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Abstract

A general inequality –established in [1]– relating the relative total energy of probability
densities, their Wasserstein distance and their production entropy functional, is shown
to easily imply most known geometrical –Gaussian and Euclidean– inequalities. Some
of the implications are known but included here for pedagogical reasons.

1 Introduction

Let F : [0,∞) → IR be a convex function, V a real functional on IRn and let Ω ⊂
IRn be open, bounded and convex. The set of probability densities over Ω is denoted
by Pa(Ω) = {ρ : Ω → IR; ρ ≥ 0 and

∫

Ω ρ(x)dx = 1}. The associated Free Energy
Functional is defined on Pa(Ω) as HF

V (ρ) :=
∫

IRn(F (ρ) + ρV )dx, which is the sum of the
Internal Energy HF (ρ) :=

∫

IRn F (ρ)dx, and the Potential Energy HV (ρ) :=
∫

IRn ρV dx.

Let HF
V (ρ|ρ̄) := HF

V (ρ) − HF
V (ρ̄) denote the relative energy between two densities ρ

and ρ̄. In [1], we established the following general inequality relating the relative total
energy of probability densities, their Wasserstein distance and their production entropy
functional.

Theorem 1.1 Let Ω ⊂ IRn be open, bounded and convex, let F : [0,∞) → IR be a
differentiable function on (0,∞) such that F (0) = 0 and x 7→ xnF (x−n) be convex
and non-increasing, and let PF (x) := xF ′(x)−F (x) be its associated pressure function.

Then, for any strictly convex C1-function c : IRn → IR such that lim| x |→∞
c(x)
| x | = ∞, and

any C2-potential V : IRn → IR with D2V ≥ λ (where λ ∈ IR is not necessarily positive),
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we have for all probability density functions ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω,
ρ0 > 0 a.e. on Ω and PF (ρ0) ∈ W 1,∞(Ω),

HF
V +c(ρ0|ρ1) +

λ

2
W 2

2 (ρ0, ρ1) ≤
∫

Ω
ρ0c

? (−∇(F ′ ◦ ρ0 + V )
)

dx + H−nPF

c+∇V.x(ρ0), (1)

where W2 is the Wasserstein distance and where c∗ denotes the Legendre conjugate of c

defined by c∗(y) = supz∈IRn{y · z − c(z)}.
Furthermore, equality holds in (1) whenever ρ0 = ρ1 = ρ∞ where the latter satisfies

∇
(

F ′ (ρ∞(x) + V (x))
)

= −∇c(x) a.e. (2)

In particular, we have for any probability density ρ such that PF (ρ) ∈ W 1,∞(Ω),

HF+nPF

V −x·∇V (ρ) +
λ

2
W 2

2 (ρ, ρ∞) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ + V )

)

dx − HPF (ρ∞) + C∞ (3)

where C∞ is the unique constant such that

F ′(ρ∞) + V + c = C∞ while

∫

Ω
ρ∞ = 1. (4)

We shall see that this inequality easily implies most known geometric inequalities. It
provides a direct and unified way for computing best constants as well as the extremals
where they are attained.

The term H
−nPF

c+∇V.x(ρ0) should be seen as an error term in (1). It can be integrated
in the entropy term which proves useful in the Gaussian case. If V is convex, then λ

can be taken equal to 0 and the Wasserstein distance disappears from the equation. We
then have the identity V (x) − x · ∇V (x) = −V ∗(∇V (x) in such a way that a correcting
“moment” appears in the inequality:

HF+nPF

−V ∗(∇V )
(ρ) ≤

∫

Ω
ρc? (−∇(F ′ ◦ ρ + V )

)

dx − HPF (ρ∞) + C∞. (5)

Also note that the pressure PF is always positive which means that we can do away
with the term HPF (ρ∞) on the right hand side. Finally, the case V = 0 amply covers
the Euclidean case where the general inequality becomes the remarkably simple:

HF+nPF (ρ) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ)

)

dx + C∞. (6)

2 Generalized HWI inequalities

We first deduce the following useful inequality that is relevant for the Gaussian case.

Corollary 2.1 Under the above hypothesis on Ω and F , let U : IRn → IR be a C2-
function with D2U ≥ µI where µ ∈ IR. Then for any σ > 0, we have for all probability
densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),

HF
U (ρ0|ρ1) +

1

2
(µ − 1

σ
)W 2

2 (ρ0, ρ1) ≤
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ0 + U
)

∣

∣

∣

2
dx. (7)
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Proof: Use (1) with c(x) = 1
2σ |x |2 and U = V + c, to obtain

HF
U (ρ0) − HF

U (ρ1) +
1

2
(µ − 1

σ
)W 2

2 (ρ0, ρ1) (8)

≤ −HnPF

−c−∇(U−c)·x(ρ0) +

∫

Ω
ρ0c

∗ (−∇
(

F ′ ◦ ρ0 + U − c
))

dx.

