The mother of many geometric inequalities

M. Agueh, ${ }^{*}$ N. Ghoussoub ${ }^{\dagger}$ and X. Kang ${ }^{\ddagger}$

December 30, 2002

Pacific Institute for the Mathematical Sciences
and
Department of Mathematics, The University of British Columbia, Vancouver, B. C.
V6T 1Z2, Canada
September 1, 2003

Abstract

A general inequality -established in [1]- relating the relative total energy of probability densities, their Wasserstein distance and their production entropy functional, is shown to easily imply most known geometrical -Gaussian and Euclidean- inequalities. Some of the implications are known but included here for pedagogical reasons.

1 Introduction

Let $F:[0, \infty) \rightarrow \mathbb{R}$ be a convex function, V a real functional on \mathbb{R}^{n} and let $\Omega \subset$ \mathbb{R}^{n} be open, bounded and convex. The set of probability densities over Ω is denoted by $\mathcal{P}_{a}(\Omega)=\left\{\rho: \Omega \rightarrow \mathbb{R} ; \rho \geq 0\right.$ and $\left.\int_{\Omega} \rho(x) d x=1\right\}$. The associated Free Energy Functional is defined on $\mathcal{P}_{a}(\Omega)$ as $H_{V}^{F}(\rho):=\int_{R^{n}}(F(\rho)+\rho V) d x$, which is the sum of the Internal Energy $H^{F}(\rho):=\int_{R^{n}} F(\rho) d x$, and the Potential Energy $H_{V}(\rho):=\int_{R^{n}} \rho V d x$. Let $H_{V}^{F}(\rho \mid \bar{\rho}):=H_{V}^{F}(\rho)-H_{V}^{F}(\bar{\rho})$ denote the relative energy between two densities ρ and $\bar{\rho}$. In [1], we established the following general inequality relating the relative total energy of probability densities, their Wasserstein distance and their production entropy functional.

Theorem 1.1 Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and convex, let $F:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function on $(0, \infty)$ such that $F(0)=0$ and $x \mapsto x^{n} F\left(x^{-n}\right)$ be convex and non-increasing, and let $P_{F}(x):=x F^{\prime}(x)-F(x)$ be its associated pressure function. Then, for any strictly convex C^{1}-function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\lim _{|x| \rightarrow \infty} \frac{c(x)}{|x|}=\infty$, and any C^{2}-potential $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D^{2} V \geq \lambda$ (where $\lambda \in \mathbb{R}$ is not necessarily positive),

[^0]we have for all probability density functions ρ_{0} and ρ_{1} on Ω, satisfying supp $\rho_{0} \subset \Omega$, $\rho_{0}>0$ a.e. on Ω and $P_{F}\left(\rho_{0}\right) \in W^{1, \infty}(\Omega)$,
\[

$$
\begin{equation*}
H_{V+c}^{F}\left(\rho_{0} \mid \rho_{1}\right)+\frac{\lambda}{2} W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) \leq \int_{\Omega} \rho_{0} c^{\star}\left(-\nabla\left(F^{\prime} \circ \rho_{0}+V\right)\right) d x+H_{c+\nabla V \cdot x}^{-n P_{F}}\left(\rho_{0}\right), \tag{1}
\end{equation*}
$$

\]

where W_{2} is the Wasserstein distance and where c^{*} denotes the Legendre conjugate of c defined by $c^{*}(y)=\sup _{z \in R^{n}}\{y \cdot z-c(z)\}$.

Furthermore, equality holds in (1) whenever $\rho_{0}=\rho_{1}=\rho_{\infty}$ where the latter satisfies

$$
\begin{equation*}
\nabla\left(F^{\prime}\left(\rho_{\infty}(x)+V(x)\right)\right)=-\nabla c(x) \quad \text { a.e. } \tag{2}
\end{equation*}
$$

In particular, we have for any probability density ρ such that $P_{F}(\rho) \in W^{1, \infty}(\Omega)$,

$$
\begin{equation*}
H_{V-x \cdot \nabla V}^{F+n P_{F}}(\rho)+\frac{\lambda}{2} W_{2}^{2}\left(\rho, \rho_{\infty}\right) \leq \int_{\Omega} \rho c^{\star}\left(-\nabla\left(F^{\prime} \circ \rho+V\right)\right) d x-H^{P_{F}}\left(\rho_{\infty}\right)+C_{\infty} \tag{3}
\end{equation*}
$$

where C_{∞} is the unique constant such that

$$
\begin{equation*}
F^{\prime}\left(\rho_{\infty}\right)+V+c=C_{\infty} \text { while } \int_{\Omega} \rho_{\infty}=1 \tag{4}
\end{equation*}
$$

We shall see that this inequality easily implies most known geometric inequalities. It provides a direct and unified way for computing best constants as well as the extremals where they are attained.

