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Let m=3nlog n+4inloglogn+c, Let I' denote the set of graphs with vertices
{1,2,...,n}, m edges and minimum degree 1. We show that if a random graph G
is chosen uniformly from I' then

IO if ¢,—— oo, sufficiently slowly,
lim Pr(G has a perfect matching)={e-*"*/® if ¢,—c,
meew 1 if ¢y + 0.

We also show that if a random graph G with vertices {1, 2, ..., n} is constructed
by randomly adding edges one at a time then, almost surely, as soon as G has degree
k, G has |k/2] disjoint hamiltonian cycles plus a disjoint perfect matching if & is odd,
where k is a fixed positive integer.

1.
Let G, ,, denote a random graph with vertices {l 32y ey n} and m edges where
n
each of the (2) possible graphs is equally likely to be chosen.
m

Erdos and Rényi [5] showed that if m=1nlog n+c, n then

0 if ¢,——0o0,
LmPr(u(G, »=Lnl2)={e"*"* if ¢,>c, 1.1)
o 1 if ¢+,

where u(G) denotes the maximum cardinality of a matching in a graph G.
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The probabilities in (1.1) are the limiting probabilities for 6(Gy,m)>1, where
3(G) denotes the minimum vertex degree of a graph G. Thus Erdds and Rényi
proved (1.1) by showing

limPr(u(G{))=Ln/2])=1, (1.2)

n=* oo

where Gf,l,),, denotes a random graph chosen uniformly from the set of graphs
with vertices {1, 2, ...,n}, m edges and minimum degree 1.
The first result of this paper is to tighten (1.2) and prove

Theorem 1.1. Let m=%nlogn+inloglogn+c,n, then

0 if c,—— 0, sufficiently slowly,
lim Pr(u(G&))=1n/2f)={e"*"""® if ¢,>c,
neo 1 if ¢, +o0.

There is at present, an unfortunate restriction |c,,| =o0 (log log n) for c¢,— — 00.
We cannot at present relax this because of the difficulty of dealing with the con-
ditioning of §(G,, ) =1. Note that some restriction must be placed on the growth
rate of |¢,| when ¢,— —c0 as

Pr((G, 1) =Ln2])=1.

Our second result is a generalization of one stated by Komlés and Szemerédi
[1 3]. To state this we need to define the following: a graph process G,=(Go, Gy ..»
...)is a Markov process in which G, is a graph with vertices V,={1, 2,.

n} and edges E,, where |E,|=m. G, is obtained from Gn-; by choosmg
ee V¥ —E,_, uniformly at random and putting E, =E,_, U {e}. Note that

G,, above is distributed exactly as G, .,
For a graph property IT (usually monotone) and graph process G, let

(I, I)=min(m :G,el).
In particular let

IT,=‘The minimum degree of G is at least £’
and

IT,=*G has |k/2| disjoint hamiltonian cycles plus a disjoint matching
if k is odd.’

Our second result is



On matchings and hamiltonian cycles 25.

Theorem 1.2. If k is a fixed positive integer then

lim Pr(c(I, IL)=(T", IT))=1.

n—oo

Komlés and Szemerédi stated this result for k=2. Note that Theorem 1.2.
is most clearly stated as: if we randomly add edges one by one then when the
graph constructed has minimum degree k then it a.s. has |k/2| disjoint hamiltonian
cycles plus a disjoint matching if k is odd.

For other results on matchings and hamiltonian cycles in random graphs.
see Bollobds [2], Bollobds, Fenner and Frieze [4], Fenner and Frieze [7], [8],.
Frieze [10], [11], [12], Richmond, Robinson and Wormald [14], Richmond and
Wormald [15], Robinson and Wormald [16], Shamir [17], and Shamir and
Upfal [18], [19].

Notation

For a graph G we let V(G) denote its set of vertices and E(G) denote its set of
edges.

For v € V(G), dg(v) is the degree of v, and for S< V(G), Ng(S)= {v¢ S: there
exists w e § such that {v, w} € E(G)}.

For non-negative x, V,(G)={v e V(G): ds(v) > x}. For SS¥(G), G[S]= (S Eg)
where Eg={e e E(G): ec S}.

