ω), and

(iii).
∫

Ω F (sR(x)) dx ≤
∫

Ω F (s(x)) dx.
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Chapter 2

Calculus of Variations on

Pa(Ω)

In this chapter, we discretize (1.5), and prove in section 2.1 that the problem

(P ) : inf
{

I(s) := W h
c (s0, s) +

1

h
E(s) : s ∈ Pa(Ω)

}

, (2.1)

admits a minimizer s1; here

E(s) =

∫

Ω
[F (s(x)) + s(x)V (x) ] dx,

for s ∈ Pa(Ω). The reason why we minimize such a functional will be clear
in section 2.3, where we find the Euler-Lagrange equation of (P ). In fact, we
shall see that the Euler-Lagrange equation is nothing but the discretization
of (1.5). In section 2.4, we show that

E(s0) −E(s1) ≥
dE(s1−t)

dt

∣

∣

∣

t=0
, (2.2)

where s1−t denotes the probability density obtained by interpolating s0 and
s1 along “geodesics” joining them in Pa(Ω) [14]. We refer to (2.2) as the
energy inequality. We shall see later on, that (2.2) is an essential ingredient
in the proof of the convergence of the approximate sequence (sh)h (See the
definition in section 2.5) to solutions of problem (1.5).

2.1 Existence of solution to a minimization prob-

lem (P )

Proposition 2.1.1 Let F : [0,∞) → IR be strictly convex and satisfy
(HF1). Let h > 0, and s0 ∈ Pa(Ω) be such that E(s0) < ∞. Let

23
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V : Ω̄ → [0,∞) be convex, and assume that c : IRd → [0,∞) satisfies
(HC1) - (HC2). Then (P ) has a unique minimizer s1. Moreover

|Ω |F
(

1

|Ω |

)

≤ E(s1) ≤ E(s0). (2.3)

Proof. Let Iinf denote the infimum of I(s) over s ∈ Pa(Ω). Since s0 ∈
Pa(Ω), E(s0) <∞ and c(0) = 0, we have that

(i) Iinf ≤ 1
hE(s0).

Moreover, Jensen’s inequality gives that

1

|Ω |

∫

Ω
F (s(x)) dx ≥ F

(

1

|Ω |

∫

Ω
s(x) dx

)

= F

(

1

|Ω |

)

, (2.4)

for s ∈ Pa(Ω), and then, we use that c and V are non-negative, to deduce
that

(ii) Iinf ≥ |Ω |
h F

(

1
|Ω |

)

.

We combine (i) and (ii), to conclude that Iinf is finite. Now, let
(

s(n)
)

n
be

a minimizing sequence for (P ) , that is, limn→∞ I(s(n)) = Iinf . It is clear
that

(

I(s(n))
)

n
is bounded in IR. As a consequence,

sup
n

[∫

Ω
F (s(n))(x) dx

]

<∞.

The above inequality, together with (HF1) imply that
(

s(n)
)

n
converges

weakly to a function s1 in L1(Ω) (up to a subsequence). Clearly s1 ∈
Pa(Ω). Furthermore, because of Proposition 5.3.1 and the continuity of V,
we have that Pa(Ω) 3 s 7→ I(s) is weakly lower semi-continuous on L1(Ω),
as the sum of weakly lower semi-continuous functions. Therefore

I(s1) ≤ lim inf
n→∞

I(s(n)) = Iinf ≤ I(s1).

This proves that s1 is a minimizer of (P ). The uniqueness of s1 follows from
the convexity of Pa(Ω) 3 s 7→ W h

c (s0, s) and Pa(Ω) 3 s 7→
∫

Ω s(x)V (x) dx,
and the strict-convexity of Pa(Ω) 3 s 7→

∫

Ω F (s(x)) dx (See Proposition
5.3.1).
Next, we have that I(s1) ≤ I(s0), and since W h

c (s0, s0) = 0 and
W h

c (s0, s1) ≥ 0 (because of (HC2)), we deduce that E(s1) ≤ E(s0). Finally,
we use (2.4) and the fact that s1, V ≥ 0 to conclude (2.3). This finishes the
proof of the proposition. �
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2.2 Maximum and Minimum principles

In this section, we state three propositions. In the first proposition, we
show that, if s0 ∈ Pa(Ω) is bounded below and above, then the probability
density s1, minimizing the variational problem (P ) (2.1), is bounded below
and above, as well. In the second proposition, we prove that the interpolant
probability densities s1−t = (St)#s1, t ∈ [0, 1], between two probability
densities s0, s1 ∈ Pa(Ω), which are bounded above, are also bounded above;
here St = (1−t) id+tS, and S is the c-optimal map, that pushes s1 forward
to s0. The third proposition will be used in the next chapter, to prove the
strong convergence of the approximate sequence (sh)h↓0 in L1 ((0, T ) × Ω) ,
for 0 < T <∞.

Proposition 2.2.1 (Maximum/minimum principle)
Let h > 0, and s0 ∈ Pa(Ω) be such that N ≤ s0 ≤M. Let F : [0,∞) → IR
be strictly convex, and satisfy F ∈ C2 ((0,∞)) and (HF1). Let V : Ω̄ →
[0,∞) be convex, of class C1, and assume that c : IRd → [0,∞) satisfies
(HC1) - (HC2). Denote by s1 the minimizer for (P ) (2.1).

• If ∇V = 0, then N ≤ s1 ≤M a.e.

• If ∇V 6= 0, and in addition to the assumptions, c satisfies c(z) ≥
β| z |q for some q > 1 and β > 0, then N ≤ s1 ≤M a.e.

Proof. Let R > 2M, and set P (R)
a (Ω) := {s ∈ Pa(Ω) : s ≤ R a.e. }.

Clearly, P(R)
a (Ω) is precompact for the weak topology in L1(Ω). So, as in

Proposition 2.1.1, I admits a unique minimizer s1R over P(R)
a (Ω), and

∫

Ω
F (s1R) ≤ E(s0). (2.5)

Claim 1 If N ≤ s0 ≤M , then N ≤ s1R ≤M a.e.

Proof. Since the proof of “ s1R ≥ N a.e.” is analogue to that of
“ s1R ≤M a.e.”, we only prove that s1R ≤M a.e. Suppose by contradiction
that E := {y ∈ Ω : s1R(y) > M} has a positive Lebesgue measure. The

idea is to come up with s
(ε)
1R ∈ P(R)

a (Ω), such that I(s1R) > I(s
(ε)
1R). This

will contradict that s1R is the minimizer of I over P (R)
a (Ω).

Let γR be the ch-optimal measure in Γ(s0, s1R). We have that

(i) γR(Ec ×E) > 0,

where Ec := IRd \ E; otherwise

M |E | <
∫

E
s1R(y) dy = γR(IRd ×E) = γR(E ×E) ≤ γR(E × IRd)

=

∫

E
s0(x) dx ≤M |E |,
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which yields a contradiction. Consider the measure ν := γR IIEc×E defined
by

∫

IRd×IRd

ξ(x, y) dν(x, y) =

∫

Ec×E
ξ(x, y) dγR(x, y),

for ξ ∈ C0(IR
d × IRd), or equivalently

ν(F ) = γR [F ∩ (Ec ×E) ] ,

for Borel sets F ⊂ IRd × IRd. Denote by ν0 and ν1 its marginals, that is,

∫

IRd×IRd

[ϕ(x) + ψ(y) ] dν(x, y) =

∫

IRd

ϕ(x) dν0(x) +

∫

IRd

ψ(y) dν1(y),

for ϕ, ψ ∈ C0(IR
d). Since ν ≤ γR and γR ∈ Γ(s0, s1R), we have that

ν0 ≤ s0(x) dx and ν1 ≤ s1R(y) dy. As a consequence,

(ii) ν0 and ν1 are absolutely continuous with respect to Lebesgue.

Let v0 and v1 denote their respective density functions. Clearly

(iii) 0 ≤ v0 ≤M a.e., and 0 ≤ v1 ≤ R a.e.

Moreover,

ν0(E) = γR

[

(E ∩Ec) × (IRd ∩E)
]

= 0 (2.6)

= γR

[

(IRd ∩Ec) × (E ∩Ec)
]

= ν1(E
c).

Hence

(iv) v0 = 0 a.e. on E, and v1 = 0 a.e. on Ec.

Now, let ε ∈ (0, 1), and define s
(ε)
1R := s1R + ε(v0 − v1), and the probability

measure γ
(ε)
R by

∫

IRd×IRd

ξ(x, y) dγ
(ε)
R (x, y) =

∫

IRd×IRd

ξ(x, y) dγR(x, y)

+ ε

∫

Ec×E
[ξ(x, x) − ξ(x, y)] dγR(x, y),

for ξ ∈ C0(IR
d × IRd). Because of (ii), (iv) and the fact that 2M < R, we

have that 0 ≤ s
(ε)
1R ≤ R, and

∫

Ω
s
(ε)
1R(y) dy = 1 + ε [γR(Ec ×E) − γR(Ec ×E)] = 1.
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Hence, s
(ε)
1R ∈ P(R)

a (Ω). Moreover, since γR ∈ Γ(s0, s1R), and ν has
marginals v0(x) dx and v1(y)dy, we have that

∫

IRd×IRd

ϕ(x) dγ
(ε)
R (x, y) =

∫

IRd

ϕ(x)s0(x) dx,

and
∫

IRd×IRd

ϕ(y) dγ
(ε)
R (x, y) =

∫

Ω
ϕ(y)s1R(y) dy

+ε

[ ∫

IRd

ϕ(x)v0(x) dx−
∫

IRd

ϕ(y)v1(y) dy

]

=

∫

Ω
ϕ(y)s

(ε)
1R(y) dy.

Hence γ
(ε)
R ∈ Γ(s0, s

(ε)
1R). Next, we show that I(s

(ε)
1R) < I(s1R), for ε small

enough. Indeed,

I(s
(ε)
1R) − I(s1R) =

[

W h
c (s0, s

(ε)
1R) −W h

c (s0, s1R)
]

+
1

h

∫

Ω

[

F (s
(ε)
1R) − F (s1R)

]

+
1

h

∫

Ω

(

s
(ε)
1R − s1R

)

V. (2.7)

Because γ
(ε)
R ∈ Γ(s0, s

(ε)
1R) and c(0) = 0, we have that

W h
c (s0, s

(ε)
1R) −W h

c (s0, s1R) ≤
∫

IRd×IRd

c

(

x− y

h

)

dγ
(ε)
R (x, y)

−
∫

IRd×IRd

c

(

x− y

h

)

dγR(x, y)

= − ε

∫

Ec×E
c

(

x− y

h

)

dγR(x, y). (2.8)

On the other hand, according to (iv), we have, for ε small enough, that

s
(ε)
1R = s1R − εv1 ≥M − εv1 > 0 on E, (2.9)

and
s
(ε)
1R = s1R + εv0 ≥ εv0 > 0 on Ec ∩ [ v0 > 0 ]. (2.10)

We combine (iii), (iv), (2.9), (2.10), and the fact that F ∈ C 1 ((0,∞)) is
convex, and ν = γRIIEc×E has marginals v0(x) dx and v1(y) dy, to obtain
that

∫

Ω

[

F (s
(ε)
1R) − F (s1R)

]

=

∫

Ec

[F (s1R + εv0) − F (s1R) ] +

∫

E
[F (s1R − εv1) − F (s1R) ]
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≤ ε

[

∫

Ec∩[ v0>0 ]
F ′(s1R + εv0)v0 −

∫

E
F ′(s1R − εv1)v1

]

≤ ε

[
∫

Ec

F ′(M + εv0)v0 −
∫

E
F ′(M − εv1)v1

]

= ε

[∫

Ec×E

(

F ′(M + εv0(x)) − F ′(M − εv1(y))
)

dγR(x, y)

]

.

And since F ∈ C2 ((0,∞)) , (iii) and the above estimate give that

∫

Ω

[

F (s
(ε)
1R − F (s1R)

]

= 0(ε2). (2.11)

Furthermore, because of (ii), (iv), and the fact that V ∈ C 1(Ω) is convex,
we have that

∫

Ω

(

s
(ε)
1R − s1R

)

V = ε

∫

Ω
[ v0(x) − v1(x) ] V (x) dx

= ε

∫

Ec×E
[V (x) − V (y) ] dγR(x, y)

≤ ε

∫

Ec×E
〈∇V (x), x− y〉dγR(x, y). (2.12)

Combining (2.7) - (2.8) and (2.11) - (2.12), we conclude that

I(s
(ε)
1R) − I(s1R) ≤ −ε

∫

Ec×E
c

(

x− y

h

)

dγR(x, y)

+
ε

h

∫

Ec×E
〈∇V (x), x − y 〉dγR(x, y).

If ∇V = 0 , we deduce, because of (HC2) and (i), that

I
(

s
(ε)
1R

)

− I(s1R) ≤ −ε
∫

Ec×E
c

(

x− y

h

)

dγR(x, y) < 0.

If ∇V 6= 0, using that c(z) ≥ β |z|q, and V ∈ C1(Ω), we have that

ε

h

∫

Ec×E
〈∇V (x), x− y 〉dγR(x, y) = 0

(

1

h

)

,

and

−ε
∫

Ec×E
c

(

x− y

h

)

dγR(x, y) = 0

(

1

hq

)

.

We deduce that

I
(

s
(ε)
1R

)

− I(s1R) ≤ −ε
∫

Ec×E
c

(

x− y

h

)

dγR(x, y) < 0.
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This completes the proof of Claim 1.

Claim 2 (s1R)R↑∞ converges weakly to s1, in L1(Ω). Therefore,
N ≤ s1 ≤M a.e.

Proof. According to (2.5), we have that

sup
R>2M

∫

Ω
F (s1R) ≤ E(s0).

And since E(s0) < ∞ and F satisfies (HF1), we deduce that (s1R)R↑∞
converges weakly to a function s̄1 in L1(Ω), for a subsequence. Clearly,
s̄1 ∈ Pa(Ω), and N ≤ s̄1 ≤ M a.e., because N ≤ s1R ≤ M a.e. for

R > 2M. To complete the proof, we show that s̄1 = s1. Let
(

s
(R)
1

)

R↑∞
be

a sequence in P (R)
a (Ω), converging to s1 in L1(Ω), and such that

∫

Ω
F
(

s
(R)
1

)

≤
∫

Ω
F (s1), (2.13)

as in Proposition 1.4.1. Since s1R is the minimizer of I over P (R)
a , we have

that

I(s1R) ≤ I
(

s
(R)
1

)

, (2.14)

and since
(

s
(R)
1

)

R
converges to s1 in L1(Ω), Proposition 5.3.2 gives that

lim
R↑∞

W h
c

(

s0, s
(R)
1

)

= W h
c (s0, s1). (2.15)

We let R go to ∞ in (2.14), and we use (2.13), (2.15), and the fact that

V ∈ C1(Ω̄),
(

s
(R)
1

)

R
converges strongly to s1 in L1(Ω), and s 7→ I(s) is

weakly lower-continuous on L1(Ω), to deduce that I(s̄1) ≤ I(s1). And, since
s1 is the unique minimizer of (P ), we conclude that s̄1 = s1. This completes
the proofs of Claim 2 and Proposition 2.2.1 �

We state a lemma needed to establish the second proposition of this sec-
tion. Let (ck)k denote a sequence of strictly convex cost functions satisfying







ck, c
?
k ∈ C2(IRd),

ck → c locally in C1(IRd),
0 = ck(0) < ck(z) for z 6= 0

(2.16)

where c : IRd → [0,∞) is convex, of class C1(IRd), and satisfies c(0) = 0,
and (HC4) (see Proposition 1.3.1).
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Lemma 2.2.2 Let s0, s1 ∈ Pa(Ω), and let c : IRd → [0,∞) be strictly con-
vex, of class C1(IRd), and satisfy c(0) = 0 and (HC4). Denote by γk (re-
spectively γ∞) the ck (respectively c) - optimal measure in Γ(s0, s1). Then,
there exists a subsequence (γkj)j of (γk)k, which converges weakly ? to γ∞.

Therefore, (Skj)j converges to S, in L2
s1

(Ω, IRd); here, Skj and S denote
respectively the ckj and c - optimal maps that push s1 forward to s0, and
L2

s1
(Ω, IRd) is the set of functions Ω → IRd, whose square are summable with

respect to the measure µ1 := s1(y) dy.

Proof. We set Wck
:= W h

ck
and Wc := W h

c when h = 1. Because
spt (s0), spt (s1) ⊂ Ω̄, we have that

spt (γ) ⊂ Ω̄ × Ω̄, ∀ γ ∈ Γ(s0, s1).

Then, (γk)k is a tight sequence of probability measures on IRd×IRd. There-
fore, there is a subsequence (γkj)j of (γk)k, which converges weakly ? to a
probability measure γ̃. Clearly, γ̃ ∈ Γ(s0, s1). Now, we prove that γ̃ = γ∞.
Let γ ∈ Γ(s0, s1). Because spt (γ) ⊂ Ω̄ × Ω̄, γ

[

IRd × IRd
]

= 1, and (ckj)j
converges to c, uniformly on compact sets, we have that

lim
j→∞

∫

IRd×IRd

ckj(x− y) dγ(x, y) =

∫

IRd×IRd

c(x− y) dγ(x, y). (2.17)

And since γ is arbitrarily chosen in (2.17), we deduce that

lim
j→∞

Wckj
(s0, s1) = Wc(s0, s1). (2.18)

On the other hand, because spt (γkj) ⊂ Ω̄ × Ω̄, we have that

Wckj
(s0, s1) =

∫

Ω̄×Ω̄

[

ckj(x− y) − c(x− y)
]

dγkj(x, y)

+

∫

Ω̄×Ω̄
c(x− y) dγkj(x, y). (2.19)

We let j go to ∞ in (2.19), and we use that (γkj)j converges weakly ? to

γ̃, γkj(IR
d × IRd) = 1, (ckj)j converges to c, uniformly on compact sets, and

spt (γ̃) ⊂ Ω̄ × Ω̄, to deduce that

lim
j→∞

Wckj
(s0, s1) =

∫

Ω̄×Ω̄
c(x− y) dγ̃(x, y) =

∫

IRd×IRd

c(x− y) dγ̃(x, y).

(2.20)
We combine (2.18), (2.20), and we use the uniqueness of γ∞ in Wc(s0, s1),
to conclude that γ̃ = γ∞.
Now, set F1(x, y) = |x |2 and F2(x, y) = 〈x, Sy〉, ∀ (x, y) ∈ Ω̄×Ω̄. Because
Sy = y+∇c? (−∇v(y)) , and v is Lipschitz, there exists a sequence

(

v(n)
)

n

in C1(Ω̄), such that F
(n)
2 (x, y) := 〈x, S(n)y〉 converges to F2(x, y) for a.e.
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y ∈ Ω̄; here S(n)(y) := y+∇c?
(

−∇v(n)(y)
)

. Clearly, F
(n)
2 ∈ C(Ω̄× Ω̄) and

{F (n)
2 , F2}n are uniformly bounded. We use the dominated convergence

theorem, and the fact that γkj
(Ω̄ × Ω̄) = 1, to obtain that

∫

Ω̄×Ω̄
F2(x, y) dγkj(x, y)

= lim
n→∞

∫

Ω̄×Ω̄

[

F2(x, y) − F
(n)
2 (x, y)

]

dγkj(x, y)

+ lim
n→∞

∫

Ω̄×Ω̄
F

(n)
2 (x, y) dγkj(x, y)

= lim
n→∞

∫

Ω̄×Ω̄
F

(n)
2 (x, y) dγkj(x, y). (2.21)

We let j go to ∞ in (2.21), and we use that F
(n)
2 ∈ C(Ω̄ × Ω̄), (γkj)j con-

verges weakly ? to γ∞, and the dominated convergence theorem, to deduce
that

lim
j→∞

∫

Ω̄×Ω̄
F2(x, y) dγkj(x, y) = lim

n→∞
lim

j→∞

∫

Ω̄×Ω̄
F

(n)
2 (x, y) dγkj(x, y)

=

∫

Ω̄×Ω̄
F2(x, y) dγ∞(x, y). (2.22)

Furthermore, since γkj = (id × Skj)#s1 and γ∞ = (id × S)#s1, we have
that

∫

Ω
|Skjy − Sy |2s1(y) dy

=

∫

Ω

[

F1(Skjy, y) + F1(Sy, y) − 2F2(Skjy, y)
]

s1(y) dy

=

∫

Ω̄×Ω̄
F1(x, y) dγkj(x, y) +

∫

Ω̄×Ω̄
F1(x, y) dγ∞(x, y)

−2

∫

Ω̄×Ω̄
F2(x, y) dγkj(x, y).