The term $H_{c+\nabla V . x}^{-n P_{F}}\left(\rho_{0}\right)$ should be seen as an error term in (1). It can be integrated in the entropy term which proves useful in the Gaussian case. If V is convex, then λ can be taken equal to 0 and the Wasserstein distance disappears from the equation. We then have the identity $V(x)-x \cdot \nabla V(x)=-V^{*}(\nabla V(x)$ in such a way that a correcting "moment" appears in the inequality:

$$
\begin{equation*}
H_{-V^{\star}(\nabla V)}^{F+n P_{F}}(\rho) \leq \int_{\Omega} \rho c^{\star}\left(-\nabla\left(F^{\prime} \circ \rho+V\right)\right) \mathrm{d} x-H^{P_{F}}\left(\rho_{\infty}\right)+C_{\infty} . \tag{5}
\end{equation*}
$$

Also note that the pressure P_{F} is always positive which means that we can do away with the term $H^{P_{F}}\left(\rho_{\infty}\right)$ on the right hand side. Finally, the case $V=0$ amply covers the Euclidean case where the general inequality becomes the remarkably simple:

$$
\begin{equation*}
H^{F+n P_{F}}(\rho) \leq \int_{\Omega} \rho c^{\star}\left(-\nabla\left(F^{\prime} \circ \rho\right)\right) \mathrm{d} x+C_{\infty} . \tag{6}
\end{equation*}
$$

2 Generalized HWI inequalities

We first deduce the following useful inequality that is relevant for the Gaussian case.
Corollary 2.1 Under the above hypothesis on Ω and F, let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function with $D^{2} U \geq \mu I$ where $\mu \in \mathbb{R}$. Then for any $\sigma>0$, we have for all probability densities ρ_{0} and ρ_{1} on Ω, satisfying supp $\rho_{0} \subset \Omega$, and $P_{F}\left(\rho_{0}\right) \in W^{1, \infty}(\Omega)$,

$$
\begin{equation*}
H_{U}^{F}\left(\rho_{0} \mid \rho_{1}\right)+\frac{1}{2}\left(\mu-\frac{1}{\sigma}\right) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) \leq \frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho_{0}+U\right)\right|^{2} d x . \tag{7}
\end{equation*}
$$

Proof: Use (1) with $c(x)=\frac{1}{2 \sigma}|x|^{2}$ and $U=V+c$, to obtain

$$
\begin{align*}
& H_{U}^{F}\left(\rho_{0}\right)-H_{U}^{F}\left(\rho_{1}\right)+\frac{1}{2}\left(\mu-\frac{1}{\sigma}\right) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) \tag{8}\\
& \quad \leq-H_{-c-\nabla(U-c) \cdot x}^{n P_{F}}\left(\rho_{0}\right)+\int_{\Omega} \rho_{0} c^{*}\left(-\nabla\left(F^{\prime} \circ \rho_{0}+U-c\right)\right) \mathrm{d} x .
\end{align*}
$$

By elementary computations, we have

$$
\begin{aligned}
& \int_{\Omega} \rho c^{*}\left(-\nabla\left(F^{\prime} \circ \rho+U-c\right)\right) \mathrm{d} x \\
& \quad=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2} \mathrm{~d} x+\frac{1}{2 \sigma} \int_{\Omega} \rho|x|^{2} \mathrm{~d} x-\int_{\Omega} \rho x \cdot \nabla\left(F^{\prime} \circ \rho\right) \mathrm{d} x-\int_{\Omega} \rho x \cdot \nabla U \mathrm{~d} x,
\end{aligned}
$$

and

$$
-H_{-c-\nabla(U-c) \cdot x}^{n P_{F}}(\rho)=-H^{n P_{F}}(\rho)+\int_{\Omega} \rho x \cdot \nabla U \mathrm{~d} x-\frac{1}{2 \sigma} \int_{\Omega}|x|^{2} \rho \mathrm{~d} x .
$$