Let D, =D, (G) be the set of vertices of degree 1 in G and let w(G)=G[V,(G)
—Ne(D)]

For ee E(G) we let G—e=(V(G), E(G)—{e}) and for e ¢ E(G) we let G+e-
=(V(G), E(G) L {e}).

For 0<p<1, G, , denotes a random graph with vertices {1,2, ..., n} in which
each of the (3) possible edges is chosen with probability p and not chosen with
probability 1—p.

Throughout this section m=nlogn/4+nloglogn/2+c,n where for the
moment we assume |c,|+—o0. The proof of Theorem 1.1. is obtained by a
sequence of lemmas.

Lemma 2.1. Let G=G, m, LARGE=V3,100(G) and SMALL=V(G)—LARGE..
Consider the following conditions:

No cycle of length 3 cantains 2 small vertices; 2.1a)
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No path of length 2 contains 3 small vertices; (2.1b)
S=V(G), 4<|S|<7, |Sn SMALL|>3 implies G[S] is

not connected; (2.10)
|SMALL|<n"55; (2.1d)
9#SSLARGE, |S|<nflog n implies |N4(S)|> (log n/1000)|S|; (2.1
No vertex has degree exceeding Slogn. 2.1f)

Then for n large
Pr (G, m fails to satisfy (2.1))<n~-35 (2.2

"Proof (Outline). To estimate the probabilities for (2.1a), (2.1b), (2.1c), (2.1f) we
simply compute the expected number of triangles containing 2 small vertices, etc.
“This is tedious but stra‘ghtforward.

To deal with (2.1d), (2.1¢) we let p=(logn/2+log logn+2¢,)/n and consider the
random graph G, ,.

As ]E(G,,,,,)| is a binomial random variable with parameters () and p, it is
-easy to verify that

Pr(|E(G,,,)|=m)=4(nlogn)~* for n large. (2.3)
Also

G,,, conditional on |E(G, ,)|=m is distributed exactly as Gpm- (2.4)
‘Thus for any property IT

Pr(G,,, has IT)<2(nlog n)*Pr(G,,, phas IT). 2.5)
We show next that

Pr(G,, , violates (2.1d))=0(n~*""") for some &>0 (2.6)

and

Pr(G,, , violates (2.1e))=0(n"2°). @7
Lemma 2.1 is completed using (2.5), (2.6) and (2.7).
Proof of (2.6). Pr(G,,, violates (2.1d))<Pr(there exists S, s= |S|=[n5%] and
-each v e § is adjacent to fewer than log n/100 vertices in VG)—-S)

n logn/100 n—s sk _
<(s)( 2 ( A )p"(l—p) F=0@n"").
k=0
5)
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Proof of (2.7). We first consider the case 1< lS] <n/(logn)® and note that if (2.1¢)
fails then, where s=|S|, G[S U Ng(S)] has at most (log n/1000+1)s vertices and
at least (log 7/200)s edges. The probability of this happening is, for large », no
more than

n/(log n)3 (r) r ry_
i (") > ((;’)p"a—p)(’) =0m).

r=1 r) k=4ar

For s>n/(logn)® we need not restrict SSLARGE and then the probability that
(2.1¢) fails is no more than

nflogn (logn/1000)s —
5 (:) 5 (n - s) (1=(L—pY)F(L—py™=s~H

s=n/(log n)3 k=0

=0 (n~ ™0™

Let ¥, =%,(n) denote the set of graphs with vertices {1, 2,...,n} and m edges.
Let 4, =%,(n) denote the set of graphs in ¥, that satisfy (2.1). We prove the
following lemma on the neighborhoods of sets of vertices.

