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1 Introduction

It is well known that finding the largest clique in a graph is NP-hard, [11]. Indeed, Hastad [8] has
shown that it is NP-hard to approximate the size of the largest clique in an n vertex graph to within
a factor n1−ǫ for any ǫ > 0. Not surprisingly, this has directed some researchers attention to finding
the largest clique in a random graph. Let Gn,1/2 be the random graph with vertex set [n] in which
each possible edge is included/excluded independently with probability 1/2. It is known that whp
the size of the largest clique is (2 + o(1)) log2 n, but no known polymomial time algorithm has been
proven to find a clique of size more than (1+o(1)) log2 n. Karp [12] has even suggested that finding
a clique of size (1 + ǫ) log2 n is computationally difficult for any constant ǫ > 0.

Significant attention has also been directed to the problem of finding a hidden clique, but with only
limited success. Thus let G be the union of Gn,1/2 and an unknown clique on vertex set P , where

p = |P | is given. The problem is to recover P . If p ≥ c(n log n)1/2 then, as observed by Kucera [13],
with high probability, it is easy to recover P as the p vertices of largest degree. Alon, Krivelevich
and Sudakov [1], using spectral analysis, were able to improve this to p = Ω(n1/2). McSherry [14]
gives some refinements of this method. In conjunction with a negative result of Jerrum [9] that one
possible Markov chain approach fails for p = o(n1/2), p = Ω(n1/2) seems like a natural barrier for
solving this problem. Feige and Krauthgamer [5] considered finding a planted clique in the context
of the semi-random model. Juels and Peinado [10] considered the application of this problem to
Cryptographic Security.

Let AG denote the adjacency matrix of G. The spectral approach of [1] essentially maximizes
xT AGx over vectors x with |x| = 1, expecting that the optimal solution is close to u, defined by
ui = p−1/21i∈P , (u is the scaled characteristic vector of P ) so that we may recover P from the
optimal solution.
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In this paper, we define a natural 3-dimensional array A related to the given graph : Ai,j,k will
be ±1 depending on whether the parity of the number of edges among the vertices i, j, k is odd or
even respectively. Our main result here (Section 2) shows that as long as p = Ω(n1/3(log n)4), the
maximum of the cubic form or tensor A(x, x, x) =

∑

i,j,k Ai,j,kxixjxk, x ∈ Bn = {x ∈ Rn : |x| = 1}
is attained close to u. Thus if we can find this maximimum, then we can recover the clique. However,
unlike the case of the quadratic form, where the maximization is an eigenvalue computation which
is well-known to be solvable in polynomial time, there are in general no known polynomial time
algorithms for maxmizing cubic forms. So, our existential result does not automatically lead to an
algorithm and this is left as an open question.

We make the following conjecture which would yield an algorithm if proved.

Conjecture Suppose that an n × n × n array A is constructed as above from Gn,1/2 plus a planted

clique of size p ∈ Ω(n1/3(log n)c). Then the function A(x, x, x) has a unique local maximum as x
varies over Bn.

We mention that our approach here was suggested by the recent use of multi-dimensional arrays
and their associated forms in solving other computational problems: For example, their use in [7],
[2] and [6] to attack MAX-r-CSP problems. However, the methods of these papers do not seem
directly applicable to solve the algorithmic problem here.

The problem of maximising a tensor of dimension at least three over unit length vectors is a natural
one and deserves to be studied in its own right. At the present time, it is known that it is NP-hard
to maximise such a tensor if the dimension r is at least four. In fact, there is a constant c > 1 such
that it is NP-hard to approximate the maximum of this tensor to within cr, Vempala [15]. The case
of three dimensions is open and the average case has hardly been touched.

2 The cubic form and the main result

We define the 3-dimensional array :

Ai,j,k =







1 if i, j, k are distinct and G contains 1 or 3 edges of the triangle i, j, k.
−1 if i, j, k are distinct and G contains 0 or 2 edges of the triangle i, j, k.
0 if i, j, k are not distinct.