By combining the last 2 identities, we can rewrite the right hand side of (8) as

$$
\begin{align*}
&-H_{-c-\nabla(U-c) \cdot x}^{n P_{F}}(\rho)+\int_{\Omega} \rho c^{*}\left(-\nabla\left(F^{\prime} \circ \rho+U-c\right)\right) \mathrm{d} x \\
&=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2} \mathrm{~d} x-\int_{\Omega} \rho x \cdot \nabla\left(F^{\prime} \circ \rho\right) \mathrm{d} x-\int_{\Omega} n P_{F}(\rho) \mathrm{d} x \\
&=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2}, \mathrm{~d} x+\int_{\Omega} \operatorname{div}(\rho x) F^{\prime}(\rho) \mathrm{d} x-\int_{\Omega} n P_{F}(\rho) \mathrm{d} x \\
&=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2} \mathrm{~d} x+n \int_{\Omega} \rho F^{\prime}(\rho) \mathrm{d} x+\int_{\Omega} x \cdot \nabla F(\rho) \mathrm{d} x-\int_{\Omega} n P_{F}(\rho) \mathrm{d} x \\
&=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2} \mathrm{~d} x+\int_{\Omega} x \cdot \nabla F(\rho) \mathrm{d} x+n \int_{\Omega} F \circ \rho \mathrm{~d} x \\
&=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho+U\right)\right|^{2} \mathrm{~d} x . \tag{9}
\end{align*}
$$

Inserting (9) into (8), we conclude the proof.
If U is uniformly convex (i.e., $\mu>0$) inequality (7) yields the following inequality obtained by Cordero et al. in [4]

Corollary 2.2 (Generalized Log Sobolev inequality) Under the above hypothesis on Ω and F, let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function with $D^{2} U \geq \mu I$ where $\mu>0$. Then for all probability densities ρ_{0} and ρ_{1} on Ω, satisfying supp $\rho_{0} \subset \Omega$, and $P_{F}\left(\rho_{0}\right) \in W^{1, \infty}(\Omega)$, we have

$$
\begin{equation*}
H_{U}^{F}\left(\rho_{0} \mid \rho_{1}\right) \leq \frac{1}{2 \mu} \int_{\Omega}\left|\nabla\left(F^{\prime} \circ \rho_{0}+U\right)\right|^{2} \rho_{0} d x \tag{10}
\end{equation*}
$$

One can also deduce the following:
Corollary 2.3 (Generalized Talagrand Inequality) Under the above hypothesis on Ω and F, let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function with $D^{2} U \geq \mu I$ where $\mu>0$. Then for all probability densities ρ_{0} and ρ_{1} on Ω, satisfying supp $\rho_{0} \subset \Omega$, and $P_{F}\left(\rho_{0}\right) \in W^{1, \infty}(\Omega)$, we have

$$
\begin{equation*}
W_{2}\left(\rho \mid \rho_{U}\right) \leq \sqrt{\frac{\mu}{2} H_{U}^{F}\left(\rho \mid \rho_{U}\right)} \tag{11}
\end{equation*}
$$

where ρ_{U} is the probability density satisfying

$$
\begin{equation*}
\nabla\left(F^{\prime}\left(\rho_{U}\right)+U\right)=0 \quad \text { a.e. } \tag{12}
\end{equation*}
$$

For that, it is sufficient to take $\rho_{0}=\rho_{U}$ in (7).
We now deduce the following HWI inequalities first established by Otto-Villani [7] in the case of the classical entropy $F(x)=x \ln x$.

Corollary 2.4 (Generalized HWI-inequality) Under the above hypothesis on Ω and F, let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function with $D^{2} U \geq \mu I$ where $\mu \in \mathbb{R}$. Then we have for all probability densities ρ_{0} and ρ_{1} on Ω, satisfying supp $\rho_{0} \subset \Omega$, and $P_{F}\left(\rho_{0}\right) \in W^{1, \infty}(\Omega)$,

$$
\begin{equation*}
H_{U}^{F}\left(\rho_{0} \mid \rho_{1}\right) \leq W_{2}\left(\rho_{0}, \rho_{1}\right) \sqrt{I\left(\rho_{0} \mid \rho_{U}\right)}-\frac{\mu}{2} W_{2}\left(\rho_{0}, \rho_{1}\right)^{2} \tag{13}
\end{equation*}
$$

where

$$
I\left(\rho_{0} \mid \rho_{U}\right)=\frac{\sigma}{2} \int_{\Omega} \rho\left|\nabla\left(F^{\prime} \circ \rho_{0}+U\right)\right|^{2} d x
$$

and

$$
\begin{equation*}
\nabla\left(F^{\prime}\left(\rho_{U}\right)+U\right)=0 \quad \text { a.e. } \tag{14}
\end{equation*}
$$