Lemma 2.2. Let G € %, and X< E(G) be a matching of G that does not meet any
small vertex. Let H=y((V(G), E(G)—X)). Then for n large we have

0#£S<V(H), |S|<n/8000 implies |[Nu(S)|>|S]. (2.8)

Proof. Let T=N4(D,) and let S;=5 N SMALL and S,=S5-S5;. We note first
that (2.1) implies that no large vertex is adjacent to 3 small vertices and no large
vertex is adjacent to 3 members of 7. Hence

[Na(S)|=|Nu(Sp)|—|Sa]+|No(S2)| —3|S2| —min(|Sy], 2|S.]), (2.9)

where the factor 3 in (2.9) accounts also for the deletion of X. We must now prove
that

IN&(SD|>]S4). (2.10)

Note next that (2.1b) implies H[S,] consists of isolated vertices and edges. So let
{u, v} be any edge of H[S,]. Then (2.1c) implies

neither # nor v have a neighbor in common with any
other vertex of Sy; (2.11a)

neither # nor v have a neighbor in T. (2.11b)
6
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Also (2.1a) implies that
u and v have no common neighbor. (2.11¢)

Now consider the components of the graph induced by the isolated vertices 7
of H[S,] and their neighbors in G. Let C be the set of vertices of such a component.

|CAI[=1 implies, by (2.1c), that |Cn T|<1. (2.11d)
To deal with the case |C N I|>2 we note that if u, v e I then by (2.1c)

[Ne({u) n T|<1 (2.11e)

Ng({u}) n Ns({v})#0 implies No({u})n T=0. (2.11f)

Using (2.11) plus the fact that S; S ¥V,(G) yields (2.10). We now use this in
(2.9).

Case 1. |S,| >2|S,|.
From (2.9) and (2.10) and (2.1d) and (2.1¢) we obtain

[Nu(S)|=|S1|—|S2|+((1ogn/1000)—5) |S,|
=|S|+((log n/1000)—7)|S,].

Case 2. |S,| <2|S,|<2n/log n.
From (2.1), (2.9) and (2.10) we have

INa(S)|=|S,|—|S,|+((logn/1000)~3) |S,| - |S,|
=|S|+((1og n/1000)—5) |S,| —|S]).

Case 3. |S;|<2|S,|, nflogn<|S,|<n/8000.
Choose S5 =S, such that |S;|=n/logn, then |Ny(S2)| > |Nu(S3)| —|S5] > 7n/8000
using (2.1e).

Then from (2.10) and (2.11) we obtain

|Nu(S)|>|S;|—|S2|+7n/8000—3]S,| —|S,]|
=S| +(7n/8000—7]S,)).

We deduce from these 3 cases that the conclusion of the lemma holds. [J
7
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Next let o be the set of graphs which contain 2 vertices of degree 1, with a
common neighbor. Clearly no graph belonging to & has a perfect or near perfect
matching. Our aim is to show that the main obstruction to a graph of minimum
degree at least one having a perfect or near perfect matching is that the graph
belongs to .

Lemma 2.3. Suppose Ge€%,={Ge %\ : ((G)<||V(G)|/2]} and we remove a
set of edges X as in the statement of Lemma 2.2 to obtain a graph Gy. Let .# be
the set of maximum cardinality matchings of G| which cover every vertex of degree 1.
Let Z be the set of vertices which are left uncovered by at least one member M of
M, i.e. not incident with any edge of M. For v e Z let Z(v) be the set of vertices w
for which there exists M € M such that both v and w are uncovered by M. Then

if we Z(v) then w is not adjacent to v, (2.12a)
|Z|>n/8000 and |Z(v)|>n/8000 for ve Z. (2.12b)

Proof. If (2.12a) is false, then we have the contradiction that {v, w} can be added
to any M € ./ leaving v and w uncovered.

To prove (2.12b) we note that Z(v)< Z and so it suffices to prove |Z(v)| >7/8000
for v € Z. Note first that H=w(G,) satisfies 5(H)>l and that as G ¢ &/ we have
V()| ~20(H) = | V(G )| - 2(G) >2.

Letve Z and M e ./ leave v uncovered and let S#¢ be the other vertices left
uncovered by M. If M’'=M n E(H) then {v} U S< V(H) and M’ is a maximum
cardinality matching of H. Let S; be the set of vertices reachable from S by an
even length alternating path with respect to M’, S S; here. Then Z(v)= S, (=5,
actually) and we prove the lemma by showing

INH(Sl)I<|S1| ‘ (2.13)

and applying Lemma 2.2.