We assume that
p = C1n

1/3(log n)4.

Here C1, C2, . . . , are unspecified positive absolute constants.

For vectors x, y, z, we define

A(x, y, z) =
∑

i,j,k

Ai,j,kxiyjzk.

x, y, z will denote vectors of length 1 throughout. We will reserve u for the scaled characteristic
vector of P defined earlier. The following Theorem (which is the Main Theorem of the paper)
will imply (see Corollary 2 below) that if at least one of x, y, z is orthogonal to u, then we have
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|A(x, y, z)| ≤ C2n
1/2(log n)4. In which case,

A(u, u, u) =
p(p − 1)(p − 2)

p3/2
∼ p3/2 = ω(A(x, y, z))

for all such x, y, z. (We use the notation an = ω(bn) to mean that an/bn → ∞ as n → ∞).

Let
P 3∗ = {(i, j, k) ∈ P 3 : i, j, k are distinct}

Define the 3-dimensional matrix D by

Di,j,k =

{

1 (i, j, k) ∈ P 3∗,

0 otherwise

and let B = A − D.
B(x, y, z) = A(x, y, z) −

∑

i,j,k∈P 3∗

xiyjzk. (1)

The entries of A in P × P × P contribute
∑

(i,j,k)∈P 3∗ xiyjzk to the tensor A(x, y, z); so B(x, y, z)
is the contribution due to the random graph alone. The proof of Theorem 1 occupies all of Section
3. We defer the proofs of the corollaries following it to Section 4.

Theorem 1. There exists C3 such that

Pr
(

∃x, y, z : |B(x, y, z)| ≥ C3n
1/2(log n)4

)

= o(1).

Let
U∗ = {(x, y, z) : x.u = 0 or y.u = 0 or z.u = 0}.

Corollary 2. If (x, y, z) ∈ U∗ then

|A(x, y, z)| ≤ 2C3n
1/2(log n)4. (2)

So, whp , we have that

A(u, u, u) = ω

(

max
(x,y,z)∈U∗

A(x, y, z)

)

. (3)

Corollary 3. Suppose the maximum of the multilinear form A(x, y, z) as x, y, z vary over the unit
ball is attained at x∗, y∗, z∗. Then, min{x∗ · u, y∗ · u, z∗ · u} = 1 − o(1).

The above corollary ensures that from x∗, y∗, z∗, we can find the clique P using the Theorem below.
(See Section 4.)

Theorem 4. There is a polynomial time algorithm which given as input a unit vector v, returns
a set P ′ of cardinality p satisfying the following: If v · u ≥ C4 log n

p1/2
, for sufficiently large C4 then

P ′ = P .
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Observe that it is trivial to get a vector v satisfying v · u ≥ 1/p1/2 by trying out all n unit vectors.
Getting a vector v satisfying the hypothesis of the Theorem in polynomial time, however, seems to
be non-trivial.

Remark 1. We can assume that x∗ = y∗ = z∗ in Corollary 3. Indeed, for a fixed x, the problem of
maximising A(x, y, z) over the unit ball Bn amounts to maximizing yT Axz for y, z ∈ Bn. Here Ax is
the n×n matrix defined by Ax(i, j) =

∑

k Ai,j,kxk. Ax is a symmetric matrix and so for each x there
is a maximum in which y = z. Now define a sequence of vector triples xk, yk, zk, k = 0, 1, 2, . . . ,
where x0, y0, z0 = x∗, y∗, z∗ and x1 = x0 and y1 = z1 maximise yT Ax1

z over Bn. Now to obtain
x2, y2 = y1, z2 we find x = z to maximise A(x, y1, z and so on. Any limit point of this sequence
x̂, ŷ, ẑ must maximise A(x, y, z) and must have x̂ = ŷ = ẑ. If for example, x̂ 6= ŷ then we have the
contradiction that there are points of the form ξ, ξ, η arbitrarily close x̂, ŷ, ẑ.