We let j go to ∞ in the above equality, and we use (2.22), and the fact that
(γkj)j converges weakly ? to γ∞, to conclude that

lim
j→∞

∫

Ω
|Skjy − Sy |2s1(y) dy = 2

∫

Ω̄×Ω̄
[F1(x, y) − F2(x, y) ] dγ∞(x, y)

= 2

∫

Ω

(

|Sy |2 − |Sy |2
)

s1(y) dy = 0.

This completes the proof of Lemma 2.2.2 �
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Proposition 2.2.3 Let s0, s1 ∈ Pa(Ω) be such that s0, s1 ≤ M a.e. Let
c : IRd → [0,∞) be strictly convex, of class C1, and satisfy c(0) = 0 and
(HC4). Let S be the c-optimal map that pushes s1 forward to s0, and define
the interpolant map

St := (1 − t) id + tS,

for t ∈ [ 0, 1 ]. Then,

∫

Ω
ξ (St(y)) s1(y) dy ≤ M

∫

IRd

ξ (x) dx, (2.23)

for ξ ∈ C0
c (IRd), ξ ≥ 0.

Proof. The proof will be done in two steps. In step 1, we prove
(2.23) for sufficiently regular cost functions. The key ideas in this proof
is the fact that ∇S is diagonalizable with positive eigenvalues (see (ii)), and

A 7→ (det)1/d is concave on the set of d × d diagonalizable matrices with
positive eigenvalues (see 2.26). In step 2, we approximate a general cost
function c, by regular cost functions ck, and we obtain (2.23) in the limit as
k goes to ∞.

Step 1. Case where c is strictly convex, and c, c? ∈ C2(IRd).
Theorem 5.2.2 gives that µ1−t := (St)#s1 is absolutely continuous with
respect to Lebesgue, for all t ∈ [0, 1]. Let s1−t denote the density function
of µ1−t. Then, (2.23) reads as

∫

Ω
ξ (x) s1−t (x) dx ≤ M

∫

IRd

ξ (x) dx.

Thus, it suffices to show that

s1−t ≤M.

Because of Theorem 5.2.1, Theorem 5.2.2 and Corollary 5.2.3, there exists
a set K ⊂ Ω of full measure for µ1 := s1(y) dy, such that

(i) St is injective on K,

and for y ∈ K,

(ii) ∇S(y) is diagonalizable with positive eigenvalues,

and
0 6= s1(y) = s1−t (St(y)) det [∇St(y) ] , ∀ t ∈ [0, 1], (2.24)

where
∇St(y) = (1 − t)id + t∇S(y).
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Moreover, since s0, s1 ≤ M a.e., and S#s1 = s0, then K can be chosen so
that

s1(y), s0 (S(y)) ≤M, ∀ y ∈ K.

We use t = 1 in (2.24), and the fact that s0 (S(y)) ≤M, to deduce that

det [∇S(y) ] ≥ s1(y)

M
. (2.25)

Because A 7→ (detA)1/d is concave on the set of d × d diagonalizable
matrices with positives eigenvalues, we have that

[ det∇St(y) ]1/d ≥ (1 − t) + t ( det [∇S(y)] )1/d . (2.26)

We use (2.25), (2.26), and the fact that s1(y) ≤M, to obtain that

det [∇St(y) ] ≥ s1(y)

M
. (2.27)

Combining (2.24), (2.27) and (i), we conclude that

s1−t ≤M, on St(K). (2.28)

But, since µ1(K
c) = 0, and µ1−t = (St)#µ1, we have that

µ1−t [ (St(K))c ] = 0, and then

s1−t = 0 on [St(K) ]c . (2.29)

We combine (2.28) and (2.29), to conclude that s1−t ≤M.

Step 2. c satisfies the assumptions of the Proposition.

Let (ck)k be a sequence of strictly convex cost functions satisfying (2.16),
and (Skj)j be as in Lemma 2.2.2. Set

S
(t)
kj

:= (1 − t) id + tSkj
, ∀ t ∈ [0, 1], j ∈ IN.

Because of Lemma 2.2.2 and Step 1, we have that

(iii)
(

Sk
(t)
j

)

j
converges to St, a.e., on [s1 6= 0], a.e.,

for a subsequence, and
∫

Ω
ξ
(

Sk
(t)
j (y)

)

s1(y) dy ≤M

∫

IRd

ξ(x) dx. (2.30)

We let j go to ∞ in (2.30), and we use (iii), 0 ≤ ξ ∈ C 0
c (IRd), and Fatou’s

lemma, to deduce (2.23) �

Next, we state a proposition needed in the next chapter, to prove the
strong convergence of the approximate sequence (sh)h↓0 in L1 ((0, T ) × Ω) ,
for 0 < T <∞.
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Proposition 2.2.4 Let X be a bounded open subset of IRd, d > 1. Let
f : IR→ IR and g : IR→ IR be strictly convex, of class C 1(IR), and assume

that limt→∞
g(t)

t = ∞. Given M, δ > 0, and p, q > 1, define

AM,δ :=
{

(u1, u2) ∈ Lq(X)2 : ‖uj ‖Lq(X) ≤M, ‖ g′(uj) ‖W 1,p(X) ≤M,
∫

X [ f ′(u2) − f ′(u1) ] [ u2 − u1 ] ≤ δ, (j = 1, 2)
}

,

and set
ΛM (δ) := sup

(u1,u2)∈AM,δ

‖u2 − u1 ‖L1(X).

Then
lim
δ↓0

ΛM (δ) = 0.

Proof: Suppose by contradiction that there exist κ > 0 and (uδ
j)δ↓0

(j = 1, 2), such that (uδ
1, u

δ
2) ∈ AM,δ, and

‖uδ
2 − uδ

1 ‖L1(X) > κ. (2.31)

By the Sobolev embedding theorem,
(

g′(uδ
j)
)

δ
converges strongly in Lp(X),

and then, a.e., for a subsequence (not relabeled). Since g ∈ C 1(IR) is strictly
convex and has a super-linear growth at ∞, we have that (g ′)−1 is continu-
ous. We deduce that

(i) (uδ
j)δ converges to some function uj , a.e., for j = 1, 2.

We use (i), ‖uδ
j ‖Lq(X) ≤M, and the fact that q > 1 to conclude that

(ii) (uδ
j)δ converges strongly to uj in L1(X).

We combine (ii) and (2.31) to obtain that

‖u2 − u1 ‖L1(X) > κ. (2.32)

Now, we use (i), the convexity of f , and the fact that
∫

X

[

f ′(uδ
2) − f ′(uδ

1)
] [

uδ
2 − uδ

1

]

≤ δ,

to have that

0 ≤
∫

X

[

f ′(u2) − f ′(u1)
]

[u2 − u1]

≤ lim inf
δ↓0

∫

X

[

f ′(uδ
2) − f ′(uδ

1)
]

[u2,δ − u1,δ] ≤ 0.

This implies that
[

f ′(u2) − f ′(u1)
]

[u2 − u1] = 0 a.e. (2.33)



2.3. PROPERTIES OF THE MINIMIZER FOR (P ) 35

By (2.33), we either have

u2(x) = u1(x) for x ∈ X a.e.,

or

f ′ (u2(x)) = f ′ (u1(x)) for x ∈ X a.e. (2.34)

But, because f ∈ C1(IR) is strictly convex, we have that f ′ is one-to-one,
and then, (2.34) implies that

u1(x) = u2(x) for x ∈ X a.e.

This yields a contradiction to (2.32) �

2.3 Properties of the minimizer for (P )

In this section, we establish the Euler-Lagrange equation for the variational
problem (P ) studied in section 2.1, and we derive some properties of the
minimizer for this problem. We recall that

(P ) : inf
{

W h
c (s0, s) +

1

h
E(s) : s ∈ Pa(Ω)

}

,

where

E(s) :=

∫

Ω
[F (s) + sV ] ,

and s0 ∈ Pa(Ω). The next proposition is the first step towards showing
that (P ) is a discretization of (1.5), or in other words, (1.5) is the steepest
descent of the energy functional E with respect to W h

c .

Proposition 2.3.1 Let s0 ∈ Pa(Ω) be such that N ≤ s0 ≤ M. Let F :
[0,∞) → IR be strictly convex, and satisfy F ∈ C2 ((0,∞)) , and (HF1).
Let V : Ω̄ → [0,∞) be convex, and of class C1. Let c : IRd → [0,∞) be
strictly convex, of class C1, and satisfy c(0) = 0, (HC3), and c(z) ≥ β|z|q,
for some q > 1 and β > 0. If s1 denotes the minimizer for (P ), then the
followings hold:

∫

Ω×Ω
〈∇c

(

x− y

h

)

, ψ(y) 〉 dγ(x, y) +

∫

Ω
P (s1(y)) div ψ(y) dy

−
∫

Ω
s1(y)〈∇V (y), ψ(y) 〉 dy = 0 (2.35)

for ψ ∈ C∞
c (Ω, IRd). Here P (x) := PF (x) := xF ′(x)−F (x) for x ∈ (0,∞),

and γ is the ch-optimal measure in Γ(s0, s1). Moreover,

(i). P (s1) ∈W 1,∞(Ω).
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(ii). If S is the ch-optimal map that pushes s1 forward to s0, then

Sy − y

h
= ∇c?

[

∇(F ′(s1(y)) + V (y))
]

, (2.36)

for a.e. y ∈ Ω, and

∣

∣

∣

∫

Ω

s1(y) − s0(y)

h
ϕ(y) dy

+

∫

Ω
s1(y)〈∇c?

[

∇
(

F ′(s1(y)) + V (y)
) ]

,∇ϕ(y) 〉 dy
∣

∣

∣

≤ 1

2h
sup
x∈Ω̄

∣

∣

∣
D2ϕ(x)

∣

∣

∣

∫

Ω×Ω
|x− y |2 dγ(x, y), (2.37)

for ϕ ∈ C2(Ω̄).

Proof. Since c ∈ C1(IRd) is strictly convex and has a super-linear
growth as |x | → ∞, we have that c? ∈ C1(IRd), and (∇c)−1 = ∇c?. We
consider the flow map (φε)ε∈IR in C∞(Ω,Ω), defined by

{

∂φε

∂ε = ψ ◦ φε

φ0 = id.
(2.38)

where ψ ∈ C∞
c (Ω, IRd). We have that det (∇φε) 6= 0, and

∂(det∇φε)

∂ε

∣

∣

∣

ε=0
= divψ. (2.39)

We define on Ω, the probability measure µε := (φε)#s1. Since φε is a C1-
diffeomorphism, then µε is absolutely continuous with respect to Lebesgue.
Let sε denote its density function. Clearly, sε ∈ Pa(Ω), and

(sε ◦ φε) det (∇φε) = s1 a.e. (2.40)

Next, we define on Ω × Ω, the probability measure γε := (id × φε)#γ, i.e.

∫

Ω×Ω
ξ(x, y) dγε(x, y) =

∫

Ω×Ω
ξ [(x, φε(y))] dγ(x, y), ∀ ξ ∈ C(Ω × Ω).

We have that γε ∈ Γ(s0, sε), and then, the mean-value theorem gives that

W h
c (s0, sε) −W h

c (s0, s1)

ε

≤
∫

1

ε
[ ch(x− φε(y)) − ch(x− y) ] dγ(x, y)

= −
∫

〈 ∇ch [ x− y + θ(y − φε(y)) ] ,
φε − φ0

ε
(y) 〉dγ(x, y),
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where θ ∈ [0, 1]. Because of (2.38), we have that | φε−φ0

ε | ≤ ‖ψ ‖L∞ , for
ε > 0. Then, we use that c ∈ C1(IRd), the Lebesgue dominated convergence
theorem, and (2.38), to obtain that

lim sup
ε↓0

W h
c (s0, sε) −W h

c (s0, s1)

ε
≤ −

∫

〈∇ch(x−y), ψ(y) 〉dγ(x, y). (2.41)

On the other hand, because of (2.40), we have that

∫

Ω
F (sε(x)) dx =

∫

Ω
F (sε ◦ φε(y)) det∇φε(y) dy

=

∫

Ω
F

(

s1(y)

det∇φε(y)

)

det∇φε(y) dy.

And since, F ∈ C1 ((0,∞)) , we deduce by the mean-value theorem that

∫

Ω

F (sε(x)) − F (s1(x))

ε
dx

=
1

ε

∫

Ω

[(

F

(

s1
det∇φε

)

− F (s1)

)

det∇φε + F (s1)(det∇φε − 1)

]

=

∫

Ω

[

−F ′
(

s1 + θ

(

s1
det∇φε

− s1

))

s1
det∇φε − 1

ε

]

+

∫

Ω

[

F (s1)
det∇φε − 1

ε

]

, (2.42)

where θ ∈ [0, 1]. We combine (2.38), (2.39) and (2.42) to conclude that

lim
ε↓0

∫

Ω

F (sε(y)) − F (s1(y))

ε
dy = −

∫

Ω
P (s1(y)) div ψ(y) dy. (2.43)

Furthermore, because of (2.40), we have that

∫

Ω
sε(x)V (x) dx =

∫

Ω
[ sε ◦ φε(y) ] V (φε(y)) det∇φε(y) dy

=

∫

Ω
s1(y)V (φε(y)) dy.

And since V ∈ C1(Ω), we deduce by the mean-value theorem, that

∫

Ω

sε(x) − s1(x)

ε
V (x) dx

=
1

ε

∫

Ω
[V (φε(y)) − V (y) ] s1(y) dy

=

∫

Ω
s1(y) 〈∇V (y + θ(φε(y) − y)) ,

φε − φ0

ε
(y) 〉dy,
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where θ ∈ [0, 1]. We let ε go to 0 in both sides of the above equality, and we
use (2.38) and the Lebesgue dominated convergence theorem, to conclude
that

lim
ε↓0

∫

Ω

sε(x) − s1(x)

ε
V (x) dx =

∫

Ω
s1(y) 〈∇V (y), ψ(y) 〉 > dy. (2.44)

We combine (2.41), (2.43) and (2.44) to obtain that
∫

Ω×Ω
〈∇ch(x− y), ψ(y) 〉dγ(x, y) (2.45)

+
1

h

[
∫

Ω
P (s1(y)) divψ(y) dy −

∫

Ω
s1(y)〈∇V (y), ψ(y) 〉dy

]

≤ 0.

Since ∇ch(z) = 1
h ∇c

(

z
h

)

, and ψ is arbitrarily chosen in C∞
c (Ω, IRd), then

(2.45) implies (2.35).
(i). Proposition 2.2.1 gives that N ≤ s1 ≤ M a.e., and since F ∈
C1 ((0,∞)) , we have that P (s1) ∈ L∞(Ω).
Now, let ϕ ∈ C∞

c (Ω), and for an arbitrary i ∈ IN, define ψ = (ψj)j=1,···,d ∈
C∞

c (Ω, IRd) by ψj := δij ϕ, where δij denotes the Kronecker symbol. Be-
cause of (2.35), we have that

∣

∣

∣

∫

Ω
P (s1(y))

∂ϕ

∂zi
(y)
∣

∣

∣

=
∣

∣

∣

∫

Ω×Ω

∂c

∂zi

(

x− y

h

)

ϕ(y) dγ(x, y) −
∫

Ω
s1(y)

∂V (y)

∂zi
ϕ(y) dy

∣

∣

∣

≤
[

sup
x,y∈Ω

∣

∣

∣

∂c

∂zi

(

x− y

h

)

∣

∣

∣
+ ‖∇V ‖L∞(Ω)

]

∫

Ω
|ϕ(y) |s1(y) dy

≤M

[

sup
x,y∈Ω

∣

∣

∣

∂c

∂zi

(

x− y

h

)

∣

∣

∣
+ ‖∇V ‖L∞(Ω)

]

‖ϕ ‖L1(Ω).

And since V ∈ C1(Ω̄) and c ∈ C1(IRd), we deduce (i).
(ii). Because P (s1) ∈ W 1,∞(Ω), we can integrate by parts in (2.35). We
use that γ ∈ Γ(s0, s1) and S#s1 = s0, to obtain that

∫

Ω
〈∇c

(

Sy − y

h

)

, ψ(y) 〉 s1(y) dy

=

∫

Ω
〈∇ [P (s1(y)) ] + s1(y)∇V (y), ψ(y) 〉dy

=

∫

Ω
s1(y) 〈∇

[

F ′(s1(y)) + V (y)
]

, ψ(y) 〉dy,

for ψ ∈ C∞
c (Ω, IRd). And since ψ is arbitrarily chosen, we deduce that

∇c
(

Sy − y

h

)

s1(y) = ∇
[

F ′(s1(y)) + V (y)
]

s1(y), (2.46)
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for a.e. y ∈ Ω. We combine (2.46), and the fact that (∇c)−1 = ∇c? and
s1 6= 0 a.e., to conclude (2.36).
Next, we consider ϕ ∈ C2(Ω̄), we take the scalar product of both sides of
(2.36) with s1(y)∇ϕ(y), and we use that γ = (id × S)# s1, to obtain that

1

h

∫

Ω×Ω
〈 y − x,∇ϕ(y) 〉 dγ(x, y)

= −
∫

Ω
〈∇c?

[

∇
(

F ′ (s1(y)) + V (y)
) ]

,∇ϕ(y) 〉 s1(y) dy. (2.47)

Now, we express 1
h

∫

Ω×Ω〈 y − x,∇ϕ(y) 〉 dγ(x, y) in terms of
∫

Ω
s1(y)−s0(y)

h ϕ(y) dy. Since γ ∈ Γ(s0, s1), we have that

∫

Ω

s1(y) − s0(y)

h
ϕ(y) dy =

1

h

∫

Ω×Ω
[ϕ(y) − ϕ(x) ] dγ(x, y).