By elementary computations, we have
∫

Ω
ρc∗

(

−∇
(

F ′ ◦ ρ + U − c
))

dx

=
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ + U
)

∣

∣

∣

2
dx +

1

2σ

∫

Ω
ρ|x |2 dx −

∫

Ω
ρx · ∇

(

F ′ ◦ ρ
)

dx −
∫

Ω
ρx · ∇U dx,

and

−HnPF

−c−∇(U−c)·x(ρ) = −HnPF (ρ) +

∫

Ω
ρx · ∇U dx − 1

2σ

∫

Ω
|x |2ρdx.

By combining the last 2 identities, we can rewrite the right hand side of (8) as

−H
nPF

−c−∇(U−c)·x(ρ) +

∫

Ω
ρc∗

(

−∇(F ′ ◦ ρ + U − c)
)

dx

=
σ

2

∫

Ω
ρ|∇

(

F ′ ◦ ρ + U
)

|2 dx −
∫

Ω
ρx · ∇

(

F ′ ◦ ρ
)

dx −
∫

Ω
nPF (ρ) dx

=
σ

2

∫

Ω
ρ|∇

(

F ′ ◦ ρ + U
)

|2,dx +

∫

Ω
div (ρx)F ′(ρ) dx −

∫

Ω
nPF (ρ) dx

=
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ + U
)

∣

∣

∣

2
dx + n

∫

Ω
ρF ′(ρ) dx +

∫

Ω
x · ∇F (ρ) dx −

∫

Ω
nPF (ρ) dx

=
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ + U
)

∣

∣

∣

2
dx +

∫

Ω
x · ∇F (ρ) dx + n

∫

Ω
F ◦ ρdx

=
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ + U
)

∣

∣

∣

2
dx. (9)

Inserting (9) into (8), we conclude the proof.
If U is uniformly convex (i.e., µ > 0) inequality (7) yields the following inequality

obtained by Cordero et al. in [4]

Corollary 2.2 (Generalized Log Sobolev inequality) Under the above hypothesis on Ω
and F , let U : IRn → IR be a C2-function with D2U ≥ µI where µ > 0. Then for all
probability densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),
we have

HF
U (ρ0|ρ1) ≤

1

2µ

∫

Ω
|∇(F ′ ◦ ρ0 + U)|2ρ0 dx. (10)

One can also deduce the following:

Corollary 2.3 (Generalized Talagrand Inequality) Under the above hypothesis on Ω
and F , let U : IRn → IR be a C2-function with D2U ≥ µI where µ > 0. Then for all
probability densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),
we have

W2(ρ|ρU ) ≤
√

µ

2
HF

U (ρ|ρU ), (11)
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where ρU is the probability density satisfying

∇
(

F ′(ρU ) + U
)

= 0 a.e. (12)

For that, it is sufficient to take ρ0 = ρU in (7).
We now deduce the following HWI inequalities first established by Otto-Villani [7]

in the case of the classical entropy F (x) = x lnx.

Corollary 2.4 (Generalized HWI-inequality) Under the above hypothesis on Ω and F ,
let U : IRn → IR be a C2-function with D2U ≥ µI where µ ∈ IR. Then we have for all
probability densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),

HF
U (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√

I(ρ0|ρU ) − µ

2
W2(ρ0, ρ1)

2 (13)

where

I(ρ0|ρU ) =
σ

2

∫

Ω
ρ
∣

∣

∣∇
(

F ′ ◦ ρ0 + U
)

∣

∣

∣

2
dx,

and
∇
(

F ′(ρU ) + U
)

= 0 a.e. (14)

Proof: It is sufficient to rewrite (7) as

HF
U (ρ0|ρ1) +

µ

2
W 2

2 (ρ0, ρ1) ≤
1

2σ
W 2

2 (ρ0, ρ1) +
σ

2
I(ρ0|ρU ), (15)

then minimize the right hand side over the variable σ > 0. The minimum is obviously
achieved at σ̄ = W2(ρ0 ,ρ1)√

I(ρ0|ρU )
.

3 Gaussian Inequalities

Corollary 2.1 applied to F (x) = x lnx yields the following extension of Gross’ Log
Sobolev inequality established by Otto-Villani [7]. For any function U on IRn, denote

by σU the integral
∫

IRn e−U dx, and by ρU the normalized function e−U

σU
.