Remark 2. By switching from 2-dimensional matrices to 3-dimensional matrices we have reduced
the necessary size of P from Õ(n1/2) to Õ(n1/3). An interesting open question is whether using
the natural k-dimensional matrices (whose entries are ±1 depending on the parity of the number of
edges of G in the induced sub-graphs on k vertices) will allow us to go down to Õ(n1/k), for any
fixed positive integer k.

Remark 3. We note that x∗ is a local maximum of the function A(x, x, x) (with respect to first
and second order moves) over the unit ball iff

1. x∗ is the eigenvector corresponding to the highest eigenvalue of the matrix A(x∗) and

2. the second highest eigenvalue of A(x∗) is at most half the highest.

We can assume that |x| = 1. Let F (x) = A(x, x, x) and let h be small and let x · h = 0. Then we

write F
(

x+h
|x+h|

)

≤ F (x) as

F (x) + 3A(x, x, h) + 3A(x, h, h) + O(|h|3) ≤ F (x)(1 + 3|h|2/2 + O(|h|4).

Then we will need x · h = 0 implies A(x, x, h) = 0 and maxh A(x, h, h) = λ2(Ax)|h|2.)

3 Proof of Theorem 1

We will have to make a series of technical modfications. These modifications reduce proving Theorem
1 to Lemma 2 below. In the next Section 3.1, we carry out the central part, namely the proof of
Lemma 2.

The first modification is that it is easy to see that if we set to zero all the xi for which |xi| ≤ 1/n2,
as well as similarly for y, z, then the RHS of (1) changes by at most 1. So we will assume that either
xi = 0 or |xi| ≥ 1/n2, and similarly for y, z.

Now, here is our second technical modification: Let V1, V2, V3 form an arbitrary partition of V into
three subsets, each of size m = n/3. Noting that by symmetry, each triangle i, j, k appears in the
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same number of V1 × V2 × V3, one can see that

∑

(i,j,k)

Bi,j,kxiyjzk ≤ 27
( n
m,m,m

)

∑

V1,V2,V3

∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

So,
∣

∣

∣

∣

∣

∣

∑

(i,j,k)

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≤ 27
(

n
m,m,m

)

∑

V1,V2,V3

∣

∣

∣

∣

∣

∣

∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

(4)

Now for any x, y, z we have

|
∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk| ≤ (
∑

i

|xi|)(
∑

j

|yj |)(
∑

k

|zk|) ≤ n3/2. (5)

We will prove below that for each fixed partition of V into three equal sized subsets - V1, V2, V3,
we have,

Pr



max
x,y,z

∣

∣

∣

∣

∣

∣

∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≥ C5n
1/2(log n)4



 ≤ 1

n6
. (6)

One can derive Theorem 1 from (4), (5) and (6) by the following simple argument: Say that a

partition V1, V2, V3 is bad for A, if maxx,y,z

∣

∣

∣

∑

(i,j,k)∈V1×V2×V3
Bi,j,kxiyjzk

∣

∣

∣ ≥ C5n
1/2(log n)4 and we

let PB denote the set of bad partitions. Let

g(A) =
|PB|
( n
m,m,m

) .

Then, we know that EA(g(A)) ≤ 1/n6 from which it follows by Markov inequality that

PrA

(

g(A) ≥ 100

n4

)

≤ 1

100n2
.

For any A with g(A) ≤ 100/n4, we have from (5)

∑

V1,V2,V3

max
x,y,z

∣

∣

∣

∣

∣

∣

∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≤
(

C5n
1/2(log n)4 +

100

n4
n3/2

)(

n

m, m, m

)

and Theorem 1 follows.