Combining the above equality with the first order Taylor expansion of ϕ
around y, we obtain that

∣

∣

∣

1

h

∫

Ω×Ω
〈 y − x,∇ϕ(y) 〉dγ(x, y) − 1

h

∫

Ω
(s1(y) − s0(y))ϕ(y)

∣

∣

∣

≤ 1

2h
sup
x∈Ω̄

|D2ϕ(x) |
∫

Ω×Ω
|x− y |2 dγ(x, y). (2.48)

We substitute (2.47) into (2.48) to conclude (2.37). This completes the proof
of the proposition. �

2.4 Energy inequality

In this section, we establish an inequality relating the energy E(s0) and
E(s1) of two probability density functions s0 and s1. This inequality will be
called energy inequality, and will be used later on, to improve compactness
properties of the approximate sequence sh (see the definition in Section 2.5),
to solutions of problem (1.5). First, we prove this inequality for smooth
cost functions c, whose Legendre transform c? are C2. Instead of using the
density function F , we consider a more general function G, which satisfies
some assumptions to be specified later on. The (internal) energy inequality
reads as
∫

Ω
G(s0(y)) dy −

∫

Ω
G(s1(y)) dy ≥ −

∫

Ω
PG(s1(y)) div (Sy − y) dy, (2.49)

where S is the c-optimal map pushing s1 forward to s0, and PG(x) :=
xG′(x)−G(x) . For smooth cost functions c, this inequality is simply a con-
sequence of the displacement convexity of Pa(Ω) 3 s 7→

∫

ΩG(s(x)) dx, that
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is, the convexity of [0, 1] 3 t 7→
∫

ΩG(s1−t(x)) dx; here s1−t is the proba-
bility density obtained by interpolating s0 and s1, along the “geodesics”
joining them in Pa(Ω) (see Theorem 5.2.2 - (iii)). To prove (2.49), we rather
follow a more direct procedure, using the following result of Cordero and
Otto (Theorem 5.2.1): if s0, s1 ∈ Pa(Ω), c, c? ∈ C2(IRd), and S is the

c-optimal map that pushes s1 forward to s0, then ∇S(y) is diagonalizable

with positive eigenvalues for µ1 := s1(y)dy - a.e. y ∈ Ω. Moreover, the

pointwise Jacobian, det∇S, satisfies

0 6= s1(y) = det∇S(y) s0(Sy), (2.50)

for µ1 - a.e. y ∈ Ω.

Proposition 2.4.1 (Energy inequality for regular cost functions)
Let s0, s1 ∈ Pa(Ω) be density functions of two Borel probability measures
µ0 and µ1 on IRd, respectively. Let c̄ : IRd → [0,∞) be strictly convex, such
that c̄, c̄? ∈ C2(IRd). Let G : [0,∞) → IR be differentiable on (0,∞), such
that G(0) = 0, and (0,∞) 3 x 7→ xdG(x−d) be convex and non-increasing.
Let V : Ω̄ → [0,∞) be convex, of class C1(Ω), and denote by S the c̄-optimal
map, such that S#s1 = s0. Then, the internal energy inequality (2.49), and
the following potential energy inequality hold:
∫

Ω
s0(y)V (y) dy −

∫

Ω
s1(y)V (y) dy ≥

∫

Ω
〈∇V (y), Sy − y 〉s1(y) dy. (2.51)

In addition, if PG(s1) ∈W 1,∞(Ω), and s1 > 0 a.e., then
∫

Ω
G(s0(y)) dy−

∫

Ω
G(s1(y)) dy ≥

∫

Ω
〈∇[G′ (s1(y)) ], Sy−y〉s1(y) dy. (2.52)

Proof. Set

A(x) := xdG(x−d), ∀x ∈ (0,∞).

We observe that
A′(x) = −dxd−1PG(x−d). (2.53)

Since A is non-increasing, we have that PG ≥ 0, and then

(i) (0,∞) 3 x 7→ G(x)
x is non-decreasing.

Theorem 5.2.1 gives that ∇S(y) is diagonalizable with positive eigen-
values, and that (2.50) holds for µ1 - a.e. y ∈ Ω. So, s0(Sy) 6= 0 for µ1 -
a.e. y ∈ Ω. We use that G(0) = 0, S#s1 = s0, and (2.50), to deduce that

∫

Ω
G(s0(x)) dx =

∫

[ s0 6=0 ]
G (s0(x)) dx

=

∫

Ω

G(s0(Sy))

s0(Sy)
s1(y) dy

=

∫

Ω
G

(

s1(y)

det∇S(y)

)

det∇S(y) dy. (2.54)
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Comparing the geometric mean (det∇S(y))1/d to the arithmetic mean
tr∇S(y)

d , we have that

s1(y)

det∇S(y)
≥ s1(y)

(

d

tr∇S(y)

)d

.

Then, we deduce from (i) and the above inequality, that

G

(

s1(y)

det∇S(y)

)

det∇S(y) ≥ ΛdG

(

s1(y)

Λd

)

= s1(y)A

(

Λ

s1(y)1/d

)

(2.55)

where

Λ :=
tr∇S(y)

d
.

Now, we use (2.53) and the convexity of A, to obtain that

s1(y)A

(

Λ

s1(y)1/d

)

≥ s1(y)

[

A

(

1

s1(y)1/d

)

+A′
(

1

s1(y)1/d

)(

Λ − 1

s1(y)1/d

)]

= s1(y)

[

G1 (s1(y))

s1(y)
− d(Λ − 1)

PG (s1(y))

s1(y)

]

= G1 (s1(y)) − PG (s1(y)) tr (∇S(y) − id). (2.56)

Combining (2.54) - (2.56), we conclude that
∫

Ω
G (s0(y)) dy −

∫

Ω
G (s1(y)) dy ≥ −

∫

Ω
PG (s1(y)) tr (∇S(y) − id) dy

= −
∫

Ω
PG (s1(y)) div (Sy − y) dy.

This proves (2.49).
Now, because S#s1 = s0, we have that

∫

Ω
s0(x)V (x) dx−

∫

Ω
s1(y)V (y) dy =

∫

Ω
[V (Sy) − V (y) ] s1(y) dy.

And since V (Sy)−V (y) ≥ 〈∇V (y), Sy−y 〉 (because V ∈ C 1(Ω) is convex),
we deduce (2.51).
Next, assume that PG(s1) ∈ W 1,∞(Ω) and s1 > 0 a.e.. Because PG ≥ 0,
we can approximate PG(s1) by non-negative functions in C∞

c (IRd). We use
Theorem 5.2.1 - (iii), to obtain that

−
∫

Ω
PG(s1(y)) div (Sy − y) dy ≥

∫

Ω
〈∇[PG(s1(y))], Sy − y 〉dy (2.57)

=

∫

Ω
〈∇[G′(s1(y))], Sy − y 〉 s1(y) dy.

We combine (2.49) and (2.57) to conclude (2.52) �

The next theorem extends the energy inequalities (2.51) and (2.52) to
general cost functions c.



42 CHAPTER 2. CALCULUS OF VARIATIONS ON PA(Ω)

Theorem 2.4.2 (Energy inequality for general cost functions).
Let s0, s1 ∈ Pa(Ω) be such that s1 > 0 a.e., and c : IRd → [0,∞) be strictly
convex, of class C1 and satisfy c(0) = 0 and (HC4). Let G : [0,∞) → IR
be differentiable on (0,∞), such that G(0) = 0, (0,∞) 3 x 7→ xdG(x−d) be
convex and non-increasing, ∇ (G′(s1)) ∈ L∞(Ω), and PG(s1) ∈ W 1,∞(Ω).
Let V : Ω̄ → [0,∞) be convex, of class C1, and denote by S, the c - optimal
map, such that S#s1 = s0. Then, the following energy inequalities hold

∫

Ω
G(s0(y)) dy−

∫

Ω
G(s1(y)) dy ≥

∫

Ω
〈∇[G′ (s1(y)) ], Sy−y〉s1(y) dy, (2.58)

and
∫

Ω
s0(y)V (y) dy −

∫

Ω
s1(y)V (y) dy ≥

∫

Ω
〈∇V (y), Sy − y 〉s1(y) dy. (2.59)

Proof. Let (ck)k be a sequence of regular cost functions satisfying
(2.16). By Proposition 2.4.1, we have that

∫

Ω
G(s0(y)) dy −

∫

Ω
G(s1(y)) dy ≥

∫

Ω
〈∇
(

G′ (s1(y))
)

, Skj(y) − y 〉s1(y) dy,

(2.60)
and
∫

Ω
s0(y)V (y) dy −

∫

Ω
s1(y)V (y) dy ≥

∫

Ω
〈∇V (y), Skj(y) − y 〉s1(y) dy,

(2.61)
for all j ∈ IN, where Skj is defined as in Lemma 2.2.2. We let j go to ∞ in
(2.60) and (2.61), and we use that ∇ (G′(s1)) ∈ L∞(Ω), ∇V ∈ L∞(Ω), and
(Skj)j converges to S in L2

s1
(Ω, IRd) (see Lemma 2.2.2), to conclude (2.58)

and (2.59) �

2.5 Approximate solutions to the parabolic equa-

tion

Throughout this section, s0 denotes a probability density in Pa(Ω) which
is bounded below and above, that is, s0 + 1

s0
∈ L∞(Ω). For fixed h > 0 and

i ∈ IN, we denote by sh
i the minimizer of

(P h
i ) : inf

{

I(s) := W h
c (sh

i−1, s) +
1

h
E(s) : s ∈ Pa(Ω)

}

,

where sh
0 := s0 and

E(s) :=

∫

Ω
[F (s) + sV ]
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(see Proposition 2.1.1). We define the approximate solution sh to (1.5), as

sh(t, x) :=







s0(x) if t = 0

sh
i (x) if t ∈ (ti−1, ti],

(2.62)

where ti = ih, for all i ∈ IN. The next proposition shows that

∂sh

∂t
= div

{

sh ∇c?
[

∇
(

F ′(sh) + V
) ]}

+ Λ(h),

in the weak sense. We show in the next section, that

‖Λ(h) ‖(W 2,∞(Ω))? = 0
(

hε(q)
)

,

where ε(q) = min(1, q − 1).

Proposition 2.5.1 Let F : [0,∞) → IR be strictly convex and satisfy F ∈
C2 ((0,∞)) and (HF1). Let V : Ω̄ → [0,∞) be convex, of class C1, and
assume that c : IRd → [0,∞) is strictly convex, of class C1, and satisfies
c(0) = 0 and c(z) ≥ β |z|q, for some q > 1 and β > 0. Then

∣

∣

∣

∫ T

0

∫

Ω
(s0 − sh) ∂h

t ξ dx dt

+

∫ T

0

∫

Ω
〈 sh∇c?

[

∇
(

F ′(sh) + V
) ]

,∇ξ 〉 dx dt
∣

∣

∣
(2.63)

≤ 1

2
sup

[0,T ]×Ω̄

∣

∣

∣D2ξ(t, x)
∣

∣

∣

T/h
∑

i=1

∫

Ω×Ω
|x− y|2 dγh

i (x, y),

where, ξ : IR × Ω → IR is such that ξ(t, .) ∈ C2(Ω̄) for t ∈ IR, and
spt ξ(., x) ⊂ [−T, T ] for x ∈ Ω, and for some T > 0. Here,

∂h
t ξ(t, x) :=

ξ(t+ h, x) − ξ(t, x)

h
,

and γh
i is the ch-optimal measure in Γ(sh

i−1, s
h
i ), for i ∈ IN .

Proof. Without loss of generality, we assume that T
h ∈ IN. Because

of (2.37), we have that

∣

∣

∣

∫

Ω
Ah

i (t, x) dx
∣

∣

∣ ≤ Bh
i ,

for t ∈ (0, T ), where

Ah
i (t, x) :=

sh
i (x) − sh

i−1(x)

h
ξ(t, x)

+
〈

sh
i (x)∇c?

[

∇
(

F ′
(

sh
i (x)

)

+ V (x)
) ]

,∇ξ(t, x)
〉

,
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and

Bh
i :=

1

2h
sup

[0,T ]×Ω̄

∣

∣

∣
D2ξ(t, x)

∣

∣

∣

∫

Ω×Ω
|x− y |2 dγh

i (x, y).

We integrate the above inequality over t ∈ (0, T ), to obtain that

∣

∣

∣

T/h
∑

i=1

∫ ti

ti−1

dt

∫

Ω
Ah

i (t, x) dx
∣

∣

∣ ≤ h

T/h
∑

i=1

Bh
i . (2.64)

The right hand side of (2.64) gives that

h

T/h
∑

i=1

Bh
i =

1

2
sup

[0,T ]×Ω̄

∣

∣

∣
D2ξ(t, x)

∣

∣

∣

T/h
∑

i=1

∫

Ω×Ω
|x− y |2dγh

i (x, y), (2.65)

while, on the left hand side, we have that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω
Ah

i (t, x) dxdt

=

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

sh
i (x) − sh

i−1(x)

h
ξ(t, x) dxdt (2.66)

+

∫ T

0

∫

Ω

〈

sh∇c?
[

∇
(

F ′(sh) + V
)]

,∇ξ
〉

dxdt.

By a direct computation, the first term on the right hand side of (2.66) gives
that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

sh
i (x) − sh

i−1(x)

h
ξ(t, x) dxdt

=
1

h

∫ T

0

∫

Ω
sh(t, x) ξ(t, x) dx dt

− 1

h

T/h
∑

i=2

∫ ti

ti−1

∫

Ω
sh(τ − h, x) ξ(τ, x) dxdτ

− 1

h

∫ h

0

∫

Ω
s0(x) ξ(t, x) dxdt.

We use the substitution τ = t+ h in the above expression to obtain that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

sh
i (x) − sh

i−1(x)

h
ξ(t, x) dxdt

=
1

h

∫ T

0

∫

Ω
sh(t, x) ξ(t, x) dxdt − 1

h

∫ T−h

0
sh(t, x) ξ(t+ h, x) dxdt
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− 1

h

∫ h

0

∫

Ω
s0(x) ξ(t, x) dxdt

= −
∫ T

0

∫

Ω
sh(t, x) ∂h

t ξ(t, x) dxdt +
1

h

∫ T

T−h
sh(t, x) ξ(t+ h, x)

− 1

h

∫ h

0

∫

Ω
s0(x) ξ(t, x) dtdx.

Noting that

− 1

h

∫ h

0

∫

Ω
s0(x) ξ(t, x) dtdx =

∫ T

0

∫

Ω
s0(x) ∂

h
t ξ(t, x) dxdt,

and ξ(t+ h) = 0 for t ∈ (T − h, T ), we deduce that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

si − sh
i−1

h
(x) ξ(x, t) dxdt (2.67)

=

∫ T

0

∫

Ω

(

s0(x) − sh(t, x)
)

∂h
t ξ(t, x) dxdt.

We combine (2.64) - (2.67) to conclude (2.63) �
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Chapter 3

Existence of weak solutions

Below, we study the limit of (2.63), as h goes to 0. This chapter is divided
into four sections. The first three sections deal with the limits of the three
terms of inequality (2.63), and the last section proves the existence theorem
to problem (1.5), when the probability density s0 is bounded below and
above. The energy inequalities (2.58) and (2.59) will be crucial in the proofs
of these limits.
Throughout this chapter, sh is defined as (2.62), and ΩT := (0, T ) × Ω, for
0 < T ≤ ∞.

3.1 Second moments of the optimal measures

In this section, we show that, if c(z) ≥ β | z |q, for some β > 0 and q > 1,
then

T/h
∑

i=1

∫

Ω×Ω
|x− y|2 dγh

i (x, y) = 0(hε(q)), (3.1)

where ε(q) = min(1, q−1), γh
i denotes the ch-optimal measure in Γ(sh

i−1, s
h
i ),

and sh
i is the unique minimizer of

(P h
i ) : inf

{

W h
c (sh

i−1, s) +
1

h
E(s) : s ∈ Pa(Ω)

}

,

with sh
0 := s0 and

E(s) :=

∫

Ω
[F (s) + sV ] .

The first step toward proving (3.1) is the next lemma, which states that
∑∞

i=1W
h
c (sh

i−1, s
h
i ) is bounded, uniformly in h.

Lemma 3.1.1 Let F : [0,∞) → IR be convex and satisfy (HF1). Let
s0 ∈ Pa(Ω) be such that E(s0) <∞. Let V : Ω̄ → [0,∞) be continuous on

47
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Ω, and assume that c : IRd → [0,∞) satisfies (HC1) - (HC2). Then

∞
∑

i=1

hW h
c (sh

i−1, s
h
i ) ≤ E(s0) − |Ω |F

(

1

|Ω |

)

. (3.2)

Proof. Let T > 0, be such that T
h ∈ IN. Since c(0) = 0, Proposition

2.1.1 gives that
hW h

c (sh
i−1, s

h
i ) ≤ E(sh

i−1) −E(sh
i ),

for i ∈ IN. We sum both sides of the above inequality over i, and we use
that V and sh

i are non-negative, to obtain that

T/h
∑

i=1

hW h
c (sh

i−1, s
h
i ) ≤ E(s0) −

∫

Ω
F (sh

T/h(x)) dx.

We apply Jensen’s inequality to the integral term above, and we let T go to
∞, to deduce (3.2) �

Proposition 3.1.2 Assume that F : [0,∞) → IR is convex and satisfies
(HF1), and s0 ∈ Pa(Ω) is such that E(s0) < ∞. Assume that V : Ω̄ →
[0,∞) is continuous on Ω, and c : IRd → [0,∞) is strictly convex and
satisfies c(0) = 0 and c(z) ≥ β | z |q, for some β > 0 and q > 1. Then, for
T > 0 and h ∈ (0, 1), such that T

h ∈ IN ,

T/h
∑

i=1

∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤M(Ω, T, F, s0, q, β)hε(q), (3.3)

where ε(q) = min(1, q − 1).

Proof. Since c(z) ≥ β |z|q, we have that
∫

Ω×Ω
|x− y |q dγh

i (x, y) ≤ hq

β
W h

c (sh
i−1, s

h
i ), (3.4)

for i ∈ IN. We distinguish two cases, based on the values of q.
Case 1: 1 < q ≤ 2.
Because of (3.4), we have, for i ∈ IN, that
∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤ sup
x,y∈Ω

|x− y |(2−q)

∫

Ω×Ω
|x− y |q dγh

i (x, y)

≤ (diamΩ)(2−q)

β
hq W h

c (sh
i−1, s

h
i ),

where, diamΩ denotes the diameter of Ω. We sum both sides of the above
inequality over i, and we use (3.2), to conclude that

T/h
∑

i=1

∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤M(Ω, F, s0, q, β)hq−1.



3.2. STRONG CONVERGENCE OF THE APPROXIMATE SOLUTIONS49

Case 2: q > 2.
Because of Jensen’s inequality and (3.4), we have that

∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤
(
∫

Ω×Ω
|x− y |q dγh

i (x, y)

)2/q

≤ h2

β2/q

[

W h
c (sh

i−1, s
h
i )
]2/q

.

We sum both sides of the above inequality over i, and we use Hölder’s
inequality on the right hand side term, to obtain that

T/h
∑

i=1

∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤ h2

β2/q

(

T

h

)1− 2
q





T/h
∑

i=1

W h
c (sh

i−1, s
h
i )





2/q

= T
1− 2

q
h

β2/q





T/h
∑

i=1

hW h
c (sh

i−1, s
h
i )





2/q

(3.5)

We combine (3.2) and (3.5), to conclude that

T/h
∑

i=1

∫

Ω×Ω
|x− y |2 dγh

i (x, y) ≤M(Ω, T, F, s0, q, β)h.

This completes the proof of the proposition �

In the following two sections, we assume that V = 0, and we denote the
internal energy by

Ei(ρ) :=

∫

Ω
F (ρ(x)) dx,

for ρ ∈ Pa(Ω).

3.2 Strong convergence of the approximate solu-

tions

In this section, we prove that (sh)h is compact in L1 (0, T ) × Ω) , for 0 <
T <∞. The main ingredient in the proof is the energy inequality (2.58). It
allows us to obtain a uniform bound in h, of the Lq?

- norm of ∇
(

F ′(sh)
)

,
which leads to the compactness of (sh)h in L1 (0, T ) × Ω).
We first show that (sh)h converges weakly in L1 ((0, T ) × Ω) , for a subse-
quence, and for 0 < T <∞. We introduce the following constant needed in
the next lemma:

M̄(Ω, T, F, s0, q, α)

:= M(α, q)

(

Ei(s0) − |Ω |F
(

1

|Ω |

)

+ αT |Ω | ‖ s0 ‖L∞(Ω)

)

,
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where M(α, q) is a constant which depends on α and q.