Corollary 3.1 (Otto-Villani’s HWI inequality) Let U : IRn → IR be a C2-function with
D2U ≥ µI where µ ∈ IR. Then for any σ > 0, the following holds for any nonnegative
function f such that fρU ∈ W 1,∞(IRn) and

∫

IRn fρU dx = 1,

∫

IRn
f ln(f) ρUdx +

1

2
(µ − 1

σ
)W 2

2 (fρU , ρU ) ≤ σ

2

∫

IRn

|∇f |2
f

ρUdx. (16)

Corollary 3.2 (Original Gross Log Sobolev inequality) If µ > 0 (i.e., U is uniformly
convex) then for any nonnegative function f such that fρU ∈ W 1,∞(IRn) and

∫

IRn f2ρU dx =
1, we have

∫

IRn
f2 ln(f2) ρUdx ≤ 1

µ

∫

IRn
|∇f |2 ρUdx. (17)
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Talagrand’s inequality applied to the standard Gaussian density γ and to an appropriate
restriction yields

Corollary 3.3 (Concentration of measure inequality) For any ε-neighborhood Bε of a
measurable set B in IRn, we have

γ(Bε) ≥ 1 − e
− 1

2

(

ε−
√

2 ln 1
γ(B)

)2

. (18)

Indeed, if γA denotes the normalized standard Gaussian measure restricted to a given
measurable set A, then

ε ≤ W2(γB ; γIRn\Bε
) ≤

√

2 ln
1

γ(B)
+

√

2 ln
1

1 − γ(Bε)
, (19)

which yields (18).

4 Euclidean Log Sobolev Inequalities

The folowing optimal Euclidean p-Log Sobolev inequality was established by Beckner
[2] in the case where p = 1, by Del Pino- Dolbeault [5] for 1 < p < n and independently
by Gentil for all p > 1.

Corollary 4.1 (General Euclidean Log-Sobolev inequality) Let Ω ⊂ IRn be open bounded
and convex, and let c : IRn → IR be a Young functional such that its conjugate c? is p-
homogeneous for some p > 1. Then,

∫

IRn
ρ ln ρ dx ≤ n

p
ln

(

p

nep−1σ
p/n
c

∫

IRn
ρc?

(

−∇ρ

ρ

)

dx

)

, (20)

for all probability density functions ρ on IRn, such that supp ρ ⊂ Ω and ρ ∈ W 1,∞(IRn).
Moreover, equality holds in (20) if ρ(x) = Kλe−λqc(x) for some λ > 0, where Kλ =
(

∫

IRn e−λqc(x) dx
)−1

and q is the conjugate of p ( 1
p + 1

q = 1).

Proof: Use F (x) = x ln(x) in (5). Note that here PF (x) = x which means that

HPF (ρ) = 1 for any ρ ∈ Pa(IR
n). So, ρ∞(x) = e−c(x)

σc
. We then have for ρ ∈ Pa(IR

n)

∫

Ω
ρ ln ρdx ≤

∫

IRn
ρc?

(

−∇ρ

ρ

)

dx − n − ln

(
∫

IRn
e−c(x) dx

)

. (21)

with equality when ρ = ρ∞.

Now assume that c? is p-homogeneous and set Γc
ρ =

∫

IRn ρc?
(

−∇ρ
ρ

)

dx. Using

cλ(x) := c(λx) in (21), we get for λ > 0 that

∫

IRn
ρ ln ρdx ≤

∫

IRn
ρc?

(

−∇ρ

λρ

)

dx + n lnλ − n − lnσc, (22)
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for all ρ ∈ Pa(IR
n) satisfying suppρ ⊂ Ω and ρ ∈ W 1,∞(Ω). Equality holds in (22) if

ρλ(x) =
(

∫

IRn e−λqc(x) dx
)−1

e−λqc(x). Hence

∫

IRn
ρ ln ρdx ≤ −n − lnσc + inf

λ>0
(Gρ(λ)) ,

where

Gρ(λ) = n ln(λ) +
1

λp

∫

IRn
ρc?

(

−∇ρ

ρ

)

= n ln(λ) +
Γc

ρ

λp
.

The infimum of Gρ(λ) over λ > 0 is attained at λ̄ρ =
(

p
nΓc

ρ

)1/p
. Hence

∫

IRn
ρ ln ρdx ≤ Gρ(λ̄ρ) − n − ln(σc)

=
n

p
ln

(

p

n
Γc

ρ

)

+
n

p
− n − ln(σc)

=
n

p
ln

(

p

nep−1σ
p/n
c

Γc
ρ

)

,

for all probability densities ρ on IRn, such that suppρ ⊂ Ω, and ρ ∈ W 1,∞(IRn).