To prove (6), we fix attention from now on on one particular V1, V2, V3. We let

X(x, y, z) =
∑

(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

and
(x∗, y∗, z∗) = argmaxx,y,z|X(x, y, z)|

and suppose that
|X(x∗, y∗, z∗)| ≥ C5n

1/2(log n)4. (7)
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For sets R ⊆ V1, S ⊆ V2, T ⊆ V3 of vertices, we let B(R, S, T ) be the set of triples of vectors (x, y, z)
satisfying

|x|, |y|, |z| ≤ 1.

R = {i : xi 6= 0}, S = {j : yj 6= 0}, T = {k : zk 6= 0}.
|xi/xj | ≤ 2, ∀i, j ∈ R, |yi/yj | ≤ 2, ∀i, j ∈ S, |zi/zj | ≤ 2, ∀i, j ∈ T.

Note that this implies

|xi| ≤
2

|R|1/2
, |yi| ≤

2

|S|1/2
, |zi| ≤

2

|T |1/2
, ∀i. (8)

Since 1
n2 ≤ |x∗

i |, |y∗j |, |z∗k| ≤ 1, we can write each of x∗, y∗, z∗ as the sum of log2(n
2) vectors, each of

which has the property that its non-zero components are within a factor of 2 of each other. Thus,
(7) implies that there exist R, S, T such that

max
(x,y,z)∈B(R,S,T )

|X(x, y, z)| ≥ C6n
1/2 log n.

So, we see that (7) would lead to the non-occurrence of the event A in the following Lemma.

Lemma 1. For every fixed partition of V into three equal sized sets V1, V2, V3, we have that with
probability at least 1 − 1

n6 , the following event A holds:

A: For all R, S, T , R ⊆ V1, S ⊆ V2, T ⊆ V3,

max
(x,y,z)∈B(R,S,T )

|X(x, y, z)| < C6n
1/2 log n.

This in turn will follow from the next lemma:

Lemma 2. Suppose R, S, T are fixed pair-wise disjoint subsets of vertices, with |R| = r, |S| =
s, |T | = t. Then with probability at least 1 − n−6(r+s+t), the following event which we will call
AR,S,T happens:

max
(x,y,z)∈B(R,S,T )

|X(x, y, z)| ≥ C6n
1/2 log n.

Lemma 1 follows from Lemma 2 by the following argument: For each set of integers r, s, t, the
number of subsets (R, S, T ) of {1, 2, . . . n} with |R| = r, |S| = s, |T | = t is at most nr+s+t. Thus we
will concentrate on proving Lemma 2.

3.1 Proof of Lemma 2

Note that R can be partitioned into two parts - R∩P and R \P , similarly also S, T . So, it suffices
to prove that for any fixed R, S, T , each either contained in P or disjoint from P , the following
event BR,S,T happens with probability at least 1 − n−6(r+s+t):

BR,S,T : max
x,y,z∈B(R,S,T )

|X(x, y, z)| ≤ C7n
1/2 log n.
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If R, S, T ⊆ P , then X(x, y, z) = 0. So, we may assume in what follows that

(R ⊆ P or R ∩ P = ∅), (S ⊆ P or S ∩ P = ∅), (T ⊆ P or T ∩ P = ∅), (R ∪ S ∪ T 6⊆ P )

We consider the following cases, which up to re-naming of R, S, T are exhaustive:

Case 1: S, T ⊆ P and R ∩ P = ∅ and |R| ≤ max{|S|, |T |} ≤ |P |.
In this case we use the Azuma-Hoeffding martingale tail inequality, see for example [4]. We have
E(X) = 0 and X = X(x, y, z) is determined by r(s + t) independent random variables (the edges
in R× (S ∪T )). Now adding or removing an edge in R×S (resp. R×T ) can change X by at most

8t
(rst)1/2

(resp. 8s
(rst)1/2

) (recall (8)). Applying the inequality we see that

Pr(|X| ≥ C6n
1/2 log n) ≤ 2 exp

{

−C7n(log n)2

s + t

}

≤ n−20(r+s+t). (9)

(Remember that r, s, t ≤ p = n1/3+o(1)).