Lemma 3.2.1 Assume that c : IRd → [0,∞) is strictly convex, of class
C1 and satisfies (HC2), and F : [0,∞) → IR is strictly convex, of class
C2 ((0,∞)) , and satisfies (HF1). If s0 ∈ Pa(Ω) ∩ L∞(Ω), then,

‖ sh ‖L∞(IR;L∞(Ω)) ≤ ‖ s0 ‖L∞(Ω). (3.6)

Therefore, there exists s : IR×Ω → IR and a subsequence of (sh)h↓0, which
converges to s, weakly in L1 ((0, T ) × Ω)) , for 0 < T <∞.
In addition, if c satisfies (HC4), F satisfies F (0) = 0 and (HF2), then

∫

ΩT

sh
∣

∣

∣∇
(

F ′(sh)
) ∣

∣

∣

q?

≤ M̄(Ω, T, F, s0, q, α). (3.7)

Proof. Because of the maximum principle of Proposition 2.2.1, we
have that

sh
i ≤ ‖ s0 ‖L∞(Ω), ∀ i ∈ IN,

which reads as

‖ sh(t) ‖L∞(Ω) ≤ ‖ s0 ‖L∞(Ω), ∀ t ∈ IR.

We take the supremum of the subsequent inequality over t ∈ IR, to deduce
(3.6).
Due to (3.6), we have that (sh)h is precompact in L1 ((0, T ) × Ω) , for
0 < T < ∞. We use the standard diagonal argument, to conclude that
(sh)h↓0 converges weakly to some function s : (0,∞) × Ω → IR in
L1 ((0, T ) × Ω) , for a subsequence.
Because of Proposition 2.3.1, the maximum/minimum principle of Propo-
sition 2.2.1, and the fact that ∇

(

P (sh
i )
)

= sh
i ∇
(

F ′(sh
i )
)

, we have that
P (sh

i ) ∈ W 1,∞(Ω) and ∇
(

F ′(sh
i )
)

∈ L∞(Ω), for i ∈ IN. Then, we choose
G := F in the energy inequality (2.58), and we use (2.36), to obtain that

h

∫

Ω

〈

∇
(

F ′(sh
i )
)

,∇c?
[

∇
(

F ′(sh
i )
) ]〉

sh
i

≤
∫

Ω
F (sh

i−1) −
∫

Ω
F (sh

i ),

for i ∈ IN. We sum both sides of the subsequent inequality over i, and we
use Jensen’s inequality, to deduce that

∫

ΩT

〈

∇
(

F ′(sh)
)

,∇c?
[

∇
(

F ′(sh)
) ]〉

sh

≤
∫

Ω
F (s0) − |Ω |F

(

1

|Ω |

)

. (3.8)
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Because of (5.13), and the fact that c(z) ≤ α (| z |q + 1), we have that

〈 z,∇c?(z) 〉 ≥ c?(z) ≥M(α, q) |z |q? − α,

and then, (3.8) implies that

M(α, q)

∫

ΩT

sh
∣

∣

∣
∇
(

F ′(sh)
) ∣

∣

∣

q?

≤
∫

Ω
F (s0) − |Ω |F

(

1

|Ω |

)

+ α

∫

ΩT

sh. (3.9)

We combine (3.6) and (3.9), to obtain that

M(α, q)

∫

ΩT

sh
∣

∣

∣∇
(

F ′(sh)
) ∣

∣

∣

q?

≤
∫

Ω
F (s0) − |Ω |F

(

1

|Ω |

)

+ αT |Ω | ‖ s0 ‖L∞(Ω).

We divide both sides of the above inequality by M(α, q), to conclude (3.7)�

Next, we establish the space compactness of (sh)h on (0, T ) × Ω, for
0 < T <∞.

Lemma 3.2.2 (Space-compactness)
Assume that c : IRd → [0,∞) is strictly convex, of class C1 and satisfies
c(0) = 0 and (HC4), and F : [0,∞) → IR is strictly convex, of class
C2 ((0,∞)) , and satisfies F (0) = 0 and (HF1) - (HF2). If s0 ∈ Pa(Ω) is
such that s0 + 1

s0
∈ L∞(Ω), then, for all η 6= 0 and 0 < T <∞,

∫ T

0

∫

Ω(η)

∣

∣

∣ sh(t, x+ ηe) − sh(t, x)
∣

∣

∣ ≤M(Ω, T, F, s0, α, q) |η|, (3.10)

where e is a unit vector of IRd, and Ω(η) is defined by

Ω(η) := {x ∈ Ω : dist (x, ∂Ω) > | η | }.

Proof. We set Ω
(η)
T := (0, T )×Ω(η). Since s0 + 1

s0
∈ L∞(Ω), the max-

imum/minimum principle of Proposition 2.2.1 implies that (sh)h is bounded
below and above. Then, we use that F ∈ C2 ((0,∞)) , to obtain that

∥

∥

∥
∇sh

∥

∥

∥

q?

Lq? (ΩT )
=

∫

ΩT

1

sh [F ′′(sh) ]
q? s

h
∣

∣

∣
∇
(

F ′(sh)
) ∣

∣

∣

q?

≤M(Ω, s0, F )

∫

ΩT

sh
∣

∣

∣
∇
(

F ′(sh)
) ∣

∣

∣

q?

. (3.11)

We combine (3.7) and (3.11), to conclude that
(

∇sh
)

h
is bounded in

Lq?
(ΩT ). As a consequence, we have that (sh)h is bounded in W 1,q?

(ΩT ).
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Let (ϕk)k be a sequence in C∞(ΩT ) such that

(i) ϕk → sh, in Lq?
(ΩT ), as k → ∞

and

(ii) ∇ϕk → ∇sh in Lq?
(ΩT ), as k → ∞.

Fixing t ∈ (0, T ), and using the mean-value theorem on Ω 3 x 7→
ϕk(t, x), we have that
∫

Ω(η)

∣

∣

∣
ϕk(t, x+ ηe) − ϕk(t, x)

∣

∣

∣

q?

≤ | η e|q?

∫

Ω(η)

∣

∣

∣
∇ϕk(t, x+ θkηe

∣

∣

∣

q?

≤ | η |q?
∥

∥

∥∇ϕk(t, .)
∥

∥

∥

q?

Lq? (Ω)
,

where θk ∈ [0, 1]. We integrate both sides of the subsequent inequality over
t ∈ (0, T ), to have that

∫

Ω
(η)
T

∣

∣

∣
ϕk(t, x+ ηe) − ϕ(t, x)

∣

∣

∣

q?

≤ | η |q?
∥

∥

∥
∇ϕk

∥

∥

∥

q?

Lq?(ΩT )
. (3.12)

We let k go to ∞ in (3.12), and we use (i), (ii), and the fact that
(

∇sh
)

h

is bounded in Lq?
(ΩT ), to deduce that

∫

Ω
(η)
T

| sh(t, x+ ηe) − sh(t, x) |q? ≤M(Ω, T, F, s0, α, q) | η |q
?

. (3.13)

We combine (3.13) and Hölder’s inequality, to conclude that
∫

Ω
(η)
T

∣

∣

∣
sh(t, x+ ηe) − sh(t, x)

∣

∣

∣

≤ |ΩT |1/q

(

∫

Ω
(η)
T

∣

∣

∣ sh(t, x+ ηe) − sh(t, x)
∣

∣

∣

q?
)1/q?

≤M(Ω, T, F, s0, α, q) | η |

�

Now, we focus on the time compactness of (sh)h on (0, T ) × Ω, for
0 < T <∞. The following constant will be needed in the next lemma:

M̃(Ω, T, F, s0, q, α, β)

:=
‖ s0‖1/q?

L∞(Ω)
∥

∥

∥

1
s0

∥

∥

∥

1/q?

L∞(Ω)

M(q, α, β)

(

Ei(s0) − |Ω |F
(

1

|Ω |

)

+ αT |Ω | ‖ s0 ‖L∞(Ω)

)

,
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Lemma 3.2.3 Assume that c : IRd → [0,∞) is strictly convex, of class
C1 and satisfies c(0) = 0 and (HC4), and F : [0,∞) → IR is strictly
convex, of class C2 ((0,∞)) , and satisfies F (0) = 0 and (HF1) - (HF2). If
s0 ∈ Pa(Ω) is such that s0+ 1

s0
∈ L∞(Ω), then, for τ > 0 and 0 < T <∞,

∫

ΩT

[

F ′ (sh(t+ τ, x)
)

− F ′ (sh(t, x)
) ] [

sh(t+ τ, x) − sh(t, x)
]

≤ M̃(Ω, T, F, s0, q, α, β) τ.
(3.14)

Proof. Without loss of generality, we assume that T
h ∈ IN and

τ = Nh, for some N ∈ IN. For simplicity, we set

L(h, τ) :=

∫

ΩT

[

F ′
(

sh(t+ τ, x)
)

− F ′
(

sh(t, x)
) ] [

sh(t+ τ, x) − sh(t, x)
]

,

and

J(i, h,N) :=

∫

Ω

[

F ′
(

sh
i+N (x)

)

− F ′
(

sh
i (x)

) ] [

sh
i+N(x) − sh

i (x)
]

.

It is straightforward to check that

L(h, τ) =

T/h
∑

i=1

hJ(i, h,N). (3.15)

Since W h
c does not satisfy the triangle inequality, we introduce the

q-Wasserstein metric dh
q := (W h

q )1/q, defined by

dh
q (sh

i , s
h
i+N ) :=

(

∫

Ω

∣

∣

∣

y − Sh
q (y)

h

∣

∣

∣

q
sh
i+N(y) dy

)1/q

, (3.16)

where Sh
q denotes the | ·h |q-optimal map that pushes sh

i+N forward to sh
i .

Then, setting ϕh
i,N := F ′ (sh

i+N

)

− F ′ (sh
i

)

, we obtain that

J(i, h,N) =

∫

Ω

[

ϕh
i,N (y) − ϕh

i,N

(

Sh
q (y)

) ]

sh
i+N (y) dy.

Since s0 + 1
s0

∈ L∞(Ω), F ∈ C2 ((0,∞)) , and sh
i ∇
(

F ′(sh
i )
)

= ∇
(

P (sh
i )
)

∈
L∞(Ω) (see Proposition 2.3.1 - (i)), the maximum/minimum principle of
Proposition 2.2.1 gives that ϕh

i,N ∈ W 1,∞(Ω). So, approximating ϕh
i+N by

C∞(Ω)-functions, and using that
(

Sh
q

)

#
sh
i+N = sh

i , and the mean-value

theorem, we rewrite J(i, h,N) as follows:

J(i, h,N) =

∫

Ω

∫ 1

0

〈

∇ϕh
i,N

(

(1 − t)y + tSh
q (y)

)

, y − Sh
q y
〉

sh
i+N (y) dtdy.
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We combine Hölder’s inequality and (3.16), to deduce that

J(i, h,N) (3.17)

≤ h dh
q

(

sh
i , s

h
i+N

)

[
∫

Ω

∫ 1

0

∣

∣

∣∇ϕh
i+N

(

(1 − t)y + tSh
q (y)

) ∣

∣

∣

q?

sh
i+N (y) dtdy

]1/q?

.

But, observe that sh
i , s

h
i+N ≤ ‖ s0 ‖L∞(Ω) because of Proposition 2.2.1, and

|∇ϕh
i,N |q? ∈ L∞(Ω). So, we approximate |∇ϕh

i,N |q?
by non-negative func-

tions in C∞
c (IRd), and we use (2.23) in Proposition 2.2.3, to deduce that

∫

Ω

∣

∣

∣
∇ϕh

i,N

(

(1 − t)y + tSh
q (y)

) ∣

∣

∣

q?

sh
i+N (y) dy

≤ ‖ s0 ‖L∞(Ω)

∫

IRd

∣

∣

∣∇ϕh
i,N (y)

∣

∣

∣

q?

dy. (3.18)

We combine (3.15), (3.17) and (3.18), to have that

L(h, τ) ≤ ‖ s0 ‖1/q?

L∞(Ω)
h2

T/h
∑

i=1

dh
q

(

sh
i , s

h
i+N

)

‖∇ϕh
i,N ‖Lq? (Ω).

And since dh
q is a metric, the triangle inequality gives that

L(h, τ) ≤ ‖ s0 ‖
1

q?

L∞(Ω)
h2

N
∑

k=1

T/h
∑

i=1

‖∇ϕh
i,N ‖Lq? (Ω) d

h
q

(

sh
i+k−1, s

h
i+k

)

.

Then, we apply Hölder’s inequality to the interior sum, to deduce that

L(h, τ) ≤ (3.19)

‖ s0 ‖
1

q?

L∞(Ω) h
2− 1

q?





T/h
∑

i=1

h ‖∇ϕh
i,N ‖q?

Lq? (Ω)





1/q?

N
∑

k=1





T/h
∑

i=1

dh
q

(

sh
i+k−1, s

h
i+k

)q





1/q

.

Because of (3.7) and the maximum/minimum principle of Proposition 2.2.1,

the sequences

(

h1/q?
∥

∥

∥∇
(

F ′(sh
i )
)

∥

∥

∥

Lq?(Ω)

)

i=1,···, T
h

and

(

h1/q?
∥

∥

∥
∇
(

F ′(sh
i+N )

)

∥

∥

∥

Lq?(Ω)

)

i=1,···, T
h

belong to lq?(Ω). Then, we combine

Hölder’s inequality, Minkowski’s inequality, (3.7), and the
maximum/minimum principle of Proposition 2.2.1, to have that





T/h
∑

i=1

h
∥

∥

∥
∇ϕh

i,N

∥

∥

∥

q?

Lq?(Ω)





1/q?
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≤





T/h
∑

i=1

(

h1/q?
∥

∥

∥∇
(

F ′(sh
i+N )

) ∥

∥

∥

Lq?(Ω)
+ h1/q?

∥

∥

∥∇
(

F ′(sh
i )
) ∥

∥

∥

Lq?(Ω)

)q?




1/q?

≤





T/h
∑

i=1

h
∥

∥

∥∇
(

F ′(sh
i+N )

) ∥

∥

∥

q?

Lq?(Ω)





1/q?

+





T/h
∑

i=1

h
∥

∥

∥∇
(

F ′(sh
i )
) ∥

∥

∥

q?

Lq? (Ω)





1/q?

≤ 1
∥

∥

∥

1
s0

∥

∥

∥

1/q?

L∞(Ω)

[

M̄ (Ω, T, F, s0, q, α)
]1/q?

. (3.20)

On the other hand, since c(z) ≥ β | z |q, we have that
(

dh
q

)q
≤ 1

β
W h

c ,

and then,

N
∑

k=1





T/h
∑

i=1

dh
q

(

sh
i+k−1, s

h
i+k

)q





1/q

≤ 1

(βh)1/q

N
∑

k=1





T/h
∑

i=1

hW h
c

(

sh
i+k−1, s

h
i+k

)





1/q

.

We use (3.2) and the above inequality, to deduce that

N
∑

k=1





T/h
∑

i=1

dh
q

(

sh
i+k−1, s

h
i+k

)q





1/q

≤ 1

β

[

Ei(s0) − |Ω |F
(

1

|Ω |

)]1/q

Nh−1/q. (3.21)

We combine (3.19) - (3.21), and we use that τ = Nh, to conclude that

L(h, τ) ≤ M̃(Ω, T, F, s0, q, α, β) τ.

This completes the proof of Lemma 3.2.3 �

Lemma 3.2.4 (Time-compactness)
Assume that the assumptions of Lemma 3.2.3 hold. Then, for 0 < T < ∞,
and small τ > 0,
∫ T

0

∫

Ω

∣

∣

∣ sh(t+ τ, x) − sh(t, x)
∣

∣

∣ ≤M(R,Ω, T, F, s0, α, q, β)
√
τ + TΛ(

√
τ),
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where Λ is such that
lim
τ↓0

Λ(
√
τ) = 0.

Proof. Let R > 0, and for fixed h, T and τ, define

ER :=
{

t ∈ (0, T ) : ∆h,τ (t) :=
∥

∥

∥
sh(t)

∥

∥

∥

Lq(Ω)
+
∥

∥

∥
sh(t+ τ)

∥

∥

∥

Lq(Ω)

+
∥

∥

∥F ′ (sh(t)
)

∥

∥

∥

W 1,q? (Ω)
+
∥

∥

∥F ′ (sh(t+ τ)
)

∥

∥

∥

W 1,q?(Ω)

+ 1
τ

∫

Ω

[

F ′ (sh(t+ τ)
)

− F ′ (sh(t)
) ] [

sh(t+ τ) − sh(t)
]

> R
}

.

Because of (3.7), (3.14), the maximum/minimum principle of Proposition
2.2.1, and the fact that F ∈ C2 ((0,∞)) , we have that (0, T ) 3 t 7→ ∆h,τ (t)
belongs to L1 ((0, T )) . Hence

|ER | ≤ M(Ω, T, F, s0, q, α, β)

R
. (3.22)

We combine (3.6) and (3.22), to have that
∫

ER

∫

Ω

∣

∣

∣
sh(t+ τ, x) − sh(t, x)

∣

∣

∣
≤ 2 ‖ s0 ‖L∞(Ω) |Ω | |ER |

≤ M(Ω, T, F, s0, q, α, β)

R
. (3.23)

On the other hand, if t ∈ Ec
R := (0, T ) \ ER, setting sh(t) := s1 and

sh(t+ τ) := s2, we clearly have that ‖ si ‖Lq(Ω) ≤ R, ‖F ′(si) ‖W 1,q? (Ω) ≤ R

for all i = 1, 2, and
∫

Ω [F ′(s2) − F ′(s1) ] [ s2 − s1 ] ≤ Rτ. Then, Proposition
2.2.4 gives that

∫

Ec
R

∫

Ω
| sh(t+ τ, x) − sh(t, x) | ≤

∫

Ec
R

Λ(Rτ) ≤ TΛ(Rτ), (3.24)

where Λ(Rτ) := ΛR(Rτ) is defined as in Proposition 2.2.4. We combine
(3.23) - (3.24), and we choose R = 1√

τ
, to conclude the proof of Lemma

3.2.4 �

Having proved the space-compactness and time-compactness of (sh)h, we
are now ready to show that (sh)h converges strongly to s, in L1 ((0, T ) × Ω)
(up to a subsequence), for 0 < T <∞; here s is defined as in Lemma 3.2.1.

Proposition 3.2.5 Assume that c : IRd → [0,∞) is strictly convex, of
class C1 and satisfies c(0) = 0 and (HC4), and F : [0,∞) → IR is strictly
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convex, of class C2 ((0,∞)) , and satisfies F (0) = 0 and (HF1) - (HF2). If
s0 ∈ Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω), then, for 0 < T < ∞, there is

a subsequence of (sh)h↓0 which converges strongly to s in Lr ((0, T ) × Ω) ,
for 1 ≤ r <∞, where s is defined as in Lemma 3.2.1.