Proof: It is sufficient to rewrite (7) as

$$
\begin{equation*}
H_{U}^{F}\left(\rho_{0} \mid \rho_{1}\right)+\frac{\mu}{2} W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) \leq \frac{1}{2 \sigma} W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)+\frac{\sigma}{2} I\left(\rho_{0} \mid \rho_{U}\right) \tag{15}
\end{equation*}
$$

then minimize the right hand side over the variable $\sigma>0$. The minimum is obviously achieved at $\bar{\sigma}=\frac{W_{2}\left(\rho_{0}, \rho_{1}\right)}{\sqrt{I\left(\rho_{0} \mid \rho_{U}\right)}}$.

3 Gaussian Inequalities

Corollary 2.1 applied to $F(x)=x \ln x$ yields the following extension of Gross' Log Sobolev inequality established by Otto-Villani [7]. For any function U on \mathbb{R}^{n}, denote by σ_{U} the integral $\int_{R^{n}} e^{-U} \mathrm{~d} x$, and by ρ_{U} the normalized function $\frac{e^{-U}}{\sigma_{U}}$.

Corollary 3.1 (Otto-Villani's HWI inequality) Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function with $D^{2} U \geq \mu I$ where $\mu \in \mathbb{R}$. Then for any $\sigma>0$, the following holds for any nonnegative function f such that $f \rho_{U} \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$ and $\int_{R^{n}} f \rho_{U} d x=1$,

$$
\begin{equation*}
\int_{R^{n}} f \ln (f) \rho_{U} d x+\frac{1}{2}\left(\mu-\frac{1}{\sigma}\right) W_{2}^{2}\left(f \rho_{U}, \rho_{U}\right) \leq \frac{\sigma}{2} \int_{R^{n}} \frac{|\nabla f|^{2}}{f} \rho_{U} d x \tag{16}
\end{equation*}
$$

Corollary 3.2 (Original Gross Log Sobolev inequality) If $\mu>0$ (i.e., U is uniformly convex) then for any nonnegative function f such that $f \rho_{U} \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$ and $\int_{R^{n}} f^{2} \rho_{U} d x=$ 1, we have

$$
\begin{equation*}
\int_{R^{n}} f^{2} \ln \left(f^{2}\right) \rho_{U} d x \leq \frac{1}{\mu} \int_{R^{n}}|\nabla f|^{2} \rho_{U} d x . \tag{17}
\end{equation*}
$$

Talagrand's inequality applied to the standard Gaussian density γ and to an appropriate restriction yields

Corollary 3.3 (Concentration of measure inequality) For any ϵ-neighborhood B_{ϵ} of a measurable set B in \mathbb{R}^{n}, we have

$$
\begin{equation*}
\gamma\left(B_{\epsilon}\right) \geq 1-e^{-\frac{1}{2}\left(\epsilon-\sqrt{2 \ln \frac{1}{\gamma(B)}}\right)^{2}} \tag{18}
\end{equation*}
$$

Indeed, if γ_{A} denotes the normalized standard Gaussian measure restricted to a given measurable set A, then

$$
\begin{equation*}
\epsilon \leq W_{2}\left(\gamma_{B} ; \gamma_{R^{n} \backslash B_{\epsilon}}\right) \leq \sqrt{2 \ln \frac{1}{\gamma(B)}}+\sqrt{2 \ln \frac{1}{1-\gamma\left(B_{\epsilon}\right)}}, \tag{19}
\end{equation*}
$$

which yields (18).

4 Euclidean Log Sobolev Inequalities

The folowing optimal Euclidean p-Log Sobolev inequality was established by Beckner [2] in the case where $p=1$, by Del Pino- Dolbeault [5] for $1<p<n$ and independently by Gentil for all $p>1$.