The above deals with one particular x, y, z ∈ B(R, S, T ).

Note next that there is a 1/(r + s + t)2-net L of B(R, S, T ) of size at most O((r + s + t)6(r+s+t)).
(I.e., there is a set L of O((r+s+t)6(r+s+t)) elements of B(R, S, T ) so that for each element (x, y, z)
of B(R, S, T ), there is some element (x′, y′, z′) of L such that |(x−x′, y−y′, z−z′)| ≤ 1/(r+s+t)2).
Now, (9) implies that

Pr
(

∃(x′, y′, z′) ∈ L : |X(x′, y′, z′)| ≥ C6n
1/2 log n

)

≤ n−12(r+s+t).

Lemma 2 follows from this and

|A(x, y, z) − A(x′, y′, z′)| ≤
|A(x, y, z) − A(x′, y, z)| + |A(x′, y, z) − A(x′, y′, z)| + |A(x′, y′, z) − A(x′, y′, z′)|

≤ 4rst

(r + s + t)2

(

1

(st)1/2
+

1

(rt)1/2
+

1

(rs)1/2

)

.

Case 2 |R| ≥ |S|, |T | and either (i) R ⊆ P and S ∩ P = T ∩ P = ∅ or (ii) R ∩ P = ∅.
In either of the two sub-cases (i) and (ii), all the edges in G from R× (S ∪ T ) are from the random
graph, not from the planted clique. Also, fix attention on one particular (x, y, z) ∈ B(R, S, T ).

In this case, to prove an upper bound on |X(x, y, z)|, we bound its ℓth moment, where ℓ is an even
integer to be chosen later.

Let I be the set of triples (i, j, k), where i, j, k are distinct and at most 2 of them are in P . Let
Ωℓ denote the set of ordered sequences of ℓ triangles T1, T2, . . . , Tℓ where Ti ∈ I ∩ (R × S × T ) for
i = 1, 2, . . . , ℓ. Let X = X(x, y, z). We have

E(Xℓ) =
∑

T ∈Ωℓ

E

(

ℓ
∏

i=1

A(Ti)

)

ℓ
∏

i=1

Z(Ti). (10)
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where if Ti = (α, β, γ) then A(Ti) = Aα,β,γ and Z(Ti) = xαyβzγ .

Consider an edge e ∈ R × (S ∪ T ) such that e appears in an odd number of triangles in T . If we
consider the measure preserving map fe which deletes e if it appears in G and adds it otherwise
then we see that

ℓ
∏

i=1

A(fe(Ti)) = −
ℓ
∏

i=1

A(Ti)

and so E
(

∏ℓ
r=1 A(Tr)

)

= 0. This implies that it is sufficient to sum over those T in which each

edge of R × (S ∪ T ) appears an even number of times. Let Ω∗
ℓ (R, S, T ) denote the set of ordered

sequences (i1, j1, k1), . . . , (iℓ, jℓ, kℓ) ∈ (I ∩ (R×S × T ))ℓ such that each pair (i, j) ∈ R× S and each
pair (i, k) ∈ R × T appears an even number of times.

Lemma 3.

|Ω∗
ℓ (R, S, T )| ≤ ℓ!

(

ℓ + r − 1

r − 1

)

(4st)ℓ/2.

Proof Fix di ≥ 0, i ∈ R and let us first count the sequences in Ω′
ℓ(R, S, T ) in which i ∈

R appears di times. Note that
∑

i∈R di = ℓ. Now fix i ∈ R and consider the di triangles
(i, s1, t1), . . . (i, sdi

, tdi
) which contain i. Then consider the bipartite multigraph Γ on S ∪ T with

edges (s1, t1), . . . , (sdi
, tdi

). By assumption, each vertex of Γ is of even degree and so by Lemma 4
(below) there are at most (4st)di/2 choices for Γ. Multiplying over i we see that there are at most
(4st)ℓ/2 choices for any given sequence d1, . . . , dr. The number of choices for d1, . . . , dr is at most
(ℓ+r−1

r−1

)

and the lemma follows by multiplying by ℓ! to get an ordered sequence. 2

Let N(s, t, µ) denote the number of bipartite multigraphs with vertex sets S, T on the two sides,
with µ edges and such that each vertex has even degree.