If x € Ny(S;) then x ¢ S and so there exists y; such that {x, y,} & M’'. We show
1 € S; which will prove (2.13). Now there exists y, € S; such that {x, y2} € E(H).
Let P be an even length alternating path from some s € S terminating at y,. If P
contains {x, y;} we can truncate it to terminate with {x, y,}, otherwise we can
extend it using edges {y,, x} and {x, y,}. O

We can now prove that, excluding isolated vertices, if G, ¢ & then it a.s.
has a perfect or near perfect matching. We use a coloring argument introduced
by Fenner and Frieze [7].

Lemma 2.4. For n large

Pr(1(Gp, m) <L|Vi(Gr,m)|[2§|Gp, m# L) <n ™" (2.14
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Proof. Let a=64x 10° and w=|alogn|. We show that for n large
|9,]/|9o|<2(1—a"1)° (2.15)

which in conjunction with Lemma 2.1 proves (2.12).

For each G e %, consider the (J}) ways of coloring w edges green and m—cw
edges blue. For a given coloring we let G® denote the subgraph spanned by all
vertices of G and the blue edges only. Let 4 denote the number of blue-green
colorings which satisfy

r(G)=p(G)<L|V(G)|/2], (2.16a)

(2.12b) holds for H=y(G%). (2.16b)

We show that
A?]g2|(2>(l—s(n))‘”, (2.17a)

where &(n)=0((log n)?/n) and that
Aslgol(Z)(l—a'l)‘” (2.17b)

which will imply (2.15).

Proof of (2.17a). If Ge ¥,, let M be a fixed maximum cardinality matching of G.
Now there are (1 —¢&(n))“(;;) ways of choosing @ green edges X such that (i)
X n M=0, (ii) X does not meet any small vertices, and (iii) X is itself a matching
(this is the o-ly place that we need (2.1f)). For such colorings (2.16) must hold,
which proves (2.17a).

Proof of (2.17b). Consider a fixed blue subgraph G® and count the number of
ways f=f(G") of adding w green edges so that (2.16) holds. If (2.16b) does not
hold then #=0. If (2.16b) holds then in order for (2.16a) to hold we must avoid
adding an edge {v, w}, where we Z(v) as in Lemma 2.3. But there are at most

n ,
(A—-ahH)® ((2)_m +a)) ways of doing this and (2.17b) follows. [J
w 9
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To study the behavior of G{') we use the following.
Lemma 2.5. Let H be the graph obtained from G,,, by deleting isolated vertices

and re-labelling the remaining vertices i, <i,<...<i, as 1,2, ..., h respectively..
Then for a fixed value of h, H is distributed as G§'),.

Proof. Each such H is obtained from the same number of G,,. [I

The following lemma will enable us to pass, via Lemma 2.5, from results."
concerning G[V,(G,, )} to results concerning G{').

Lemma 2.6. Let t=[e~2°n2]log n), then for large n

Pr(|[Vi(Gpsr,m)|=n)=n""2%. (2.18)
Proof. Let p=(log n/2+1og log n+2c,)/n. We show first that for n large

A4, =Pr(|V(G,, )|=n)>(log n)**n~-25, (2.19)

n+t

NOW Al =( ¢

) Pr(A4)Pr(B|4) where

A="vertices n+1, ..., n+t are all isolated,’

and
B¥‘vertices 1, 2, ..., n are all non-isolated.’
For n large
! +tn
Pr(A)=(1—p)\ D" > (efm) (1- 0 (1)
and

Pr(B|4)=Pr(6(G,, ,)>1)>Pr(ds, (1)> n".
The latter inequality is a consequence of
Pr(dcnlp(k+l)> lldGn_p(i)> 1, i=1,2,..., k)?Pr(dG"_P(k+l)>l)r

which follows from the FKG inequzil(i)ty 9]
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"Thus,

Pr(B|l4)>(1—-(1—p)" 'y >(1—t/n)"(1—-0(1)).
"Thus, A, > (¢/n)'(1—t/n)" (1—o(1)) and (2.19) follows on using Stirling’s
inequalities.