Proof. Fix δ > O, and define Ω(δ) := {x ∈ Ω : dist (x, ∂Ω) > δ },
and Ω

(δ)
T := (0, T )×Ω(δ), as in Lemma 3.2.2. Because of (3.6), we have that

(sh)h is bounded in L1
(

Ω
(δ)
T

)

. Furthermore, for ε > 0, and small τ > 0

and η ∈ (0, δ), we have that Ω
(δ)
T ⊂ Ω

(η)
T ⊂ ΩT , and then, Lemma 3.2.2 and

Lemma 3.2.4 show that
∫

Ω
(δ)
T

| sh(t, x+ ηe) − sh(t, x) | < ε,

and
∫

Ω
(δ)
T

| sh(t+ τ, x) − sh(t, x) | < ε,

uniformly in h. We deduce that, (sh)h is precompact in L1
(

Ω
(δ)
T

)

(See [1],

Theorem 2.21). We observe that limδ→0 |Ω \ Ω(δ) | = 0, and then, we use
the diagonal argument, to obtain that, (sh)h converges strongly to s, in
L1(ΩT ), for a subsequence. And since (sh)h is bounded in L∞(ΩT ) (see
(3.6)), we conclude that it converges to s, in Lr(ΩT ), for 1 ≤ r < ∞ (up
to a subsequence) �

3.3 Weak convergence of the nonlinear terms

We use the energy inequality (2.58), stated in Theorem 2.4.2, to show that
(

∇c?
[

∇
(

F ′(sh)
)])

h
converges weakly to ∇c? [∇ (F ′(s))] , in

Lq ((0, T ) × Ω), for a subsequence, and for all 0 < T <∞.
Throughout this section, (sh)h will denote the subsequence of (sh)h which
converges to s, in Lr ((0, T ) × Ω) , for 1 ≤ r <∞, as in Proposition 3.2.5.
For simplicity in the notations, we set

σh := ∇c?
[

∇
(

F ′(sh)
) ]

.

The next lemma shows that (σh)h is bounded in Lq ((0,∞) × Ω) , and
(

∇
(

F ′(sh)
))

h
converges weakly to ∇ (F ′(s)) in Lq?

((0, T ) × Ω) , for a sub-
sequence, and for all 0 < T <∞.

Lemma 3.3.1 Assume that c : IRd → [0,∞) is strictly convex, of class
C1 and satisfies c(0) = 0 and c(z) ≥ β | z |q, for some β > 0 and q > 1.
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Assume that F : [0,∞) → IR is strictly convex, of class C 2 ((0,∞)) and
satisfies (HF1). If s0 ∈ Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω), then

‖σh ‖q
Lq(Ω∞) ≤

1

β
∥

∥

∥

1
s0

∥

∥

∥

L∞(Ω)

[

Ei(s0) − |Ω |F
(

1

|Ω |

)]

. (3.25)

Therefore,

(i) there is a subsequence of
(

σh
)

h↓0 , which converges weakly to

a function σ in Lq ((0, T ) × Ω) , for 0 < T <∞.

In addition to the assumptions, if c satisfies (HC4), and F satisfies
F (0) = 0 and (HF2), then

(ii) there is a subsequence of
{

∇
(

F ′(sh)
)

}

h↓0
, which converges

weakly to ∇ (F ′(s)) , in Lq?
((0, T ) × Ω) , for 0 < T <∞.

Proof. By (2.36), we have that

Sh
i (y) − y

h
= ∇c?

[

∇
(

F ′(sh
i (y))

) ]

, (3.26)

for i ∈ IN, where Sh
i denotes the ch-optimal map that pushes sh

i forward to
sh
i−1. We use (3.26) and the maximum/minimum principle of Proposition

2.2.1, to deduce that

‖σh ‖q
Lq(Ω∞) =

∞
∑

i=1

h

∫

Ω

∣

∣

∣∇c?
[

∇
(

F ′(sh
i (y))

) ] ∣

∣

∣

q
dy

=
∞
∑

i=1

h

∫

Ω

∣

∣

∣

Sh
i (y) − y

h

∣

∣

∣

q
dy

≤ 1
∥

∥

∥

1
s0

∥

∥

∥

L∞(Ω)

∞
∑

i=1

h

∫

Ω

∣

∣

∣

Sh
i (y) − y

h

∣

∣

∣

q
sh
i (y) dy.

Since c(z) ≥ β | z |q, we obtain that

‖σh ‖q
Lq(Ω∞) ≤

1

β
∥

∥

∥

1
s0

∥

∥

∥

L∞(Ω)

∞
∑

i=1

hW h
c (sh

i−1, s
h
i ). (3.27)

We combine (3.2) and (3.27), to conclude (3.25).
Now, fix 0 < T < ∞. By Proposition 3.2.5, (sh)h converges strongly to
s, in L1 ((0, T ) × Ω) , and by (3.6) and the fact that F ′ is continuous on
(0,∞),

(

F ′(sh)
)

h
is bounded in L∞ ((0, T ) × Ω) . We deduce, due to the
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continuity of F ′ on (0,∞), that
(

F ′(sh)
)

h
converges weakly to F ′(s), in

Lq?
((0, T ) × Ω) . And, since

{

∇
(

F ′(sh)
)

}

h
is bounded in Lq?

((0, T ) × Ω)

(because of (3.7) and the maximum principle of Proposition 2.2.1), we con-
clude (ii) �

The next lemma extends the energy inequality (2.58) to the time-space
domain (0, T ) × Ω.

Lemma 3.3.2 (Energy inequality in time-space)
Assume that c : IRd → [0,∞) is strictly convex, of class C1, and satisfies
c(0) = 0 and (HC4). Assume that F : [0,∞) → IR is strictly convex, of
class C2 ((0,∞)) , and satisfies F (0) = 0, F ∈ C2 ((0,∞)) and (HF1) -
(HF2). If s0 ∈ Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω), and t 7→ u(t) is a

non-negative function in C∞
c (IR), then

∫ ∞

0

∫

Ω

〈

sh∇
(

F ′(sh)
)

,∇c?
[

∇
(

F ′(sh)
) ]〉

u(t)

≤ 1

h

∫ h

0

∫

Ω
F (s0(x)) u(t) +

∫ ∞

0

∫

Ω
F (sh) ∂h

t u(t),

where

∂h
t u(t) :=

u(t+ h) − u(t)

h
.

Proof. Let T be such that T
h ∈ IN, and assume that sptu ⊂ [−T, T ].

We choose G := F in the energy inequality (2.58), and we use (2.36), to
obtain that

∫

Ω

F
(

sh
i (y)

)

− F
(

sh
i−1(y)

)

h
dy

≤ −
∫

Ω

〈

∇
[

F ′
(

sh
i (y)

) ]

,∇c?
[

∇
(

F ′(sh
i (y))

) ]〉

sh
i (y) dy,

for all i ∈ IN. Since u ≥ 0, we deduce that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

F
(

sh
i (y)

)

− F
(

sh
i−1(y)

)

h
u(t) (3.28)

≤ −
∫

ΩT

sh
〈

∇
(

F ′(sh)
)

,∇c?
[

∇
(

F ′(sh)
) ] 〉

u(t).

By direct computations, the left hand side of the above inequality gives that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

F
(

sh
i (y)

)

− F
(

sh
i−1(y)

)

h
u(t)



60 CHAPTER 3. EXISTENCE OF WEAK SOLUTIONS

=
1

h

∫

ΩT

F
(

sh(t, y)
)

u(t) − 1

h

∫

Ωh

F (s0(y)) u(t)

− 1

h

∫ T

h

∫

Ω
F
(

sh(t− h)
)

u(t).

We use the substitution τ = t − h in the last integral, and the fact that
u(t+ h) = 0 for t ∈ (T − h, T ), to obtain that

T/h
∑

i=1

∫ ti

ti−1

∫

Ω

F
(

sh
i (y)

)

− F
(

sh
i−1(y)

)

h
u(t) (3.29)

= −
∫

ΩT

F
(

sh(t, y)
)

∂h
t u(t) −

1

h

∫

Ωh

F (s0(y)) u(t).

We combine (3.28) and (3.29), and we let T go to ∞, to complete the proof
of Lemma 3.3.2 �

Theorem 3.3.3 Assume that c : IRd → [0,∞) is strictly convex, of class
C1, and satisfies c(0) = 0 and (HC4). Assume that F : [0,∞) → IR is
strictly convex, of class C2 ((0,∞)) , and satisfies F (0) = 0, F ∈ C2 ((0,∞))
and (HF1) - (HF2). If s0 ∈ Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω), and

t 7→ u(t) is a non-negative function in C∞
c (IR), then

lim
h↓0

∫ ∞

0

∫

Ω

〈

shσh,∇
(

F ′(sh)
)〉

u(t) =

∫ ∞

0

∫

Ω

〈

sσ,∇
(

F ′(s)
) 〉

u(t),

(3.30)
where s and σ are defined as in Lemma 3.2.1 and Lemma 3.3.1.
Therefore, there is a subsequence of

(

∇c?
[

∇
(

F ′(sh)
)])

h
, which converges

weakly to ∇c? [∇ (F ′(s))] in Lq ((0, T ) × Ω) , for 0 < T <∞.

Proof. Let T > 0 be such that sptu ⊂ [−T, T ], and assume that
s(t) = s0, for t ≤ 0. Denote by (sh)h the subsequence of (sh)h, such that

(i) (sh)h↓0 converges to s a.e.,

(ii) {∇
(

F ′(sh)
)

}h↓0 converges weakly to ∇ (F ′(s)) , in Lq?
(ΩT ),

and

(iii) {σh = ∇c?
[

∇
(

F ′(sh)
)]

}h↓0 converges weakly to σ, in Lq(ΩT ),

as in Proposition 3.2.5 and Lemma 3.3.1. We first show that

lim
h↓0

∫

ΩT

〈σh, sh∇
(

F ′(s)
)

〉u(t) =

∫

ΩT

〈σ, s∇
(

F ′(s)
)

〉u(t), (3.31)
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and

lim
h↓0

∫

ΩT

〈sh∇c?
[

∇
(

F ′(s)
) ]

,∇
(

F ′(sh)
)

−∇
(

F ′(s)
)

〉u(t) = 0. (3.32)

By (ii), we have that ∇ (F ′(s)) ∈ Lq?
(ΩT ), and by (3.6), we see that (sh)h

is bounded in L∞(ΩT ). We use (i) and the dominated convergence theorem,
to have that

lim
h↓0

∫

ΩT

∣

∣

∣ (sh − s)∇
(

F ′(s)
)

∣

∣

∣

q?

= 0,

i.e.

(iv) {sh∇ (F ′(s)) }h↓0 converges strongly to s∇ (F ′(s)) , in Lq?
(ΩT ).

We combine (iii) - (iv), and the fact that u ∈ C∞
c (IR), to conclude (3.31).

By Proposition 5.3.3, the convexity of c, and the fact that c(z) ≥ β | z |q,
we have that

|∇c?(z) |q ≤ c (∇c?(z))
β

=
1

β
(〈z,∇c?(z)〉 − c?(z))

≤ 1

β
〈z,∇c?(z)〉 ≤M(β, q) | z |q?

.

We deduce that

∣

∣

∣
∇c?

[

∇
(

F ′(s)
) ]

∣

∣

∣

q
≤M(β, q)

∣

∣

∣
∇
(

F ′(s)
)

∣

∣

∣

q?

,

and then,

(v) ∇c? [∇ (F ′(s)) ] ∈ Lq(ΩT ).

We use (i), (v) and the dominated convergence theorem, to have that

lim
h↓0

∫

ΩT

∣

∣

∣
(sh − s)∇c?

[

∇
(

F ′(s)
) ]

∣

∣

∣

q
= 0,

i.e.

(vi) { sh∇c? [∇ (F ′(s)) ] }h↓0 converges strongly to
s∇c? [∇ (F ′(s)) ] , in Lq(ΩT ).

We combine (ii) and (vi), to conclude (3.32).

The proof of (3.30) follows directly from the following three claims.
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Claim 1.
∫

ΩT

〈

sσ,∇
(

F ′(s)
) 〉

u(t) ≤ lim inf
h↓0

∫

ΩT

〈

shσh,∇
(

F ′(sh)
)〉

u(t).

Proof. Because c? is convex, and u and sh are non-negative, we have
that
∫

ΩT

sh
〈

∇c?
[

∇
(

F ′(sh)
)]

−∇c?
[

∇
(

F ′(s)
)]

,∇
(

F ′(sh)
)

−∇
(

F ′(s)
)

〉

u(t) ≥ 0,

and then,

lim inf
h↓0

∫

ΩT

〈σh, sh∇
(

F ′(s)
)

〉u(t)

≤ lim inf
h↓0

∫

ΩT

〈shσh,∇
(

F ′(sh)
)

〉u(t) (3.33)

+ lim sup
h↓0

∫

ΩT

〈sh∇c?
[

∇
(

F ′(s)
) ]

,∇
(

F ′(s)
)

−∇
(

F ′(sh)
)

〉u(t).

We combine (3.31) - (3.33), to conclude Claim 1.

Claim 2.

lim sup
h↓0

∫

ΩT

〈

shσh,∇
(

F ′(sh)
)〉

u(t)

≤
∫

Ω

[

s0F
′(s0) − F ?

(

F ′(s0)
) ]

u(0)

+

∫

ΩT

[

s(t, x)F ′ (s(t, x)) − F ?
(

F ′ (s(t, x))
) ]

u′(t).

Proof. We first observe that

lim
h↓0

∫

ΩT

F (sh)∂h
t u(t) =

∫

ΩT

F (s)u′(t). (3.34)

Indeed, it is clear that

∣

∣

∣

∫

ΩT

F (sh)∂h
t u(t) − F (s)u′(t)

∣

∣

∣
(3.35)

≤
∫

ΩT

|F (sh) − F (s) | |u′(t) | +
∫

ΩT

|F (sh) | |∂h
t u(t) − u′(t) |.

Because of the maximum/minimum principle of Proposition 2.2.1, and the
continuity of F , we have that

(

F (sh)
)

h
is bounded in L∞(ΩT ). We let h go

to 0 in (3.35), and we use (i), the fact that u ∈ C∞
c (IR), and the Lebesgue
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dominated convergence theorem, to conclude (3.34).
Recall that Lemma 3.3.2 gives that

lim sup
h↓0

∫

ΩT

〈

shσh,∇
(

F ′(sh)
)〉

u(t)

≤ lim inf
h↓0

1

h

∫ h

0

∫

Ω
F (s0)u(t) + lim sup

h↓0

∫

ΩT

F (sh)∂h
t u(t),

and by (3.34) and the continuity of u, we obtain that

lim sup
h↓0

∫

ΩT

〈

shσh,∇
(

F ′(sh)
)〉

u(t) (3.36)

≤
∫

Ω
F (s0)u(0) +

∫

ΩT

F (s(t, x)) u′(t).

Since F ∈ C1 (0,∞)) is strictly convex and satisfies (HF1), we have that

F (a) = aF ′(a) − F ?
(

F ′(a)
)

, (3.37)

for a > 0. We substitute (3.37) in (3.36) for a = s(t, x) and a = s0(x), to
conclude Claim 2.

Claim 3.
∫

Ω

[

s0F
′(s0) − F ?

(

F ′(s0)
) ]

u(0)

+

∫

ΩT

[

s(t, x)F ′ (s(t, x)) − F ?
(

F ′ (s(t, x))
) ]

u′(t)

≤
∫

ΩT

〈sσ,∇
(

F ′(s)
)

〉u(t).

Proof. Set ξ(t, x) := F ′ (s(t, x)) u(t), for (t, x) ∈ IR × Ω. Because
of (i) - (ii), the maximum/minimum principle of Proposition 2.2.1, and the
fact that F ∈ C2 ((0,∞)) , we have that F ′(s) ∈ L∞(ΩT ) and ∇ (F ′(s)) ∈
Lq?

(ΩT ). Let (ϕj)j be a sequence in C∞(ΩT ), such that

ϕj → F ′(s) in Lq?

(ΩT ),

and
∇ϕj → ∇

(

F ′(s)
)

in Lq?

(ΩT ), as j → ∞.

It is clear that ξj := ϕju is admissible in (2.63). Therefore, we use Propo-

sition 3.1.2 and the backward derivative ∂−h
t ξj(t, x) :=

ξj(t,x)−ξj(t−h,x)
h in

(2.63), to have that

∫

ΩT

(s0 − sh)∂−h
t ξj +

∫

ΩT

〈shσh,∇ξj〉 = 0(hε(q)), (3.38)
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where ε(q) = min(1, q − 1). Letting j go to ∞ in (3.38), we obtain that
∫

ΩT

(s0 − sh)∂−h
t ξ +

∫

ΩT

〈σh, sh∇
(

F ′(s)
)

〉u(t) = 0(hε(q)).

We let h go to 0 in the subsequent equality, and we use (3.31), to conclude
that

lim
h↓0

∫

ΩT

(s0 − sh) ∂−h
t ξ +

∫

ΩT

〈σ, s∇
(

F ′(s)
)

〉u(t) = 0. (3.39)

Since sptu ⊂ [−T, T ], we have that

∫

ΩT

s0 ∂
−h
t ξ = −1

h

∫ 0

−h

∫

Ω
s0(x)ξ(t, x),

and then,

lim
h↓0

∫

ΩT

s0 ∂
−h
t ξ = −

∫

Ω
s0(x) ξ(0, x) = −

∫

Ω
s0F

′(s0)u(0). (3.40)

We combine (3.39), (3.40) and (i), to have that
∫

ΩT

〈σ, s∇
(

F ′(s)
)

〉u(t) = lim
h↓0

∫

ΩT

s(t, x)∂−h
t ξ(t, x) +

∫

Ω
s0F

′(s0)u(0).

(3.41)
By direct computations, we obtain that

s(t, x)∂−h
t ξ(t, x) = s(t, x)F ′ (s(t, x)) ∂−h

t u(t)

+
1

h
s(t, x)u(t− h)

[

F ′ (s(t, x)) − F ′ (s(t− h, x))
]

.

Since F ? is convex, and (F ?)′ = (F ′)−1, we have that

(

F ′(b) − F ′(a)
)

b ≥ F ?
(

F ′(b)
)

− F ?
(

F ′(a)
)

,

for a, b > 0, and then, we deduce that

s(t, x) ∂−h
t ξ(t, x) ≥ s(t, x)F ′ (s(t, x)) ∂−h

t u(t)

+
1

h
u(t− h)

[

F ?
(

F ′ (s(t, x))
)

− F ?
(

F ′ (s(t− h, x))
) ]

.

We integrate both sides of the subsequent inequality over ΩT , and we use
that u = 0 on (T − h, T ) (for h small enough), and s(t, x) = s0(x) for
t ∈ (−h, 0), to obtain that
∫

ΩT

s(t, x)∂−h
t ξ(t, x) ≥

∫

ΩT

[

s(t, x)F ′ (s(t, x)) − F ?
(

F ′ (s(t, x))
) ]

∂−h
t u(t)

−1

h

∫ h

0
u(t− h)

∫

Ω
F ?
(

F ′(s0)
)

.
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We let h go to 0 in the above inequality, to deduce that

lim
h↓0

∫

ΩT

s(t, x)∂−h
t ξ(t, x) (3.42)

≥
∫

ΩT

[

s(t, x)F ′ (s(t, x)) − F ?
(

F ′ (s(t, x))
) ]

u′(t)

−
∫

Ω
F ?
(

F ′(s0)
)

u(0).

We combine (3.41) and (3.42), to conclude Claim 3.

Finally, we show that

σ = ∇c?
[

∇
(

F ′(s)
) ]

, (3.43)

which combined with Lemma 3.3.1 completes the proof of Theorem 3.3.3.
Let ε > 0, ϕ ∈ C∞(Ω), and set ωε(t, x) := F ′ (s(t, x)) − εψ(x), where ψ is
such that ∇ψ = ϕ. It is clear that ∇ωε ∈ Lq?

(ΩT ), and
∣

∣

∣∇c? (∇ωε)
∣

∣

∣

q
≤M(β, q) |∇ωε |q

?