Lemma 4.
N(s, t, µ) ≤ (4st)µ/2.

Proof First note that for f ≥ 1

22f

2f1/2
≤ (2f)!

(f !)2
≤ 22f .
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Let 2e1, 2e2, . . . , 2es and 2f1, 2f2, . . . , 2ft denote the degrees of vertices in S, T respectively. Then

N(s, t, µ) ≤
∑

2e1+···+2es=µ
2f1+···+2ft=µ

µ! min







∏

i∈S

1

(2ei)!
,
∏

j∈T

1

(2fj)!







≤
∑

2e1+···+2es=µ
2f1+···+2ft=µ

µ!





∏

i∈S

1

(2ei)!

∏

j∈T

1

(2fj)!





1/2

≤
∑

2e1+···+2es=µ
2f1+···+2ft=µ

(µ/2)!22µ
∏

i∈S

21/2e
1/4
i

2eiei!

∏

j∈T

21/2f
1/4
j

2fjfj !

≤ 2µ





∑

e1+···+es=µ/2

(µ/2)!
∏

i∈S

1

ei!









∑

f1+···+ft=µ/2

(µ/2)!
∏

j∈T

1

fj !





= 2µsµ/2tµ/2,

the last because
(

∑

e1+···+et=µ/2(µ/2)!
∏

j∈T
1

ej !

)

is the number of ways of parititioning the set

{1, 2, . . . µ/2} into t subsets and this number also equals tµ/2. 2

Thus,

E(Xℓ) =
∑

T ∈Ω∗
ℓ

E

(

ℓ
∏

r=1

A(Tr)

)

ℓ
∏

r=1

Z(Tr)

≤ |Ω∗
ℓ | ·

8

(rst)ℓ/2

≤
(

ℓ + r − 1

r − 1

)

· 2ℓ+3ℓ!

rℓ/2

≤ 2ℓ+4ℓℓ+1/2er

rℓ/2
.

Now ℓ even implies that Xℓ ≥ 0 and so applying the Markov inequality, we see that for any ξ > 0,

Pr(X > ξ) ≤ 2ℓ+4ℓℓ+1/2er

ξℓrℓ/2
.

Putting ξ = C6n
1/2 log n and ℓ = (r + s + t) log n, we see that

Pr(X(x, y, z) ≥ C6n
1/2 log n) ≤ n−20(r+s+t). (11)

This completes the proof of Lemma 2.
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4 Proof of the Corollaries

Corollary 2 follows from Theorem 1 and the following:

∣

∣

∣

∣

∣

∣

∑

i,j,k∈P 3∗

xiyjzk

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

(

∑

i∈P

xi

)





∑

j∈P

yj





(

∑

k∈P

zk

)

∣

∣

∣

∣

∣

∣

+ |y · z|
∣

∣

∣

∣

∣

∑

P

xi

∣

∣

∣

∣

∣

+ |x · z|
∣

∣

∣

∣

∣

∑

P

yj

∣

∣

∣

∣

∣

+ |x · y|
∣

∣

∣

∣

∣

∑

P

zk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i∈P

xiyizi|
∣

∣

∣

∣

∣

≤ 3p1/2.