Corollary 4.1 (General Euclidean Log-Sobolev inequality) Let $\Omega \subset \mathbb{R}^{n}$ be open bounded and convex, and let $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Young functional such that its conjugate c^{\star} is p homogeneous for some $p>1$. Then,

$$
\begin{equation*}
\int_{R^{n}} \rho \ln \rho d x \leq \frac{n}{p} \ln \left(\frac{p}{n e^{p-1} \sigma_{c}^{p / n}} \int_{R^{n}} \rho c^{\star}\left(-\frac{\nabla \rho}{\rho}\right) d x\right), \tag{20}
\end{equation*}
$$

for all probability density functions ρ on \mathbb{R}^{n}, such that supp $\rho \subset \Omega$ and $\rho \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$. Moreover, equality holds in (20) if $\rho(x)=K_{\lambda} e^{-\lambda^{q} c(x)}$ for some $\lambda>0$, where $K_{\lambda}=$ $\left(\int_{R^{n}} e^{-\lambda^{q} c(x)} d x\right)^{-1}$ and q is the conjugate of $p\left(\frac{1}{p}+\frac{1}{q}=1\right)$.

Proof: Use $F(x)=x \ln (x)$ in (5). Note that here $P_{F}(x)=x$ which means that $H^{P_{F}}(\rho)=1$ for any $\rho \in \mathcal{P}_{a}\left(\mathbb{R}^{n}\right)$. So, $\rho_{\infty}(x)=\frac{e^{-c(x)}}{\sigma_{c}}$. We then have for $\rho \in \mathcal{P}_{a}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\Omega} \rho \ln \rho \mathrm{d} x \leq \int_{R^{n}} \rho c^{\star}\left(-\frac{\nabla \rho}{\rho}\right) \mathrm{d} x-n-\ln \left(\int_{R^{n}} e^{-c(x)} \mathrm{d} x\right) . \tag{21}
\end{equation*}
$$

with equality when $\rho=\rho_{\infty}$.
Now assume that c^{\star} is p-homogeneous and set $\Gamma_{\rho}^{c}=\int_{R^{n}} \rho c^{\star}\left(-\frac{\nabla \rho}{\rho}\right) \mathrm{d} x$. Using $c_{\lambda}(x):=c(\lambda x)$ in (21), we get for $\lambda>0$ that

$$
\begin{equation*}
\int_{R^{n}} \rho \ln \rho \mathrm{~d} x \leq \int_{R^{n}} \rho c^{\star}\left(-\frac{\nabla \rho}{\lambda \rho}\right) \mathrm{d} x+n \ln \lambda-n-\ln \sigma_{c}, \tag{22}
\end{equation*}
$$

for all $\rho \in \mathcal{P}_{a}\left(\mathbb{R}^{n}\right)$ satisfying $\operatorname{supp} \rho \subset \Omega$ and $\rho \in W^{1, \infty}(\Omega)$. Equality holds in (22) if $\rho_{\lambda}(x)=\left(\int_{R^{n}} e^{-\lambda^{q} c(x)} \mathrm{d} x\right)^{-1} e^{-\lambda^{q} c(x)}$. Hence

$$
\int_{R^{n}} \rho \ln \rho \mathrm{~d} x \leq-n-\ln \sigma_{c}+\inf _{\lambda>0}\left(G_{\rho}(\lambda)\right),
$$

where

$$
G_{\rho}(\lambda)=n \ln (\lambda)+\frac{1}{\lambda^{p}} \int_{R^{n}} \rho c^{\star}\left(-\frac{\nabla \rho}{\rho}\right)=n \ln (\lambda)+\frac{\Gamma_{\rho}^{c}}{\lambda^{p}} .
$$

The infimum of $G_{\rho}(\lambda)$ over $\lambda>0$ is attained at $\bar{\lambda}_{\rho}=\left(\frac{p}{n} \Gamma_{\rho}^{c}\right)^{1 / p}$. Hence

$$
\begin{aligned}
\int_{R^{n}} \rho \ln \rho \mathrm{~d} x & \leq G_{\rho}\left(\bar{\lambda}_{\rho}\right)-n-\ln \left(\sigma_{c}\right) \\
& =\frac{n}{p} \ln \left(\frac{p}{n} \Gamma_{\rho}^{c}\right)+\frac{n}{p}-n-\ln \left(\sigma_{c}\right) \\
& =\frac{n}{p} \ln \left(\frac{p}{n e^{p-1} \sigma_{c}^{p / n}} \Gamma_{\rho}^{c}\right),
\end{aligned}
$$