Corollary 4.2 (Optimal Euclidean p-Log Sobolev inequality)

∫

IRn
| f |p ln(| f |p) dx ≤ n

p
ln

(

Cp

∫

IRn
|∇f |p dx

)

, (23)

holds for all p ≥ 1, and for all f ∈ W 1,p(IRn) such that ‖ f ‖p = 1, where

Cp :=























( p
n

)

(

p−1
e

)p−1
π− p

2

[

Γ( n
2
+1)

Γ( n
q
+1)

]

p

n

if p > 1,

1
n
√

π

[

Γ(n
2 + 1)

]
1
n if p = 1,

(24)

and q is the conjugate of p ( 1
p + 1

q = 1).

For p > 1, equality holds in (23) for f(x) = Ke
−λq | x−x̄ |q

q for some λ > 0 and x̄ ∈ IRn,

where K =
(

∫

IRn e−(p−1)|λx |q dx
)−1/p

.

Proof: First assume that p > 1, and set c(x) = (p− 1)|x |q and ρ = | f |p in (20), where

f ∈ C∞
c (IRn) and ‖ f ‖p = 1. We have that c?(x) = |x |p

pp , and then, Γc
ρ =

∫

IRn |∇f |p dx.
Therefore, (20) reads as

∫

IRn
| f |p ln(| f |p) dx ≤ n

p
ln

(

p

nep−1σ
p/n
c

∫

IRn
|∇f |p dx

)

. (25)

Now it suffices to note that

σc :=

∫

IRn
e−(p−1)| x |q dx =

π
n
2 Γ
(

n
q + 1

)

(p − 1)
n
q Γ
(n

2 + 1
)

. (26)
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To prove the case where p = 1, it is sufficient to apply the above to pε = 1 + ε for
some arbitrary ε > 0. Note that

Cpε =

(

1 + ε

n

)(

ε

e

)ε

π− 1+ε
2

[

Γ(n
2 + 1)

Γ( nε
1+ε + 1)

]
1+ε
n

.

So that when ε go to 0, we have

lim
ε→0

Cpε =
1

n
√

π

[

Γ

(

n

2
+ 1

)]
1
n

= C1.

5 Gagliardo-Nirenberg and Sobolev Inequalities

Corollary 5.1 (Gagliardo-Nirenberg) Let 1 < p < n and r ∈
(

0, np
n−p

]

such that r 6= p.

Set γ := 1
r + 1

q , where 1
p + 1

q = 1. Then, for any f ∈ W 1,p(IRn) we have

‖f‖r ≤ C(p, r)‖∇f‖θ
p ‖f‖1−θ

rγ , (27)

where θ is given by
1

r
=

θ

p∗
+

1 − θ

rγ
, (28)

p∗ = np
n−p and where the best constant C(p, r) > 0 can be obtained by scaling.

Proof: Apply (5) with F (x) = xγ

γ−1 , where 1 6= γ ≥ 1 − 1
n , which follows from the fact

that p 6= r ∈
(

0, np
n−p

]

. Now, for this value of γ, the function F satisfies the conditions

of Theorem 1. Let c(x) = rγ
q |x |q so that c∗(x) = 1

p(rγ)p−1

∣

∣

∣x
∣

∣

∣

p
.

Inequality (5) then gives

(

1

γ − 1
+ n

)
∫

IRn
| f |rγ ≤ rγ

p

∫

IRn
|∇f |p − HPF (ρ∞) + C∞. (29)

where ρ∞ = hr
∞ satisfies

−∇h∞(x) = x|x |q−2h
r
p (x) a.e., (30)

and where C∞ insures that
∫

hr
∞ = 1. The constants on the right hand side of (29) are

not easy to calculate, so one can obtain θ and the best constant by a standard scaling
procedure. Namely, write (29) as

rγ

p

‖∇f‖p
p

‖f‖p

r

−
(

1

γ − 1
+ n

) ‖f‖rγ
rγ

‖f‖rγ

r

≥ C, (31)

for some constant C. Then apply it to fλ(x) = f(λx) for λ > 0. A minimization over λ

gives the required constant.
The case where γ = 1 − 1

n gives the standard Sobolev inequality.
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Corollary 5.2 Let 1 < p < n, then we have for any f ∈ W 1,p(IRn),

‖f‖p∗ ≤ C(p, n)‖∇f‖p (32)

for some constant C(p, n) > 0.

By letting p → 1, one then gets the isoperimetric inequality: For any closed subset of
IRn, with σ denoting surface measure and | · | Lebesgue measure.

σ(∂A) ≥ n|B| 1
n |A|n−1

n . (33)

Similar results can be established in the presence of an additional convolution operator.
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