Although (2.19) does not give (2.18) directly it does show

there exists m,, |m—m,|>2n*logn such that

2.20
Pr(|Vy(Gp s, m)|=n)>(logn)tn "%, (220

‘This is because Pr(||E(G,..,,)|—m|>2n"?logn)<1/n, which follows from the
-Chernoff bound.
To obtain (2.18) from (2.20) we define
G(m)={G: V(©)={1,2, ..., n+t}, |Vy(G)|=n and |E(G)|=m'},

where we assume throughout that |m’—m|<2n'2logn.

For Ge¥% (m’) let a(G)=l{eeE(G):G—ee?(m’—l)}l.

We note
m'za(G)=m'~|Dy(G)|. (2.21)
Also
y a(G)=((;)—m'+1)|g(m’—l)| (2.22)
Ge¥(m’)

-as both sides of (2.22) count the number of pairs (G, e), where Ge %(m'—1),
e¢ E(G) and G+e e 9(m).
Now (2.21) implies

m' | (m")]| > ;( 2 (G)=(m' —n,(m"))|g (m")|, (2.23)

‘where n,(m’) is the expected number of vertices of degree 1 in a random graph
chosen uniformly from 4(m’).
Next let

(n+t)
z,,,=Pqu1<Gn+,,m,>|=n)=|<4<m'>|/( 2 )

11 m’
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It follows from (2.22) and (2.23) that

pm’/mlg)‘m’/lm’—lSpm’l(m'-ﬁl(m,))’ (224)

e () )

In order to apply (2.24) to “close the gap” between m and m, in (2.20) we
must estimate n,(m’).

We show first that if a (c) =(e' ~2°/2)(1 + o0 (1)) then, where p=(log nf2+loglogn
+2c,)/n, c,—c,

where

gt
Pr(|Dy(Gps, )| > Brt)< (Bl ()P . (2.25)

The above probability is no more than the probability that there exists
s=[Pa(c)n'/*] vertices, each of which is adjacent to at most one of the other

n—s vertices.
This latter probability is

<<:')((1—p)""+(n—s)p(1—p)""*“)’s(ﬂ/a(c))"’"*

which implies (2.25).
We next prove the very crude lower bound

Pr(|Vi(Gys, w)|=n)>e™™"  for n large. (2.26)

To do this, we proceed as in the proof of (2.19), using G,,, , in place of
G41,p» and define events 4 and B. Now Pr(4)=(#/n)'(1—o0 (1)) as before but we
cannot use the FKG inequality to bound Pr (B | 4) which is Pr (6 (G, »)>1).

Instead, let now p=1log n/2n and then

Pr(8(G,, )=1)<Pr(5(G,, »)=>1)+Pr(|E(G, )|>m). (2.27)
We then use the FKG inequality as before to get a lower bound

Pr(5(G, )=1)=(1—o())e ™  for n large .
The Chernoff bound gives

Pr(]E(G”, p)l > m’) < e—"(loglI? n)2/4 logn
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for n large. Using these inequalities in (2.27) gives
Pr(6(G, »)=1)=e /4 for n large.

This is easily good enough to prove (2.26). Now (2.5), (2.25) and (2.26) together
imply

Pr(|D1(G,,+,, m')l >Ign1l2” Vi(Gpse, m)l =n)
<2(nlogn)'’? " (Bla(c)) ™" . 2.27)

Putting f=max (2, « (c) e) in (2.27) we easily obtain

n,(m')<2pn'?  for n large. (2.28)
Using (2.28) in (2.24) we see that for large n

VA [ Ay -1 —1| <B/(n**10g 1) , (2.29)

where 6 depends only on c.
(2.20) and (2.29) together imply the lemma. [0

For the remainder of this section ¢ is as in Lemma 2.6. Now let

X=‘”(Gn+t,m)= LlVl(Gn+r, m)l/zj 3’
Y=‘|V1(Gn+t, m)l =n, ’
Z=‘G,,+l.’m€.2/.’ -

Now Lemma 2.5 implies
Pr(u(G{n=Ln/2]))=Pr(X|Y).