for all probability densities ρ on \mathbb{R}^{n}, such that $\operatorname{supp} \rho \subset \Omega$, and $\rho \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$.
Corollary 4.2 (Optimal Euclidean p-Log Sobolev inequality)

$$
\begin{equation*}
\int_{R^{n}}|f|^{p} \ln \left(|f|^{p}\right) d x \leq \frac{n}{p} \ln \left(C_{p} \int_{R^{n}}|\nabla f|^{p} d x\right), \tag{23}
\end{equation*}
$$

holds for all $p \geq 1$, and for all $f \in W^{1, p}\left(\mathbb{R}^{n}\right)$ such that $\|f\|_{p}=1$, where

$$
C_{p}:= \begin{cases}\left(\frac{p}{n}\right)\left(\frac{p-1}{e}\right)^{p-1} \pi^{-\frac{p}{2}}\left[\frac{\Gamma\left(\frac{n}{2}+1\right)}{\Gamma\left(\frac{n}{q}+1\right)}\right]^{\frac{p}{n}} & \text { if } p>1 \tag{24}\\ \frac{1}{n \sqrt{\pi}}\left[\Gamma\left(\frac{n}{2}+1\right)\right]^{\frac{1}{n}} & \text { if } p=1\end{cases}
$$

and q is the conjugate of $p\left(\frac{1}{p}+\frac{1}{q}=1\right)$.
For $p>1$, equality holds in (23) for $f(x)=K e^{-\lambda^{q} \frac{|x-\bar{x}| q}{q}}$ for some $\lambda>0$ and $\bar{x} \in \mathbb{R}^{n}$, where $K=\left(\int_{R^{n}} e^{-(p-1)|\lambda x|^{q}} d x\right)^{-1 / p}$.

Proof: First assume that $p>1$, and set $c(x)=(p-1)|x|^{q}$ and $\rho=|f|^{p}$ in (20), where $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\|f\|_{p}=1$. We have that $c^{\star}(x)=\frac{|x|^{p}}{p^{p}}$, and then, $\Gamma_{\rho}^{c}=\int_{R^{n}}|\nabla f|^{p} \mathrm{~d} x$. Therefore, (20) reads as

$$
\begin{equation*}
\int_{R^{n}}|f|^{p} \ln \left(|f|^{p}\right) \mathrm{d} x \leq \frac{n}{p} \ln \left(\frac{p}{n e^{p-1} \sigma_{c}^{p / n}} \int_{R^{n}}|\nabla f|^{p} \mathrm{~d} x\right) . \tag{25}
\end{equation*}
$$

Now it suffices to note that

$$
\begin{equation*}
\sigma_{c}:=\int_{R^{n}} e^{-(p-1)|x|^{q}} \mathrm{~d} x=\frac{\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{q}+1\right)}{(p-1)^{\frac{n}{q}} \Gamma\left(\frac{n}{2}+1\right)} . \tag{26}
\end{equation*}
$$

To prove the case where $p=1$, it is sufficient to apply the above to $p_{\epsilon}=1+\epsilon$ for some arbitrary $\epsilon>0$. Note that

$$
C_{p \epsilon}=\left(\frac{1+\epsilon}{n}\right)\left(\frac{\epsilon}{e}\right)^{\epsilon} \pi^{-\frac{1+\epsilon}{2}}\left[\frac{\Gamma\left(\frac{n}{2}+1\right)}{\Gamma\left(\frac{n \epsilon}{1+\epsilon}+1\right)}\right]^{\frac{1+\epsilon}{n}} .
$$

So that when ϵ go to 0 , we have

$$
\lim _{\epsilon \rightarrow 0} C_{p_{\epsilon}}=\frac{1}{n \sqrt{\pi}}\left[\Gamma\left(\frac{n}{2}+1\right)\right]^{\frac{1}{n}}=C_{1} .
$$

5 Gagliardo-Nirenberg and Sobolev Inequalities

Corollary 5.1 (Gagliardo-Nirenberg) Let $1<p<n$ and $r \in\left(0, \frac{n p}{n-p}\right]$ such that $r \neq p$. Set $\gamma:=\frac{1}{r}+\frac{1}{q}$, where $\frac{1}{p}+\frac{1}{q}=1$. Then, for any $f \in W^{1, p}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{equation*}
\|f\|_{r} \leq C(p, r)\|\nabla f\|_{p}^{\theta}\|f\|_{r \gamma}^{1-\theta} \tag{27}
\end{equation*}
$$

where θ is given by

$$
\begin{equation*}
\frac{1}{r}=\frac{\theta}{p^{*}}+\frac{1-\theta}{r \gamma}, \tag{28}
\end{equation*}
$$