,

as in the proof of (v) in (3.32). We deduce that ∇c? (∇ωε) ∈ Lq(ΩT ). We
use that c? is convex, and sh and u are non-negative, to have that
∫

ΩT

sh 〈∇c?
[

∇
(

F ′(sh)
) ]

−∇c? (∇wε) , ∇
(

F ′(sh)
)

−∇wε〉u(t) ≥ 0.

We let h go to 0 in the above inequality, to obtain that

lim sup
h↓0

∫

ΩT

〈shσh,∇
(

F ′(sh)
)

〉u(t) − lim inf
h↓0

∫

ΩT

〈σh, sh∇wε〉u(t)

− lim inf
h↓0

∫

ΩT

〈sh∇c?(∇wε),∇
(

F ′(sh)
)

−∇wε〉u(t) ≥ 0. (3.44)

As in the proof of (3.31) and (3.32), we have that

lim inf
h↓0

∫

ΩT

〈σh, sh∇wε〉u(t) =

∫

ΩT

〈σ, s∇wε〉u(t), (3.45)

and

lim inf
h↓0

∫

ΩT

〈sh∇c?(∇wε),∇
(

F ′(sh)
)

−∇wε〉u(t) (3.46)

=

∫

ΩT

〈s∇c?(∇wε),∇
(

F ′(s)
)

−∇wε〉u(t).

We combine (3.30) and (3.44) - (3.46), to have that
∫

ΩT

〈sσ − s∇c?(∇wε),∇
(

F ′(s)
)

−∇wε〉u(t) ≥ 0.
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We divide the subsequent inequality by ε, and we let ε go to 0, to obtain
that

∫

ΩT

〈sσ − s∇c?
[

∇
(

F ′(s)
) ]

, ϕ(x)u(t)〉 ≥ 0.

Choosing −ϕ in place of ϕ, we get that
∫

ΩT

〈sσ − s∇c?
[

∇
(

F ′(s)
) ]

, ϕ(x)u(t)〉 = 0.

And since ϕ and u ≥ 0 are arbitrary test functions, we deduce that

sσ = s∇c?
[

∇
(

F ′(s)
) ]

.

But, (i) and the maximum/minimum principle of Proposition 2.2.1 give that
s 6= 0. Then, we conclude (3.43) �

3.4 Existence and uniqueness of solutions

In this section, we state and prove two theorems of existence and uniqueness
of solutions to problem (1.5). In the first theorem, we assume that the
potential V = 0, and in the second theorem, we consider arbitrary V .

Theorem 3.4.1 (Case V = 0 ).
Assume that c : IRd → [0,∞) is strictly convex, of class C1, and satisfies
c(0) = 0 and (HC4). Assume that F : [0,∞) → IR is strictly convex, of
class C2 ((0,∞)) , and satisfies F (0) = 0 and (HF1) - (HF2). If s0 ∈
Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω), and V = 0, then, problem (1.5) has

a unique weak solution s : [0,∞) × Ω → [0,∞), in the sense that

(i). s + 1
s ∈ L∞ ((0,∞);L∞(Ω)) , ∇ (F ′(s)) ∈ Lq?

((0, T ) × Ω) , for 0 <
T <∞, and

(ii). for ξ ∈ C2
c (IR× IRd),

∫ ∞

0

∫

Ω

{

− s
∂ ξ

∂ t
+
〈

s∇c?
[

∇
(

F ′(s)
) ]

,∇ξ
〉

}

=

∫

Ω
s0(x) ξ(0, x) dx. (3.47)

Proof. By Proposition 3.2.5, (sh)h converges to s a.e., for a sub-
sequence. And since sh ≥ 0 for all h, we deduce that s ≥ 0. We com-
bine Proposition 3.2.5 and the maximum/minimum principle of Proposi-
tion 2.2.1, to conclude that s+ 1

s ∈ L∞ ((0,∞);L∞(Ω)) . By Lemma 3.3.1,
∇ (F ′(s)) ∈ Lq?

((0, T ) × Ω) , for 0 < T <∞. This proves (i).
Recall that Theorem 3.3.3 gives that ∇c? [∇ (F ′(s)) ] ∈ Lq ((0, T ) × Ω)
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for 0 < T < ∞, and Proposition 2.2.1 and Proposition 3.2.5 imply that
s ∈ L∞ ((0, T ) × Ω) . We deduce that s∇c? [∇ (F ′(s)) ] ∈ Lq ((0, T ) × Ω) ,
for 0 < T <∞. Now, let ξ ∈ C2

c (IR×IRd) be such that spt ξ(., x) ⊂ [−T, T ]
for some 0 < T <∞ and for all x ∈ Ω, and set ΩT := (0, T )×Ω. Because
of Proposition 2.5.1 and Proposition 3.1.2, we have that

lim
h↓0

∫

ΩT

{

(s0 − sh) ∂h
t ξ + 〈 sh∇c?

[

∇
(

F ′(sh)
) ]

,∇ξ 〉
}

= 0. (3.48)

Lemma 3.2.1 gives that (sh)h converges weakly to s in L1(ΩT ), for a
subsequence, and then, we have that

lim
h↓0

∫

ΩT

(s0 − sh) ∂h
t ξ =

∫

ΩT

(s0 − s)
∂ξ

∂t
(3.49)

= −
[
∫

ΩT

s
∂ξ

∂t
+

∫

Ω
s0(x)ξ(0, x)

]

.

By (3.6) and Proposition 3.2.5, (sh)h is bounded in L∞(ΩT ) and converges
a.e. to s, for a subsequence. We deduce that it converges strongly in

Lq?
(ΩT ). And since

{

∇c?
(

∇
(

F ′(sh)
))

}

h
converges weakly to

∇c? (∇ (F ′(s))) in Lq(ΩT ), for a subsequence (Theorem 3.3.3), we conclude
that

(iii)
{

sh∇c? (∇ (F ′(s)))
}

h
converges weakly to s∇c? (∇ (F ′(s))) in

L1(ΩT ), for a subsequence.

We combine (3.48) - (3.49) and (iii), and we use the fact that spt ξ(., x) ⊂
[−T, T ], to conclude (3.47).
Here, we prove uniqueness of the solution to (1.5) when ∂s

∂t ∈ L1 ((0, T ) × Ω) ,
for 0 < T <∞. By using the arguments in [16], we can extend the proof to
the general case. In fact, assumption (1.2) would not be required here; one
just need to notice that 〈∇c?(z1) −∇c?(z2), z1 − z2〉 ≥ 0 by the convexity
of c?.
Let T > 0, and assume that s1 and s2 are solutions of (1.5) with the same

initial data, such that N ≤ sj ≤ M, and
∂sj

∂t ∈ L1 ((0, T ) × Ω) , j = 1, 2.
Since ∇ (F ′(sj)) ∈ Lq?

((0, T ) × Ω) , and
∣

∣

∣
∇c?

[

∇
(

F ′(sj)
) ]

∣

∣

∣

q
≤M(β, q)

∣

∣

∣
∇
(

F ′(sj)
)

∣

∣

∣

q?

,

we have that ∇c? [∇ (F ′(sj)) ] ∈ Lq ((0, T ) × Ω) . For δ > 0, we define

ΩT 3 (t, x) 7→ ξδ (t, x) := ϕδ

(

F ′ (s1(t, x)) − F ′ (s2(t, x))
)

,

where

ϕδ(τ) :=







0 if τ ≤ 0
τ
δ if 0 ≤ τ ≤ δ
1 if τ ≥ δ
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Using ξδ as a test function (or a smooth approximation of ξδ, if needed) in
the equations satisfied by the solutions s1 and s2, we have that

∫

ΩT

ξδ ∂t(s1−s2) = −
∫

ΩT

〈s1∇c?
[

∇
(

F ′(s1)
) ]

−s2∇c?
[

∇
(

F ′(s2)
) ]

,∇ξδ 〉,

which reads as
∫

ΩT

ξδ ∂t(s1 − s2)

= −1

δ

∫

Ω
(1,2)
T

s1〈∇c?
[

∇
(

F ′(s1)
) ]

−∇c?
[

∇
(

F ′(s2)
) ]

,∇
(

F ′(s1) − F ′(s2)
)

〉

−1

δ

∫

Ω
(1,2)
T

(s1 − s2)〈∇c?
[

∇
(

F ′(s2)
) ]

,∇
(

F ′(s1) − F ′(s2)
)

〉,

where Ω
(1,2)
T := ΩT∩[ 0 < F ′(s1)−F ′(s2) < δ ]. Because c? is convex, the first

term on the right hand side of the above equality is non-positive. And since
F ∈ C1 ((0,∞)) is strictly convex and satisfies (HF1), and N ≤ s1, s2 ≤M,

we have on Ω
(1,2)
T , that

| s1−s2 | =
∣

∣

∣

[

(F ?)′ ◦ F ′] (s1)−
[

(F ?)′ ◦ F ′(s2)
]

∣

∣

∣ ≤ δ sup
τ∈[F ′(N),F ′(M) ]

(F ?)′′(τ).

We deduce that
∫

ΩT

ξδ ∂t(s1 − s2)

≤ sup
τ∈[ F ′(N),F ′(M) ]

(F ?)′′(τ)
∫

Ω
(1,2)
T

∣

∣

∣ 〈∇c?
[

∇
(

F ′(s2)
) ]

,∇
(

F ′(s1) − F ′(s2)
)

〉
∣

∣

∣.

We let δ go to 0 in the subsequent inequality, and we use that ϕδ → II[0,∞)

and [F ′(s1) − F ′(s2) ≥ 0 ] = [ s1 − s2 ≥ 0 ] , to have that

∫

ΩT

∂t

[

(s1 − s2)
+
]

≤ 0,

which reads as
∫

Ω
[ s1(T ) − s2(T ) ]+ ≤

∫

Ω
[ s1(0) − s2(0) ]+ = 0,

for 0 < T <∞. Interchanging s1 and s2 in the above argument, we conclude
that s1 = s2 �

Theorem 3.4.2 (General case).
Assume that V : Ω̄ → [0,∞) is convex, of class C1, and c : IRd → [0,∞)
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is strictly convex, of class C1, and satisfies c(0) = 0 and (HC4). Assume
that F : [0,∞) → IR is strictly convex, of class C 2 ((0,∞)) , and satisfies
F (0) = 0 and (HF1) - (HF2). If s0 ∈ Pa(Ω) is such that s0 + 1

s0
∈ L∞(Ω),

then, problem (1.5) has a unique weak solution s : [0,∞) × Ω → [0,∞), in
the sense that

(i). s + 1
s ∈ L∞ ((0,∞);L∞(Ω)) , ∇ (F ′(s)) ∈ Lq?

((0, T ) × Ω) , for 0 <
T <∞, and

(ii). for all ξ ∈ C2
c (IR× IRd),

∫ ∞

0

∫

Ω

{

− s
∂ ξ

∂ t
+
〈

s∇c?
[

∇
(

F ′(s) + V
) ]

,∇ξ
〉

}

=

∫

Ω
s0(x) ξ(0, x) dx. (3.50)

Proof. The proof of the uniqueness of solution is similar to that of
Theorem 3.4.1. We prove here the existence of solution. Let ξ ∈ C 2

c (IR×IRd)
be such that spt ξ ⊂ [−T, T ] for some 0 < T <∞, and set ΩT := (0, T )×Ω.
Because of Proposition 2.5.1 and Proposition 3.1.2, we have that

lim
h↓0

∫

ΩT

{

(s0 − sh) ∂h
t ξ + 〈 sh∇c?

[

∇
(

F ′(sh) + V
) ]

,∇ξ 〉
}

= 0. (3.51)

We show that the following claim suffices to conclude Theorem 3.4.2.

Claim: For 0 < T <∞, the following estimates hold:

‖ sh ‖L∞(IR;L∞(Ω)) ≤ ‖ s0 ‖L∞(Ω), (3.52)

∫

ΩT

sh
∣

∣

∣∇
(

F ′(sh)
) ∣

∣

∣

q?

≤M(Ω, T, F, s0, V, q, α), (3.53)

and the energy inequality in time-space

∫

Ω∞

〈sh∇
(

F ′(sh) + V
)

,∇c?
[

∇
(

F ′(sh) + V
) ]

〉u(t) (3.54)

≤ 1

h

∫

Ωh

[F (s0) + s0V ] u(t) +

∫

Ω∞

[

F (sh) + shV
]

∂h
t u(t),

where u is a non-negative function in C∞
c (IR).

Indeed, because of (3.52), there exists s : [0,∞) × Ω → [0,∞), such that

(iii) (sh)h converges to s, weakly in L1(ΩT ), for a subsequence.
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As a consequence,

lim
h↓0

∫

ΩT

(s0 − sh) ∂h
t ξ =

∫

ΩT

(s0 − s)
∂ξ

∂t
. (3.55)

Using (3.52) and (3.53), we deduce the space-compactness and the
time-compactness of (sh)h in L1(ΩT ), as in the case where V = 0. Conse-
quently,

(iv) (sh)h converges to s, strongly in L1(ΩT ), for a subsequence.

Then, we use (iv), the energy inequality in space-time (3.54), and we follow
the lines of the proof of Theorem 3.3.3, where we use F ′(sh) + V in place
of F ′(sh), and F (sh) + shV in place of F (sh), to conclude that

(v)
{

∇c?
[

∇
(

F ′(sh) + V
) ]

}

h
converges weakly to

∇c? [∇ (F ′(s) + V ) ] , in Lq(ΩT ), for a subsequence.

Hence,

lim
h↓0

∫

ΩT

〈sh∇c?
[

∇
(

F ′(sh) + V
) ]

,∇ξ〉

=

∫

ΩT

〈s∇c?
[

∇
(

F ′(s) + V
) ]

,∇ξ〉. (3.56)

We combine (3.51) and (3.55) - (3.56), to conclude (3.50).
As in Theorem 3.4.1, (i) follows directly from (3.52), (3.53) and the mini-
mum principle of Proposition 2.2.1.

Proof of the Claim. (3.52) is a direct consequence of the maximum
principle of Proposition 2.2.1.
Because of Proposition 2.3.1 and the maximum/minimum principle of Propo-
sition 2.2.1, we have that P (sh

i ) ∈ W 1,∞(Ω), and ∇
(

F ′(sh
i )
)

∈ L∞(Ω).
Then, choosing G := F in Theorem 2.4.2, the energy inequalities (2.58) and
(2.59) read as

∫

Ω
F (sh

i−1) −
∫

Ω
F (sh

i ) ≥
∫

Ω
〈∇
(

F ′(sh
i )
)

, Sh
i (y) − y〉 sh

i (y) dy,

and
∫

Ω
sh
i−1 V −

∫

Ω
sh
i V ≥

∫

Ω
〈∇V , Sh

i y − y 〉 sh
i (y) dy,

where Sh
i is the ch-optimal map that pushes sh

i forward to sh
i−1. We add

both of the subsequent inequalities, and we use (2.36), to have that

E(sh
i−1) −E(sh

i ) (3.57)

≥ h

∫

ΩT

〈∇
(

F ′(sh
i ) + V

)

,∇c?
[

∇
(

F ′(sh
i ) + V

) ]

〉 sh
i ,
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for i ∈ IN. We sum (3.57) over i, and we use that V and sh
T/h are non-

negative, and Jensen’s inequality, to have that

h

∫

ΩT

〈∇
(

F ′(sh) + V
)

,∇c?
[

∇
(

F ′(sh) + V
) ]

〉 sh

≤ E(s0) − |Ω |F
(

1

|Ω |

)

.

We conclude, as in the proof of (3.7), that

∫

ΩT

sh
∣

∣

∣
∇
(

F ′(sh) + V
) ∣

∣

∣

q?

≤ M̄(Ω, T, F, s0, q, α). (3.58)

On the other hand, because of (3.52) and the fact that V ∈ C 1(Ω̄), we have
that

∥

∥

∥ (sh)1/q? ∇V
∥

∥

∥

Lq? (ΩT )
≤ ‖ s0 ‖1/q?

L∞(Ω) ‖∇V ‖L∞(Ω). (3.59)

We combine (3.58) - (3.59), and we use Minkowski’s inequality, to conclude
(3.53).
The proof of (3.54) follows the lines of the proof of Lemma 3.3.2 where we
use the free energy inequality (3.57) in place of the internal energy inequality
(2.58) �
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Chapter 4

Open problems

In this chapter, we comment on two open problems related to (1.5). The first
problem deals with the asymptotic behavior of solutions to (1.5): what is the
equilibrium solution of (1.5)? And how fast do solutions of (1.5) converge
to equilibrium? In the second problem, we address the following question:
given two solutions s1 and s2 of (1.5), does a contraction principle in the
Wasserstein metric hold for some cost function c̃, that is,

Wc̃ (s1(t), s2(t)) ≤ f(t)Wc̃ (s1(0), s2(0)) ,

where f is a positive, non-increasing function on [0,∞), and W c̃ := W h
c̃

when h = 1?

4.1 Asymptotic behavior of solutions

In this section, we comment on the first problem. We show that (1.5) has an
equilibrium solution s∞, and we argue on why one should expect solutions
of (1.5) to decay exponentially fast to s∞.

4.1.1 Equilibrium solution

Conjecture 4.1.1 Assume that F : [0,∞) → IR is strictly convex and
satisfies (HF1), and V : Ω → [0,∞) is convex. If s0 ∈ Pa(Ω) is such that
E(s0) <∞, then

(I) : inf
{

E(s) :=

∫

Ω
[F (s) + sV ] dx : s ∈ Pa(Ω)

}

has a unique minimizer s∞.
Furthermore, if F ∈ C2 ((0,∞)) and V ∈ C1(Ω), then s∞ satisfies

s∞∇
(

F ′(s∞) + V
)

= 0. (4.1)

73
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The function s∞ defined by (4.1) is called the equilibrium solution of
(1.5). Here and after, we assume that s∞ is positive, and therefore, satisfies

∇
(

F ′(s∞) + V
)

= 0. (4.2)

Proof. Existence and uniqueness of the minimizer for I follow the
lines of the proof of Proposition 2.1.1. To show (4.1), we proceed as in
Proposition 2.3.1. Indeed, for ψ ∈ C∞

c (Ω, IRd), we define φε by (2.38), and
sε to be the density function of µε := (φε)#s∞. As in Proposition 2.3.1, we
have that

lim
ε→0

∫

Ω

[

F (sε) − F (s∞)

ε
+
sε − s∞

ε
V

]

dx

= −
∫

Ω
[P (s∞) divψ + s∞〈∇V, ψ〉 ] dx.

We use an integration by parts, and the fact that ∇ (P (s∞)) = s∞∇ (F ′(s∞)) ,
to deduce (4.1) �

4.1.2 Trend to equilibrium

We argue that the free energy E (s(t)) of a solution s of problem (1.5) is a
decreasing quantity, unless s coincides with the equilibrium solution s∞, in
which case the time derivative of E (s(t)) vanishes. It then makes sense to
expect solutions of (1.5) to decay to the equilibrium solution s∞, in relative
entropy. Using the generalized transport inequality established in [7], that
is,

Wc (s, s∞) ≤ 1

λ
[E(s) −E(s∞) ] ,

we expect to obtain a decay in the Wasserstein metric. It might also be
possible to estimate the rate at which solutions tend to equilibrium, as we
shall see in Conjecture 4.1.4. Following Cordero-Gangbo-Houdré [7], we
introduce the generalized relative Fisher information of s with respect to

s∞, measured against the cost c?

Ic?(s/s∞) :=

∫

Ω
〈∇
(

F ′(s) − F ′(s∞)
)

,∇c?
[

∇
(

F ′(s) − F ′(s∞)
)]

〉 sdx.