Now
Pr(X|Y)=Pr(Xn Z|Y)+Pr(X n Z|Y)
=(Pr(X NYNZ)+Pr(YnZ)—-Pr (X nY nZ))[Pr(Y).
However, it follows from Lemma 2.4 (with n+¢ in place of #) and Lemma 2.6
that
Pr(Xn Ynz‘)/Pr(Y)spfgm Z)[Pr(Y)<n™t .
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Similarly
Pr(X nY nZ)[Pr(Y)<Pr((2.1b))/Pr(Y)<n ™"

and so we have
lim Pr (u(G{)) =1n/2])

= 1im Pr(Gyog, ¢ | |Vi(Grye, )| =n). (2.30)

n= o0

Lemma 2.7.

1im Pr(Gyip, n€ | |Vi(Gppr, m)| =n)=1—e"¢"*/8

B
Proof. Note that although it is very easy to prove that

lim Pr(G,,, ne #)=1—e ¢ */8

n—w

the conditional result seems to require more work. We shall in fact first prove the
equivalent result for the random multigraph MG,,, , defined as follows: Let
X={1,2,...,n+1} and let x e X*™ be chosen at random so that each of the
(n+1)*™ vectors is equally likely to be chosen. Let MG(x) be the multi graph with
edges {x;,_,, X} fori=1,2, ..., m. We use MG, ,,, n to denote a random MG (x)
chosen as above. Furthermore, the random graph RG,,, , is obtained by taking
MG, n, deleting loops and replacing multiple edges by single copies.
We note first that

Exp (number of isolated loops in MG, ,)=o(n"1/?)

and hence

Pr(|Vi(MG, 41, m)|#|Vi(RGysr, ) =0 (n~1/2). (2.31)
Also

Pr(MG,,,, , has more than 2 logn loops)=0 (n~1/2) (2.32a)

(the number of loops in MG,,, ,, is a binomial random variable with
parameters m and 2/(n—1)). 14
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Pr(MG,,,,» has more than (logn)* edge repetitions)=0 (n~*/?) (2.32b)

(the number of edge repetitions in MG, ., is dominated probabilistic-
ally by a binomial random variable with parameters m and m/(*5Y),

and so
Pr(|E(RG, 11, m)| <m—2(log n)?)=0(n""%). (2.33)
We note that

if m'=|E(RG,,,)| then, for fixed m’, RG,,n is distributed
as Gyi¢, (2.34)

We now estimate
Pr(|Vy(RGpsr, m)| =1)= ;Pr(|Vl(G,,+,, )| =1)PL{{E(RG 41, m)| =m")
by (2.34)
>1/2nw'**  for n large, by (2.33) and Lemma 2.6.
1t follows from (2.31) that
Pr(|Vi(MG e, m)|=n)>1/3n2° for large n. (2.35)
Now it is easy to show that Pr(there exists vertex adjacent to 3 vertices of
degree 1 in MG, ,, ,)=0@n"">).
Thus if we define o’ =“there exists a vertex with precisely 2 neighbors of

degree 1” then

lim Pr(MG, 4, n€ || Vi(MGpir,m)|=1)

n—oo

=lmPr(MG,, e ' ||Vi(MG,11,m)|=n). (2.36)
We now write

Pr(MG,yq me ' ||[Vi(MG,ir,m)|=n) (2.37)
=y Pr(MG,,H,,,,ex'p\qgnﬂ,meﬁg(d))Pr(MGm,,,,eﬂg(d)),

de
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where

Q={deZ"""|0<d;<d,<...<dp,,,

n+t

Ydi=2m and [{i:d;>1}|=n},
i<1

and #%(d) is the set of multigraphs with vertices {1, 2,.., n+t}, m edges and
degree sequence d.
Let now

Qo={deQ : (a) ||{i :di=1}|—e™*n'?j2|<e™n/12,
(b) [{i:|d,—2m/n|>2m[nloglogn}|<2n/loglogn,

(¢) dyp4.<Slogn}. (2.38)
We show that

lim (). Pr(MG,, n€ MY (d))/ dZQPr(MG,,H,me./l{ﬁ (@)=1, (2.392)

n—+oo defp

lim Pr(MGy s, m € #'|MGyiy e MG (d))=1—e""*/% for deQ,.
ne (2.39b)
: We can then deduce, using (2.36) and (2.37), that o

lim Pr(MG,sy, € o#||Vi(MG, sy, )| =n)=1—e~"78. - (2.40)

n-o

Proof of (2.39a). In view of (2.35) we need only show that the probability that
MG,,,,p, fails to satisfy any of the conditions in (2.38) is o (n~1/%).