2

For Corollary 3 we write x∗ = (x∗ · u)u + x′, where x′ is orthogonal to u, similarly for y∗, z∗. This
splits A(x∗, y∗, z∗) into the sum of 8 parts. Using (3), we get

A(u, u, u) ≤ A(x∗, y∗, z∗) ≤ o(A(u, u, u)) + (x∗ · u)(y∗ · u)(z∗ · u)A(u, u, u),

and the corollary follows. 2

5 Proof of Theorem 4

Now, we prove Theorem 4. Let v with |v| = 1 be the given vector. Define a vector w by: wi =
max(vi, 0). Clearly,

∑

i∈P wi ≥
∑

P vi. For ease of notation, we re-number the indices of coordinates
so that w1 ≥ w2 ≥ . . . wn. Since v is given, we can explicitly do this reordering. Also for convenience,
we let wn+1 = 0. After this renumbering, we let

Sk = {1, 2, . . . k}, Tk = Sk ∩ P, tk = |Tk| k = 1, 2, . . . , n. (12)

Lemma 5. If
∑

i∈P vi ≥ C8 log n, then for some integer k,

tk ≥ C8

√

k log n/3.

10



Proof Assume for the sake of contradiction that
∑

i∈P vi ≥ C8 log n and that for all k, tk <
C8

√
k log n/3.

∑

i∈P

wi =

n
∑

k=1

tk (wk − wk+1)

≤ 1

3
C8

√

log n
n
∑

k=1

√
k(wk − wk+1)

=
1

3
C8

√

log n
n
∑

k=1

wk(
√

k −
√

k − 1)

≤ 2

3
C8

√

log n
n
∑

k=1

wk√
k

≤ 2

3
C8

√

log n|w|
(

n
∑

k=1

1

k

)1/2

≤ 3

4
C8 log n,

using 2√
k
≥

√
k −

√
k − 1 and also the Cauchy-Scwartz inequality. This contradiction proves the

Lemma. 2

Let G be the graph we are given (the random graph plus the planted clique.) Let M be its adjacency
matrix, where we put a +1 for an edge and -1 for a non-edge. For a subset S of V , let GS denote
the induced subgraph on S and MS the |S| × |S| adjacency matrix of GS . (In our definition of
adjacency matrix, we have 1’s on the diagonal). We may write

M = puuT + M̂ − M̃, (13)

where M̂ is the adjacency matrix of the random graph and M̃ is the adjacency matrix of the sub-
graph induced on P of the random graph. [M̃ has 0 entries outside P ×P .] We may similary write
for any S ⊆ V ,

MS = tuSuST
+ M̂S − M̃S , (14)

where |S ∩ P | = t and uS denotes the vector with 1/
√

t in the S ∩ P positions and 0 elsewhere.

Lemma 6. With probability at least 1 − n−3, we have that for all S ⊆ V ,

max{λ1(M̂
S), λ1(M̃

S)} ≤ 100
√

|S| log n

where λ1 denotes the largest absolute value of an eigenvalue.

Proof For each fixed S, the matrix M̂S is a random symmetric matrix. It is known [3] that
with probability at least 1 − 4e−10|S| log n, we have that |λ1(M̂

S)| ≤ 100
√

|S| log n. For each s ∈
{1, 2, . . . n}, there are at most ns subsets S of V with |S| = s. So the probability that the assertion
of the Lemma does not hold is at most

∑n
s=1 nse−10s log n ≤ 1/(2n3). M̃S is dealt with similarly.

2

11



For notational convenience, we let Mk denote MSk (see (12)) and similarly for M̂k, M̃k. The first
step of our algorithm is to run through k = 1, 2, . . . n, find λ1(M

k) and stop when for the first time,
we find a k such that

λ1(M
k) ≥ 1000

√

k log n. (15)

Lemma 7.

(i) If C8 ≥ 3000 then the algorithm will find a k satisfying (15).

(ii) For any k satisfying (15), we have:

(a) if a is the top eigenvector of Mk, then
∣

∣

∣

∑

i∈Tk
ai

∣

∣

∣ ≥ 0.8
√

tk and

(b) tk ≥ 800
√

k log n.