$p^{*}=\frac{n p}{n-p}$ and where the best constant $C(p, r)>0$ can be obtained by scaling.
Proof: Apply (5) with $F(x)=\frac{x^{\gamma}}{\gamma-1}$, where $1 \neq \gamma \geq 1-\frac{1}{n}$, which follows from the fact that $p \neq r \in\left(0, \frac{n p}{n-p}\right]$. Now, for this value of γ, the function F satisfies the conditions of Theorem 1. Let $c(x)=\frac{r \gamma}{q}|x|^{q}$ so that $c^{*}(x)=\frac{1}{p(r \gamma)^{p-1}}|x|^{p}$.

Inequality (5) then gives

$$
\begin{equation*}
\left(\frac{1}{\gamma-1}+n\right) \int_{R^{n}}|f|^{r \gamma} \leq \frac{r \gamma}{p} \int_{R^{n}}|\nabla f|^{p}-H^{P_{F}}\left(\rho_{\infty}\right)+C_{\infty} . \tag{29}
\end{equation*}
$$

where $\rho_{\infty}=h_{\infty}^{r}$ satisfies

$$
\begin{equation*}
-\nabla h_{\infty}(x)=x|x|^{q-2} h^{\frac{r}{p}}(x) \text { a.e. }, \tag{30}
\end{equation*}
$$

and where C_{∞} insures that $\int h_{\infty}^{r}=1$. The constants on the right hand side of (29) are not easy to calculate, so one can obtain θ and the best constant by a standard scaling procedure. Namely, write (29) as

$$
\begin{equation*}
\frac{r \gamma}{p} \frac{\|\nabla f\|_{p}^{p}}{\|f\|_{r}^{p}}-\left(\frac{1}{\gamma-1}+n\right) \frac{\|f\|_{r \gamma}^{r \gamma}}{\|f\|_{r}^{r \gamma}} \geq C \tag{31}
\end{equation*}
$$

for some constant C. Then apply it to $f_{\lambda}(x)=f(\lambda x)$ for $\lambda>0$. A minimization over λ gives the required constant.

The case where $\gamma=1-\frac{1}{n}$ gives the standard Sobolev inequality.

Corollary 5.2 Let $1<p<n$, then we have for any $f \in W^{1, p}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\|f\|_{p^{*}} \leq C(p, n)\|\nabla f\|_{p} \tag{32}
\end{equation*}
$$

for some constant $C(p, n)>0$.
By letting $p \rightarrow 1$, one then gets the isoperimetric inequality: For any closed subset of \mathbb{R}^{n}, with σ denoting surface measure and $|\cdot|$ Lebesgue measure.

$$
\begin{equation*}
\sigma(\partial A) \geq n|B|^{\frac{1}{n}}|A|^{\frac{n-1}{n}} . \tag{33}
\end{equation*}
$$

Similar results can be established in the presence of an additional convolution operator.

References

[1] M. Agueh, N. Ghoussoub, X. Kang. Geometric inequalities via a duality between certain quasilinear PDEs and Fokker-Planck equations. Submitted, December, 2002 http://www.pims.math.ca/ nassif/pims_papers.html
[2] W. Beckner. Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11 (1999), No. 1, 105-137.
[3] D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Preprint 2002.
[4] D. Cordero-Erausquin, W. Gangbo, and C. Houdré. Inequalities for generalized entropy and optimal transportation. To appear in Proceedings of the Workshop: Mass transportation Methods in Kinetic Theory and Hydrodynamics.
[5] M. Del Pino, and J. Dolbeault. The optimal euclidean L^{p}-Sobolev logarithmic inequality. To appear in J. Funct. Anal. (2002).
[6] R. McCann. A convexity principle for interacting gases. Adv. Math 128, 1, (1997), 153-179.
[7] F. Otto and C. Villani. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361-400.
[8] C. Villani. Topics in Optimal Transportation. Garduate Studies in Math, 58, AMS (2003).

[^0]: *This paper was done while this author held a postdoctoral fellowship at UBC.
 ${ }^{\dagger}$ The three authors were partially supported by a grant from NSERC.
 ${ }^{\ddagger}$ This paper is part of this author's PhD's thesis under the supervision of N. Ghoussoub.