As noted by the authors of [7], Ic?(s/s∞) is actually the Fisher information

I(s/s∞) =

∫

IRd

∣

∣

∣
∇ ln

(

s

s∞

)

∣

∣

∣

2
sdx,

when c(z) = | z |2
2 and F (x) = x ln(x). In this case, s∞ = e−V

R

Ω
e−V is the

Gibbs function, and the following well-known entropy dissipation equation

d

d t
H(s) = −I(s(/s∞), (4.3)
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holds for the Fokker-Planck equation; here

H(ρ) :=

∫

Ω
(ρ ln(ρ) + ρV ) dx

is the entropy functional. We expect the following generalization of (4.3):

Conjecture 4.1.2 (Energy dissipation)
Assume that c, F and V satisfy the assumptions in Theorem 3.4.2. If s is
a solution of (1.5), then

d

d t
E (s(t)) = −Ic?(s/s∞) ≤ 0. (4.4)

Sketch of proof. Assume that s is smooth enough so that one can
differentiate E (s(t)) . We have that

d

d t
E (s(t)) =

∫

Ω

[

F ′(s) + V
] ∂ s

∂ t
dx

=

∫

Ω

[

F ′(s) + V
]

div
{

s∇c?
[

∇
(

F ′(s) + V
) ]

}

dx

= −
∫

Ω
〈∇
(

F ′(s) + V
)

,∇c?
[

∇
(

F ′(s) + V
) ]

〉 sdx

= −Ic?(s/s∞),

where we use (4.2) in the last equality. And since s ≥ 0, and 〈z,∇c?(z)〉 ≥ 0
for z ∈ IRd (Proposition 5.3.3), we conclude that Ic?(s/s∞) ≥ 0 �

Before stating our convergence results, we recall the generalized transport
inequality and Logarithmic-Sobolev inequality of Cordero-Gangbo-Houdré
[7]. These inequalities will be the key ingredients in the trend to equi-
librium of the solutions to (1.5). Here, we will not assume that λ = 1,
contrarily to [7]. This will allow us to obtain a sharper rate in the conver-

gence to equilibrium, when the cost function is c(z) = | z |q
q , q > 1. Following

Cordero-Gangbo-Houdré [7], we assume that the potential V is c-uniform
convex, that is,

V (b) − V (a) ≥ 〈∇V (a), b − a〉 + λ c(a− b), (4.5)

for a, b ∈ Ω, and for some λ > 0. When c(z) = | z |2
2 , (4.5) is equivalent to

the uniform convexity of V , that is, Hess (V ) ≥ λ Id if V ∈ C 2(Ω). Note
that, since λc ≥ 0, (4.5) implies that V is convex, and so, our existence and
uniqueness results of Theorems 3.4.1 and 3.4.2 still hold.

Proposition 4.1.3 (Cordero-Gangbo-Houdré)
Assume that c : IRd → [0,∞) is even, strictly convex, of class C1, and
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satisfies c(0) = 0 and (HC4). Assume that F : [0,∞) → IR satisfies

F ∈ C ([0,∞)) ∩ C2 ((0,∞)) , F (0) = 0, limt→∞
F (t)

t = ∞, and (0,∞) 3
t 7→ tdF (t−d) is convex and non-increasing. Assume that V : Ω̄ → [0,∞)
is of class C1 and satisfies (4.5). If s∞ ∈ Pa(Ω) satisfies (4.2), then, the
generalized transport inequality

Wc(s, s∞) ≤ 1

λ
[E(s) −E(s∞) ] (4.6)

holds, for s ∈ Pa(Ω). In addition, if s ∈W 1,∞(Ω) and s > 0, then,

E(s) −E(s∞) + λWc(s∞, s) ≤
∫

Ω
〈Id − S,∇

[

F ′(s) − F ′(s∞)
]

〉 s. (4.7)

Here Wc := W h
c when h = 1, and S is the c-optimal map, such that S#s =

s∞.
Furthermore,

(i). if c is homogeneous of degree q > 1, that is, c(z) = | z |q
q , then,

E(s) −E(s∞) ≤ 1

q?λq?−1 Ic?(s/s∞). (4.8)

(ii). if λ ≥ 1, and c is arbitrary, then,

E(s) −E(s∞) ≤ Ic?(s/s∞). (4.9)

(4.8) and (4.9) are called generalized Logarithmic Sobolev inequalities.

Proof. Because of the energy inequalities (2.58) and (2.59), where
use (4.5) in place of the convexity of V, we have that

E(ρ0) −E(ρ1) ≥
∫

Ω
〈∇
(

F ′(ρ1) + V
)

, S − Id〉 ρ1 + λWc(ρ0, ρ1), (4.10)

for ρ0, ρ1 ∈ Pa(Ω), where S is the c-optimal map pushing ρ1 forward to ρ0.
We set ρ0 = s and ρ1 = s∞ in (4.10), and we use (4.2), to conclude (4.6).
Next, we set ρ0 = s∞ and ρ1 = s in (4.10), and we use (4.2), to conclude
(4.7).

Now, assume that c(z) = | z |q
q and set c̃(z) = λ c. Clearly,

c̃?(z) = λ c?
( z

λ

)

=
| z |q?

q?λq?−1
, (4.11)

and then,

Ic?(s/s∞) =

∫

Ω

∣

∣

∣∇
(

F ′(s) − F ′(s∞)
)

∣

∣

∣

q?

s . (4.12)
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We combine (4.7) and Young’s inequality

〈y, z〉 ≤ c̃(y) + c̃?(z), (4.13)

to obtain that

E(s) −E(s∞) + λWc(s∞, s)

≤
∫

Ω
c̃ (Id − S) sdy +

∫

Ω
c̃?
(

∇
(

F ′(s) − F ′(s∞)
))

sdy.

We use (4.11), (4.12) and the fact that c is even in the subsequent inequality,
to conclude (4.8).
Next, assume that λ ≥ 1 and c is arbitrary. Using Young’s inequality (4.13)
on the cost c, and the fact that c is even, we deduce from (4.7), that

E(s) −E(s∞) ≤ (1 − λ)Wc(s∞, s) +

∫

Ω
c?
(

∇
(

F ′(s) − F ′(s∞)
))

sdy.

And since 1 − λ ≤ 0 and 〈z,∇c?(z)〉 ≥ c?(z) (see Proposition 5.3.3), we
conclude (4.9) �

Conjecture 4.1.4 (Trend to equilibrium)
In addition to the hypotheses of Theorem 3.4.2, assume that c is even. Let
s be a solution of (1.5).

(i). If c(z) = | z |q
q , q > 1, then,

W (s(t), s∞) ≤ 1

λ
[E (s(t)) −E(s∞) ]

≤ 1

λ
e−(q?λq?

−1) t [E(s0) −E(s∞) ] , (4.14)

for t ∈ [0,∞).

(ii). If λ ≥ 1, and c is arbitrary, then,

W (s(t), s∞) ≤ 1

λ
[E (s(t)) −E(s∞) ]

≤ 1

λ
e−t [E(s0) −E(s∞) ] , (4.15)

for t ∈ [0,∞).

Sketch of proof. Because of (4.4) and (4.8), we have that

d

d t
[E (s(t)) −E(s∞) ] ≤ −q? λq?−1 [E (s(t)) −E(s∞)] ,
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which reads as

d

d t

{

e(q
?λq?

−1) t [E (s(t)) −E(s∞) ]
}

≤ 0,

We combine (4.6) and the subsequent inequality, to conclude (4.14). The
proof of (4.15) is similar �

Remark 4.1.5 Conjecture 4.1.4 extends a result of Carillo-Jüngel-Markowich-
Toscani-Unterreiter [5], which states that:

if s0 ∈ Pa(Ω) ∩ L∞(Ω), and V : IRd → IR and f : [0,∞) → IR sat-
isfy:

(H1): infΩ V = 0, V = W/Ω, where W ∈ C2(IRd, IR), and
Hess(W ) ≥ λ Id, for some λ ≥ 0,

(H2): f is continuous, strictly increasing, f(0) = 0, and f/(0,∞) ∈
C3 ((0,∞)),

(H3): f(u) ≤ d
d−1 uf

′(u), for u > 0,

and some technical assumptions on f, then the solution s of























∂s
∂t = div (s∇V + ∇ (f(s))) on Ω × (0,∞)

s(t = 0) = s0 on Ω

(s∇V + ∇ (f(s))) · ν = 0

(4.16)

satisfies
E (s(t)) −E(s∞) ≤ e−2λ t [E(s0) −E(s∞) ] , (4.17)

for t ≥ 0.

Notice that (4.16) is equivalent to (1.5) when c(z) = | z |2
2 and F ′′(x) =

f ′(x)
x , x > 0, and the statement (4.17) is included in (4.14) for that uqadratic

cost function c. Now, we show that, under assumptions (H1) - (H3),
Conjecture 4.1.4 still holds. Indeed, because of (H2), and the fact that

F ′′(x) = f ′(x)
x , we have that F ∈ C ([0,∞))∩C4 ((0,∞)) is strictly convex.

Define the pressure

P (x) :=

{

xF ′(x) − F (x), x > 0
0 x = 0,

and set
(0,∞) 3 x 7→ A(x) := xd F (x−d).
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Because of (H2), we have that P = f, and by direct computations, we
show that

A′(x) = −dxd−1f(x−d),

and

A′′(x) = d2xd−2

[

x−df(x−d) −
(

1 − 1

d

)

f(x−d)

]

.

We use (H2) and (H3), to obtain that A′(x) < 0 and A′′(x) > 0, for
x > 0. This shows that A is convex and non-increasing. Then, we can apply
Conjecture 4.1.4, to deduce (4.17) �

4.2 Contraction in the Wasserstein metric

To avoid technicalities, we assme that the potential V is zero. Let s1 and s2
be two solutions of (1.5) in the sense of Theorem 3.4.1, and set W c̃ = W h

c̃ ,
where h = 1 and c̃ : IRd → IR is an arbitrary convex cost function. We
address the following question, which ensures uniqueness of the solution to
(1.5) : does the contraction principle

Wc̃ (s1(t), s2(t)) ≤Wc̃ (s1(0), s2(0)) (4.18)

hold for t ∈ [0,∞)?

Sketch of proof. For t ∈ (0,∞) fixed, denote by γt the c̃-optimal
measure in Γ (s1(t), s2(t)) , and let τ ∈ [t,∞). Since sj , j = 1, 2, satisfies























∂sj

∂t + div (sj Usj
) = 0

sj(τ = t) = sj(t)

Usj
:= −∇c? [∇ (F ′(sj)) ] ,

(4.19)

we have, using the relation between Lagrangian and Eulerian descriptons,
that

sj(τ) = (Φj(τ))# sj(t), (4.20)

where the trajectories Φj(τ) are defined by







∂Φj(τ)
∂τ = Usj

(τ,Φj(τ))

Φj(t) = idΩ.

(4.21)

Because of (4.20), γτ := (Φ1(τ) × Φ2(τ))# γt ∈ Γ (s1(τ), s2(τ)) , and then,
we have that

d

d τ

/

τ=t
Wc̃ (s1(τ), s2(τ))
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= lim
τ↓t

Wc̃ (s1(τ), s2(τ)) −Wc̃ (s1(t), s2(t))

τ − t

≤ lim
τ↓t

1

τ − t

∫

Ω×Ω
[ c̃ (Φ1(τ, x) − Φ2(τ, y)) − c̃(x− y) ] dγt(x, y).

We use (4.21), and the fact that c̃ is convex, to have that

d

d τ

/

τ=t
Wc̃ (s1(τ), s2(τ))

≤
∫

Ω×Ω
〈∇c̃(x− y), Us1(t, x) − Us2(t, y)〉dγt(x, y). (4.22)

We combine (4.19) and (4.22), to conclude that

d

d τ

/

τ=t
Wc̃ (s1(τ), s2(τ)) ≤ (4.23)

−
∫

Ω×Ω
〈∇c̃(x− y),∇c?

[

∇
(

F ′(s1(t, x))
) ]

−∇c?
[

∇
(

F ′(s2(t, x))
) ]

〉dγt(x, y).

Furhermore, because of the energy inequality (2.58), we have that

∫

Ω
F (s1(τ)) −

∫

Ω
F (s2(τ)) ≥

∫

Ω
〈∇
(

F ′(s2(τ))
)

, S − id〉 s2(τ) (4.24)

=

∫

Ω×Ω
〈∇
(

F ′(s2(τ, y))
)

, x− y〉dγt(x, y),

and similarly,

∫

Ω
F (s2(τ)) −

∫

Ω
F (s1(τ)) ≥

∫

Ω×Ω
〈∇
(

F ′(s1(τ, x))
)

, y − x〉dγt(x, y).

(4.25)
We add (4.24) and (4.25), to obtain that

∫

Ω×Ω
〈x− y,∇

(

F ′(s2(τ, y))
)

−∇
(

F ′(s1(τ, x))
)

〉dγt(x, y) ≤ 0. (4.26)

Case 1: c(z) = | z |2
2

We set c̃(z) = | z |2
2 , combine (4.23) and (4.26), and use that ∇c̃ =

∇c? = idIRd , to have that

d

d τ

/

τ=t
W2 (s1(τ), s2(τ)) ≤ 0.

This shows that

W2 (s1(τ), s2(τ)) ≤W2 (s1(0), s2(0)) , (4.27)
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for t ∈ [0,∞). Hence, one expects the contraction principle (4.27) to hold
for the class of PDE

∂s

∂ t
= div {s∇

(

F ′(s)
)

},

which includes the heat equation and the porous medium equation. A similar
result may be obtained for the Fokker-Planck type equation

∂s

∂ t
= div {s∇

(

F ′(s) + V
)

}, (4.28)

if one removes the assumption that V = 0. Indeed, assume that the poten-
tial V is uniformly convex with Hess(V ) ≥ λ id. Following the arguments
presented above, and using the (potential) energy inequality

∫

Ω
s1(τ)V −

∫

Ω
s2(τ)V ≥

∫

Ω
〈∇V (y), x− y〉dγt(x, y) + λW2 (s1(τ), s2(τ)) ,

we have that

d

d τ

/

τ=t
W2 (s1(τ), s2(τ)) ≤ 2λW2 (s1(τ), s2(τ)) .

We deduce the following contraction principle for (4.28)

W2 (s1(τ), s2(τ)) ≤ e−2λt W2 (s1(0), s2(0)) . (4.29)

In particular, if s2 coincides with the equilibrium solution s∞ of (4.28),
(4.29) reads as

W2 (s1(t), s∞) ≤ e−2λt W2 (s1(0), s∞) , (4.30)

which shows that solutions of (4.28) decay exponentially fast to the equilib-
rium solution s∞ with the rate 2λ. A similar result was obtained by Otto
[18] when F (x) = xm

m−1 . We expect that (4.30) would extend Otto’s result
to more general energy density functions F.

Case 2: General cost functions

When the cost function c is not homogeneous of degree 2 (the case of
the p-Laplacian equation, for example), we have not been able to establish
(4.18). The difficulty here, is due to the fact that we could not compare the
term on the right hand side of (4.23) and that on the left hand side of (4.26),

which are actually identical when c(z) = | z |2
2 . We note that this difficulty

does not come from the infinite-dimensional character of equation (1.5), but,
it is due to the form of that equation. Indeed, consider a finite-dimensional
ODE type of (1.5) when V = 0, that is,

ẋ(t) = −∇c? [∇f (x(t)) ] , (4.31)
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where [0,∞) 3 t 7→ x(t) ∈ IRd, and f : IRd → IR is convex. By a direct
computation using (4.31), we have that

d

d t
[ c̃ (x(t) − y(t)) ] = −〈∇c̃(x− y),∇c? (∇f(x)) −∇c? (∇f(y))〉,

where c̃ : IRd → [0,∞) is an arbitrary convex cost function. It clearly
appears that, when c is not homogeneous of degree 2, the mere convexity of
f is not sufficient to ensure that c̃ (x(t), y(t)) is non-increasing in t, even if

c̃ = c or c̃ = | z |2
2 . Consequently, there is not much hope to expect (4.18)

to hold when the cost function c is not homogeneous of degree 2. Still,
one can ask the following questions: are there possible physically acceptable
conditions to impose on f , so that (4.18) holds for conveniently chosen cost
functions c̃? Or, can one establish a contraction principle with another
metric equivalent to the Wasserstein metric?



Chapter 5

Appendix

In this chapter, we collect results of previous authors used in this work, and
we establish intermediate results needed in the previous chapters. Through-
out this chapter, c : IRd → [0,∞) is a convex function, and µ and ν are
Borel probability measures on IRd. We denote by S := id +∇c?(−∇v) the
c-optimal map that pushes ν forward to µ. Here v is a c-concave function,
that is,

v(y) := uc(y) = inf
x∈IRd

{ c(x − y) − u(x) },

where u : IRd → IR is a measurable function. We recall that S−1 := T =
id +∇c?(∇u) is the c-optimal map that pushes µ forward to ν, and u = vc.
For t ∈ [0, 1], we define the interpolant map

St := (1 − t)id + tS,

the interpolant measure
µ1−t := St#ν,

and the time-dependent cost function

c(t)(z) := t c

(−z
t

)

,

for z ∈ IRd.

5.1 Optimality of the interpolant map

In this section, we recall a result due to Villani [23], that is, St is the c(t)-
optimal map that pushes ν forward to µ1−t, for t ∈ (0, 1]. Following Villani
[23], we introduce the time-dependent Monge problem (TDMP )τ , and the
time-independent Monge problem (TIMP )τ , where τ ∈ (0, 1]:

(TDMP )τ : inf
{

∫

IRd

∫ τ

0
c (żt(y)) dtdν(y) : for a.e. y, [0, τ ] 3 t 7→ zt(y)

is C0, piecewise C1, z0(y) = y and zτ #ν = µ1−τ

}

,

83
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and

(TIMP )τ : inf
{

∫

IRd

c(τ) (y −A(y)) dν(y) : A#ν = µ1−τ

}

.

The following proposition is the first step toward showing the relation be-
tween (TDMP )τ and (TIMP )τ .

Proposition 5.1.1 Let x, y ∈ IRd and τ ∈ (0, 1]. Then

(i).

(C)τ : inf
{

∫ τ

0
c (żt(y)) d t : for a.e. y, [0, τ ] 3 t 7→ zt(y)

is C0, piecewise C1, z0(y) = y and zτ (y) = x
}

= τ c

(

x− y

τ

)

= τ c

(

zτ (y) − y

τ

)

.

Therefore, (TDMP )τ and (TIMP )τ have the same total cost.

(ii). If c is strictly convex, the infimum in (Cτ ) is uniquely attained at
zt(y) := y + t

τ (x− y).

Proof. Because of Jensen’s inequality, we have that

∫ τ

0
c (żt(y)) d t ≥ τ c

(

1

τ

∫ τ

0
żt(y) dt

)

= τ c

(

x− y

τ

)

, (5.1)

for all paths [0, τ ] 3 t 7→ zt(y). Moreover, the path t 7→ zt(y) := y+ t
τ (x−y)

is admissible in (Cτ ), and

∫ τ

0
c (żt(y)) d t = τ c

(

x− y

τ

)

. (5.2)

We combine (5.1) and (5.2), to conclude (i).
If c is strictly convex, the infimum in (Cτ ) is unique. Because of (5.2), it is
attained at zt(y) := y + t

τ (x− y) �

Corollary 5.1.2 Let τ ∈ (0, 1].

(i). If [0, τ ] 3 t 7→ zt(y) is an infimum of (TDMP )τ , then for ν a.e.,
t 7→ zt(y) is also an infimum of (Cτ ).