Proof Let uk be a vector defined by uk
i = 1/

√
tk for i ∈ Tk and 0 elsewhere. Then, ukT

Mkuk =
tk; this implies that λ1(M

k) ≥ tk. Now (i) follows from Lemma 5.

(ii) Suppose now k satisfies (15) and a is the top eigenvector of Mk. Then, we have (recalling (14)
and using Lemma 6),

1000
√

k log n ≤ aT Mka = tk(u
k · a)2 + aT M̂ka − aT M̃ka ≤ tk + 200

√

k log n.

Thus,
tk ≥ 800

√

k log n.

Also,

tk ≤ λ1(M
k) ≤ tk(u

k · a)2 + 200
√

k log n ≤ tk

(

(uk · a)2 +
1

4

)

which implies
(uk · a)2 ≥ 3/4.

This proves (ii).

2

Remark 4. The above process has “magnified” the dot product we make with the scaled charac-
teristic vector of P from the O(log n/

√
p) that the input vector v was guaranteed to make to Ω(1)

for the “output” vector a, but at the cost of going to a subset Sk of V . We will see that with the
“magnified” vector a on hand, it is now possible to find P .

Lemma 8. There is a polynomial time algorithm which given S ⊆ V and a unit length vector a
with support S, finds a P ′ ⊆ V with the following property:

If |S ∩ P | ≥ 800
√

|S| log n and
∑

i∈S∩P ai ≥ 0.8
√

|S ∩ P |, then P ′ = P .

Proof Re-number the coordinates, so that a1 ≥ a2 ≥ . . . ≥ an. In particular this implies that
if ℓ ≤ |S| then [ℓ] ⊆ S. We wish to prove that there is an integer ℓ such that

|[ℓ] ∩ P | ≥ max{ℓ/100, 10 log n} (16)

12



First, if |S ∩ P | ≥ |S|/10, then we can take ℓ = |S|. So assume that t = |S ∩ P | < |S|/10 and let
ℓ = 4t.

∑

i≤ℓ;i∈P

ai ≤
√

|[ℓ] ∩ P |.

So,
∑

i≥ℓ+1;i∈P

ai ≥ 0.8
√

|S ∩ P | −
√

|[ℓ] ∩ P |

and
∑

i≤ℓ

ai ≥ ℓ

t

(

0.8
√

|S ∩ P | −
√

|[ℓ] ∩ P |
)

.

But,
∑

i≤ℓ

ai ≤
√

ℓ.

This implies
√

|[ℓ] ∩ P | ≥ 0.8
√

|S ∩ P | − 0.25
√

ℓ = .15
√

ℓ. (17)

Also, we have |S ∩ P |2 ≥ 640000|S| log n and so |S ∩ P | ≥ 640000 log n and then (16) follows from
(17) and |[ℓ] ∩ P | ≥ 4(.15)2|S ∩ P | .

Now to construct P we try all values of ℓ. For each value of ℓ, we pick a random set Q1 of 10 log n
from [ℓ]. For ℓ satisfying (16) there is at least a 10−20 log n chance that Q1 ⊆ P . Now whp no set of
10 log n vertices in P have more than 2 log n common neighbours outside P . Indeed the probability
of the contrary event is at most

(

p

10 log n

)(

n

2 log n

)

2−20(log n)2 = o(1).

So let Q2 be the set of common neighbours of Q1. By assumption we have P ⊆ Q2 and |Q2 \ P | ≤
2 log n. Also, whp for every 10 log n-subset Q of P , no common neighbour outside P has 3p/4
neighbours in P . Indeed the probability of the contrary event is at most

n

(

p

10 log n

)(

n

2 log n

)

2−p/12 = o(1).

Thus P is the set of vertices of degree at least 7p/8 in the subgraph of G induced by Q2. 2

Acknowledgement We thank Santosh Vempala for interesting discussions on this problem.
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