(i) (2.38c) Here we simply verify that the expected number of vertices of degree
exceeding 5log n is o (n~+25). ‘

(i) (2.38a). Here we simply verify that if D, is the set of vertices of degree 1 in
MG,,, ,, then

Exp (|D,|)~Var(|D,]) ~n'?e™2¢/2
and then use the Chebyshev inequality.
(iii) (2.38b). Let e=1/loglogn and a=[2(1 +¢&)m/n]. Now one can easily see, by

conditioning on vertex degrees, that for 1<k <n/loglogn and C=MG,,, m
16 '
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Pr(dgk+1)=a|ds(i)=a, 1<i<k)
<Pr(dg(k+1)>a|dg(i)=a, 1<i<k)

— z (Zm—ka)(ll(n_l_t_k))r(l__1/(n+t_k))2m—ka—r

rza r
< e (2m—ka)2 &/3 (n+t—k)

—g2
<e #1213 for n large.

Thus Pr(there exist more than s=n/loglogn vertices of degree exceeding a)

S(n:-t>e-sznm;n/13=o(n"’) or any y>0.

A similar argument deals with vertices of degree less than 2 (1 —&) m/n.

Proof of (2.39b). To prove (2.39b) we need to be able to generate a random
G e A %(d) with probability

Pr(MG,+; m=G)[Pt(MG, s € MF(d))
(note that this is not the same for all G € #%(d)).

We modify the method of Bollobds [1]. Thus, let d € 2, be fixed and let W,
. n+t
Wy, ... Way, be disjoint sets with |W;|=d, for i=1,2,...,n+t. Let W= () W,
i=1
and let the members of W be denoted as points. A configuration F is a partition
of W into m pairs of points called the edges of F. Let { be the set of possible confi-
gurations and note that |{|=N(m)=(2m!)/m\2". For pe W, let ¢(p)=i, for
i=1,2,...,n+1t and for Fe{ let (F) be the multigraph ({1, 2, ..., n+1t}, {{e(p),
o)} : {p, g} € F}). Note that p({)=#%(d).

We turn { into a probability space by giving each Fe { the same probability.
This induces the required probability space on ¢({). (Think of generating MG, n
conditional on MG,,, , € #%(d) by taking d, copies of integer i for i=1,2, ...,
n-+t and then randomly permuting these 2m integers and picking up edges from
this sequence as usual. Note that this is essentially how ¢(F) is generated — the
k-th copy of integer i corresponds to the k-th element of W,.)

To prove (2.39b) we define a random variable

1 if i<j, dg(i)=dg(j)=1 and {i, k}, {j, k} € E(G) and no
.. other vertex of degree 1 is adjacent to k£ in G, where G
X6hh=1 " —p(r) : J
0 otherwise.

17
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We shall use inclusion-exclusion to show that

lim Pr( 2 X(@,j,k)>0)=1—¢"c"*/8 (2.41)

n— o

which proves (2.39b).