(ii). Assume that c is strictly convex. If [0, τ ] 3 t 7→ zt(y) is the unique
minimizer for (TDMP )τ , then zτ is the unique minimizer for
(TIMP )τ .
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Proof. (i) Let zt be an infimum of (TDMP )τ . If there is an admis-
sible path Zt in (C)τ , such that

∫ τ

0
c
(

Żt(y)
)

dt <

∫ τ

0
c (żt(y)) dt,

we will have that
∫

IRd

∫ τ

0
c
(

Żt(y)
)

dt <

∫

IRd

∫ τ

0
c (żt(y)) dt,

which yields a contradiction.
(ii) Now assume that c is strictly convex, and let [0, τ ] 3 t 7→ zt be a
miminizer for (TDMP )τ . Because of the following relaxed formulation of
(TDMP )τ ,

inf
{

∫

IRd×IRd

∫ τ

0
c (żt(x, y)) d tdγ(x, y) : for a.e. y, [0, τ ] 3 t 7→ zt(x, y)

is C0, piecewise C1, z0(x, y) = x, zτ (x, y) = y and γ ∈ Γ(ν, µ1−τ )
}

,

we have that zt is the unique minimizer for (TDMP )τ . By Proposition 5.1.1
- (i), (TDMP )τ and (TIMP )τ have the same total cost, and by Proposition
5.1.1 and Corollary 5.1.2 - (i), the total cost associated with (TDMP )τ is

∫

IRd

τ c

(

zτ (y) − y

τ

)

d ν(y) =

∫

IRd

c(τ) (y − zτ (y)) dν(y).

We deduce that

inf
{

∫

IRd

c(τ) (y −A(y)) dν(y) : A#ν = µ1−τ

}

=

∫

IRd

c(τ) (y − zτ (y)) dν(y).

Hence, zτ is the unique minimizer for (TIMP )τ �

Theorem 5.1.3 Assume that c is strictly convex. For all τ ∈ (0, 1], the
path [0, τ ] 3 t 7→ St(y) := y + t∇c? (−∇v(y)) is the unique minimizer for
(TDMP )τ . Therefore, Sτ is the c(τ)-optimal map that pushes ν forward to
µ1−τ .

Proof. We distinguish two cases.
Case 1: τ = 1
By Proposition 5.1.1 and Corollary 5.1.2, the minimizer [0, 1] 3 t 7→ zt for
(TDMP )1 satisfies

zt(y) = y + t (z1(y) − y) . (5.3)
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Since S(y) = y + ∇c? (−∇v(y)) is the unique minimizer for (TIMP )1,
Corollary 5.1.2 - (ii) gives that

z1(y) = S(y) = y + ∇c? (−∇v(y)) . (5.4)

We combine (5.3) and (5.4), to conclude that zt = St, for t ∈ [0, 1].
Case 2: 0 < τ < 1
Assume by contradiction that there is a strictly better path [0, τ ] 3 t 7→ z̃t

than [0, τ ] 3 t 7→ St, and define on [0, 1] the path

zt :=

{

z̃t if t ∈ [0, τ ]
St if t ∈ [τ, 1]

Clearly, zt is admissible in (TDMP )1, and

∫

IRd

∫ 1

0
c (żt(y)) dtdν(y) =

∫

IRd

∫ τ

0
c
(

˙̃zt(y)
)

dtdν(y)

+

∫

IRd

∫ 1

τ
c
(

Ṡt(y)
)

dtdν(y)

<

∫

IRd

∫ 1

0
c
(

Ṡt(y)
)

dtdν(y),

which contradicts the fact that [0, 1] 3 t 7→ St is optimal in (TDMP )1.
Hence, [0, τ ] 3 t 7→ St is the minimizer for (TIMP )τ , for all τ ∈ (0, 1].
Now, we use Corollary 5.1.2 - (ii), to deduce that Sτ is the unique minimizer
for (TIMP )τ . �

5.2 Jacobian equations for optimal transport maps

In this section, we collect some results established by Cordero [6], which are
needed in this work, and we sketch their proofs. In fact, we give a precise
meaning to ∇S(y), and we establish few properties of this matrix. In ad-
dition, we show that the interpolant measure µ1−t is absolutely continuous
with respect to Lebesgue, and ∇St satisfies similar properties as ∇S. Fol-
lowing Cordero [6], we introduce the definitions of the terms we shall need
in this section.

Definitions

• A multivalued mapping T : IRd → IRd is an application from IRd to
the subsets of IRd. We also denote it by

T : D(T ) → T (D(T )) ,

where
D(T ) := {x ∈ IRd : T (x) 6= ∅ }
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is called the domain of definition of T , and

T (D(T )) :=
⋃

x∈D(T )

T (x).

• The uniqueness domain of the multivalued mapping T is defined by

dom (T ) := {x ∈ D(T ) : T (x) is a singleton }.

Hence, T : dom (T ) → IRd is a single-valued mapping.

• The inverse of a multivalued mapping T : D(T ) → T (D(T )) is the
multivalued mapping T−1 : T (D(T )) → D(T ), defined by

T−1(y) := {x ∈ D(T ) : y ∈ T (x) }.

• A multivalued mapping T : D(T ) → T (D(T )) is differentiable at
x ∈ D(T ), if x ∈ (dom (T )) ∩ (int (D(T )) , and there exists a linear
map d Tx : IRd → IRd, such that

sup
y∈T (x+u)

| y + Tx− d Tx(u) | = o(|u |).

d Tx is called the differential of T at x.

Theorem 5.2.1 (Jacobian equation for optimal transport maps)
Assume that c is strictly convex and c, c? ∈ C2(IRd). Assume that µ and
ν are compactly supported in Ω̄, and are absolutely continuous with respect
to Lebesgue, with f and g as their respective density functions. Then, there
is a subset K of Ω, of full measure for ν, such that the followings hold for
y ∈ K

(i). ∇S(y) is well defined, and is diagonalizable with positive eigenvalues.

(ii). The pointwise Jacobian det (∇S) satisfies

0 6= g(y) = f (S(y)) det (∇S(y)) .

In addition, if g > 0 a.e., then

(iii). the pointwise divergence div (S) is integrable on Ω, and

∫

Ω
div (Sy − y) ξ(y) dy ≤ −

∫

Ω
〈Sy − y , ∇ξ 〉 dy,

for ξ ≥ 0 in C∞
c (IRd).
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Sketch of proof. Recall that S(y) = y + ∇c? (−∇v(y)) , where v :
Ω̄ → Ω̄ is c-concave, that is,

v(y) := uc(y) = inf
x∈Ω̄

{c(x− y) − u(x) }

for y ∈ Ω̄, and u : Ω̄ → Ω̄ is a measurable function. Because c ∈ C2(IRd)
is c-concave, and Ω̄ is compact, we have that

(iv) v is semi-concave on Ω.

Let ∂v denote the super-differential of v, that is, the multivalued map-
ping ∂v : D(∂v) = Ω → IRd, defined by

∂v(y) := { l ∈ IRd : v(y + z) − v(y) ≤ 〈l, z〉 + o(| z |) }.

Because of (iv), Aleksandrov’s theorem gives that

(v) there exists K1 ⊂ Ω, of full Lebesgue measure, such that, ∂v
is differentiable at y ∈ K1, and D2v(y) := d(∂v)y is a symmetric matrix.

We use (v), and the fact that c? ∈ C2(IRd), to conclude that

(vi) the multivalued mapping S̃ : Ω 3 y → y + ∇c? (−∂v(y)) is
differentiable at y ∈ K1, and

(d S̃)y = id −D2c? (−∂v(y))D2v(y).

Now, consider the c-super-differential ∂cv of v, that is, the multivalued
mapping ∂cv : D(∂cv) = Ω̄ → Ω̄, defined by

∂cv(y) := {x ∈ Ω̄ : v(y) + vc(x) = c(x− y) }
= {x ∈ Ω̄ : c(x− y) − v(y) ≤ c(x− z) − v(z), ∀ z ∈ Ω̄ }.

Since c and c? are continuously differentiable, and c is convex, we have that

∂cv(y) ⊂ y + ∇c? (−∂v(y)) = S̃(y). (5.5)

Furthermore, because v is semi-concave, Rademacher’s theorem gives that

(vii) the set D1v ⊂ Ω where v is differentiable, is a set of full
Lebesgue measure.

Moreover, we have that

K1 ⊂ D1v, and ∂cv(y) = {S(y)}, ∀ y ∈ D1v. (5.6)
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We combine (v) - (vii), (5.5) - 5.6, and we use the fact that ν is absolutely
continuous with respect to Lebesgue, to obtain that ν(K1) = 1, and

∇S(y) := d(S̃)y = id +D2c? (−∇v(y))D2v(y),

for y ∈ K1. We set

K := { y ∈ K1 : ∂u = ∂vc is differentiable at S(y), y is a Lebesgue

point of g, S(y) is a Lebesgue point of f, and g(y) 6= 0 }.

Since ν(K1) = 1, T := S−1 = id + ∇c?(∇u) is the c-optimal map, such
that T#µ = ν, and the Lebesgue points of f and g are sets of full Lebesgue
measure, we have that ν(K) = 1. Moreover, for y ∈ K, −D2v(y) and
D2c? (−∇v(y)) are respectively symmetric and symmetric positive definite
matrices, and because of the c-concavity of v, we have that

D2c? (−∇v(y)) ≥ D2v(y).

We deduce that ∇S(y) is diagonalizable with non-negative eigenvalues (see
Lemma A.4, [15]). Interchanging S and T in the above argument, we con-
clude that ∇S(y) is invertible, and therefore, ∇S(y) has positive eigenvalues.
This proves (i).
Now, let y ∈ K. Because µ is absolutely continuous with respect to Lebesgue,
S(y) = ∂cv(y), and µ = S#ν, we have that

f (S(y)) = lim
r→0

µ [Br (S(y)) ]

vol [Br (S(y)) ]

= lim
r→0

ν
[

S−1 (Br(Sy))
]

vol [S−1 (Br(Sy)) ]
lim
r→0

vol
[

(∂cv)−1 (Br(Sy))
]

vol [Br(Sy) ]
.

We use that the density function of ν is g, and that (∂cv)−1 = ∂cu is
differentiable at S(y) with differential d

(

(∂cv)−1
)

S(y)
= [ d(∂cv)y ]−1 , to

conclude that

f (S(y)) =
g(y)

det [ d(∂cv)y ]
.

Hence,

0 6= g(y) = f (S(y)) det [ d(∂cv)y ] = f (S(y)) det (∇S(y)) .

The proof of (iii) follows the ideas of the proof of Proposition A.4 - (c)
[15]. Indeed, let

(

S(ε)
)

ε↓0 denote the approximate sequence to S, con-

structed as in [15]. We have that
(

S(ε) − id
)

→ (S − id) in L1(Ω), and

div
(

S(ε)(y) − id
)

→ div (S(y) − id) for y ∈ K, and K is a set of full mea-
sure for ν = g(y) dy. Since g > 0 a.e. and g/Kc = 0, we deduce that K is
of full measure Lebesgue measure. Hence, we follow the lines of the proof of
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Proposition A.4 - (c) [15], to conclude (iii) �

The next theorem asserts that, the interpolant map St, viewed as a mul-
tivalued mapping, is injective on its uniqueness domain, and the interpolant
measure µ1−t is absolutely continuous with respect to Lebesgue. For the
proof of this theorem, we refer to [6].

Theorem 5.2.2 (Injectivity and density of the interpolant map)
Assume that c is strictly convex. Then,

(i). for t ∈ (0, 1), the multivalued mapping Mt := (1 − t) id + t ∂cv is
injective on dom (Mt) = dom (∂cv). Therefore, if c ∈ C2(IRd), the
single-valued mapping St = (Mt)/D1v is injective. Here, D1v ⊂ Ω is
the set where v is differentiable, which is clearly a set of full Lebesgue
measure.

(ii). Furthermore, if c, c? ∈ C2(IRd), and µ and ν have compact support
in Ω̄ and are absolutely continuous with respect to Lebesgue, then, the
interpolant measure µ1−t = St#ν is absolutely continuous with respect
to Lebesgue.

As a corollary of Theorem 5.2.1 and Theorem 5.2.2, we have the following
Jacobian equation for the interpolant map St.

Corollary 5.2.3 (Jacobian equation for the interpolant map)
Assume that c is strictly convex and c, c? ∈ C2(IRd). Assume that µ and ν
are compactly supported in Ω̄, and are absolutely continuous with respect to
Lebesgue, with f and g as their respective density functions. If f1−t denote
the density of µ1−t for t ∈ (0, 1), then, there exists K̃ ⊂ Ω of full measure
for ν, such that

0 6= g(y) = f1−t (St(y)) det [ (1 − t) id + t∇S(y) ] , (5.7)

for y ∈ K̃.

Proof. Because of Theorem 5.1.3, there exists a c(t)-concave function
ψt, such that,

St(y) = y + ∇c?(t) (−∇ψt(y))

is the c(t)-optimal map that pushes ν forward to µ1−t. Since c is convex,

c, c? ∈ C2(IRd), and c?(t)(z) = t c?(−z), we have that c(t) is convex, and

c(t), c
?
(t) ∈ C2(IRd). Furthermore, µ1−t has compact support in Ω̄, and be-

cause of Theorem 5.2.2, it is absolutely continuous with respect to Lebesgue.
We use Theorem 5.2.1 - (ii), to conclude (5.7) �
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5.3 Intermediate results

For the convenience of the reader, we recall in the next two propositions,
some properties of W h

c and the energy functional s 7→
∫

Ω F (s(x)) dx. For
the proof of the next proposition, we refer to Propositions A.1 and A.2 in
[15], and Theorem 1.1-(iii) in [8].

Proposition 5.3.1 Let s0 ∈ Pa(Ω), and h > 0. Assume that F : [0,∞) →
IR is convex, and c : IRd → [0,∞) is strictly convex. Then

(i). Pa(Ω) 3 s 7→ W h
c (s0, s) and Pa(Ω) 3 s 7→

∫

Ω F (s(x)) dx are con-
vex and weakly lower semi-continuous with respect to the L1-norm.
Moreover,

(ii). Pa(Ω) 3 s 7→
∫

Ω F (s(x)) dx is strictly convex, provided F is strictly
convex.

The next proposition states that Pa(Ω) 3 s 7→ W h
c (s0, s) is continuous

with respect to the L1-norm.

Proposition 5.3.2 Let s0, s1 ∈ Pa(Ω), and h > 0. Assume that c : IRd →
[0,∞) is strictly convex. If

(

s
(n)
1

)

n
is a sequence in Pa(Ω), converging to

s1 in L1(Ω), then

lim
n→∞

W h
c

(

s0, s
(n)
1

)

= W h
c (s0, s1).

Proof. Let S such that S#s1 = s0 and γ ∈ Γ(s0, s1) be optimal in

W c
h(s0, s1), and Sn such that (Sn)#s

(n)
1 = s0 and γ(n) ∈ Γ

(

s0, s
(n)
1

)

be

optimal in W h
c

(

s0, s
(n)
1

)

. We first recall the proof of the following estimate,

due to Otto [15] :

W h
c

(

s0, s
(n)
1

)

−W h
c (s0, s1) ≤ sup

x,y∈Ω
c

(

x− y

h

)
∫

Ω

(

s
(n)
1 − s1

)

+
, (5.8)

where,
(

s
(n)
1 − s1

)

+
:= max

(

s
(n)
1 − s1, 0

)

.

Indeed, since s1, s
(n)
1 ∈ Pa(Ω), we have that,
∫

Ω

(

s
(n)
1 − s1

)

+
=

∫

Ω

(

s1 − s
(n)
1

)

+
:= λ. (5.9)

Consider γ̃, defined by
∫

IRd×IRd

ξ(x, y) dγ̃(x, y)

=

∫

Ω
ξ (S(y), y) min

(

s
(n)
1 , s1

)

(y) dy

+
1

λ

∫

Ω

∫

Ω
ξ(x, ỹ)

(

s
(n)
1 − s1

)

+
(ỹ)
(

s1 − s
(n)
1

)

+
(y) dỹ dy. (5.10)
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Because S#s1 = s0, min
(

s
(n)
1 , s1

)

+
(

s
(n)
1 − s1

)

+
= s

(n)
1 , and

min
(

s
(n)
1 , s1

)

+
(

s1 − s
(n)
1

)

+
= s1, we have that γ̃ ∈ Γ(s0, s1). We use (5.9)

- (5.10), and the fact that c ≥ 0 is continuous, and min
(

s
(n)
1 , s1

)

≤ s1, to

conclude that

W h
c

(

s0, s
(n)
1

)

− W c
h(s0, s1)

≤
∫

IRd×IRd

c

(

x− y

h

)

dγ̃(x, y) −
∫

IRd×IRd

c

(

x− y

h

)

dγ(x, y)

≤
∫

Ω
c

(

S(y) − y

h

)

(

s1 − s
(n)
1

)

+
(y) dy · 1

λ

∫

Ω

(

s
(n)
1 − s1

)

+
(ỹ) dỹ

≤ sup
x,y∈Ω

c

(

x− y

h

)∫

Ω

(

s
(n)
1 − s1

)

+
(y) dy.

This proves (5.8).

We let n go to ∞ in (5.8), and we use the fact that
(

s
(n)
1

)

n
converges to

s1 in L1(Ω), to conclude that,

lim
n→∞

W h
c

(

s0, s
(n)
1

)

≤W h
c (s0, s1). (5.11)

Now, since spt γ(n) ⊂ Ω̄ × Ω̄, we have that
(

γ(n)
)

n
is tight. We deduce

that
(

γ(n)
)

n
converges weakly to some γ̄. Because γ(n) ∈ Γ

(

s0, s
(n)
1

)

,

and
(

s
(n)
1

)

n
converges to s1 in L1(Ω), we obtain that γ̄ ∈ Γ(s0, s1). As a

consequence,

W h
c (s0, s1) ≤

∫

Ω×Ω
c

(

x− y

h

)

dγ̄(x, y) (5.12)

= lim
n→∞

∫

Ω×Ω
c

(

x− y

h

)

dγ̃(n)(x, y) = lim
n→∞

W h
c

(

s0, s
(n)
1

)

.

We combine (5.11) and (5.12), to conclude Proposition 5.3.2 �

The following estimates will be needed in the previous chapters.

Proposition 5.3.3 Assume that c is strictly convex, of class C 1, and sat-
isfies c(0) = 0 and lim|x|→∞

c(x)
|x| = ∞. Then

〈 z,∇c? (z) 〉 ≥ c?(z) ≥ 0, (5.13)

for z ∈ IRd. In addition, if c(z) ≥ β | z |q, for some β > 0 and q > 1, then

〈 z,∇c?(z) 〉 ≤M(β, q) | z |q?

, (5.14)

where M(β, q) is a constant which only depends on β and q.
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Proof. Since c is strictly convex, differentiable and satisfies
lim|x |→∞

c(x)
| x | = ∞, we have that c? ∈ C1(IRd) is convex. Then,

〈z,∇c? (z)〉 = c?(z) + c (∇c?(z)) ≥ c?(z). (5.15)

Because c(0) = 0 and 0 minimizes c, we have that c?(0) = 0 and 0 mini-
mizes c?. We conclude that c?(z) ≥ 0.
Now, assume that c(z) ≥ β z |q. Since c? ∈ C1(IRd) is convex and non-
negative, we have that

〈 z, ∇c?(z) 〉 ≤ c?(2z) − c?(z) ≤ c?(2z). (5.16)

Moreover, because c(z) ≥ β z |q, we have that

c?(2z) ≤M(β, q) | z |q?

. (5.17)

We combine (5.16) and (5.17), to conclude (5.14) �
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