Let N3={1,2,...,n+1}* and for SN, let II;=Pr(X(i,j, k)=1 for (i, j, k) € S).
The definition of X(j, j, k) implies

IIg=0 unless S is of the form {(iy,jy,ky), ..., (iss Jis ko)},  (2.42)

where iy, ..., iy j1s «.esJss K1, -+, k; are all different.
Let

p= Z Irs.
ScNs
Is]=1

(2.41) will follow from the Bonferroni Inequalities (e.g. Feller [6]) if we show that
for fixed r

lim p,=(e™*/8)"/r! (2.43)

n—+w

Let s=|{i: d,=1}|, D,={i: d,>2} then, in view of (2.42), we have

(3 2")'2'(R;D l;Idi(di_l))N(m 2r)/N (m). Ag
[R]=r

Using d € 2, and r fixed gives (2.43) without difficulty, and so (2.40) is proved.
Now simple estimations, using expectations, show

Pr (there exists v such that dyg,,, (V) >1=dzg,,, ()
=0 (logn/n*! 2)
and hence

Pr(MG,.s n¢ o and RG,,,", € £/)=0(logn/n'/?)

and so (2.31), (2.35) and (2.40) give
lim Pr(RG,s,,n € #|| Vi(RGyse, w|=n)=1—e"""/8,

n-+o00
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Thus, where
O =PI(RGn+t, m € dl lE(RGn-i-t,'m)I = m' ’ lVl(RGni-:m)I = n)
we have

lim 3, o Pr(|ERG,r ] =m'| [Vi(RGys /)| =m)=1-¢7*"" .
e (2:44)

Now in view of (2.34) we can write

O =Pr(Gpst,mw € #||Vi(Grse,m)|=1) - (2.45)
We can deduce our lemma from (2.33), (2.35), (2.44), (2.45) and

|60t 0w -3 —1|=O(n™11%) for m>m’>m—2(logn)?. (2.46)
To prove (2.46) let

G, (mYy=g(m)n,

where %(m’) is as defined in Lemma 2.6. For Ge ¥ (m’) let a(G)= |{ee EG):
G—ec 9 (m' —1)}|=m —1—-|Dy(G)| and for G & g (m'—1) let .

b(G)=ﬂ¥z¢E(G):G+eequ(m')}|><;)—m'+1—n|DI(G)|.

Arguing as for (2.22) we have

Y a@G= 3} bG

Ge%Ga(m') GeGa(m'—1)
and so arguing as for (2.23) we obtain
n ’ ~ ' ’ / ’
(( 5 )—-m +1—nn(m' — 1)>/m <|G ()| /|G a(mi = 1)
<(< ; )— m' + 1)/(m' —n,(m")), (2.47)

where 7i,(m") denotes the expected number of vertices of degree 1 in a random
graph chosen uniformly from ¢ Airg').
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We deduce from (2.27) that n,(m’)<2pn'/2, where B is as in (2.28). Now o,
=|9,(m")|/|9(m)| and so (2.46) now follows from (2.22), (2.23), (2.28) and
247). O

The reader familiar with [1] will realize that we had to work with multigraphs.
and proceed in this way because the probability that a graph in £(d) has no loops-
or multiple edges is too small.

Proof of Theorem 1.1. The Icase ¢,—c follows immediately from Lemma 2.5,.
Lemma 2.7 and (2.30).

For ¢,— +, ¢, <logn we simply repeat the arguments almost unchanged..
For ¢,>logn we have no conditioning problems as &(G,, »)=>1 a.s. in this case.

For ¢,—— 0, —c¢,=o0 (loglog n) we can again repeat the argument for c¢,—c-
without much change. []

If ¢,— — o0 rather fast then we are unable to prove Lemma 2.6. The reader will.
observe that we only just managed to close the gap in (2.24).

3.

We now turn to the proof of Theorem 1.2. We first define a random edge-
colored graph G (n, m, k) as follows:

Start with G, ,, and all its ed ges painted blue;

while 6(G) <k do

begin

choose a vertex v with degree <k, uniformly at random;
LetX—{ee V’—E(G):vee};

choose e € X uniformly at random and paint it red;
E(G): =E(G) v {e}

end

“The following lemma is taken from Bollobds [3] and is given here for comple--
teness.

Lemma 3.1. Let IT be a monotone graph property such that G € IT implies 6 (G) >k..
Let m=3nlogn+4(k—1) nloglogn—nw, where w=w(n)— o and w(n)<logloglogn..
Then

G(n,m,k)elIl a.s. > t(I'é,OH)=t(F, IT) as.
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Proof. Consider an instance of G. Color edges ey, e,, -.. , e, blue. For i>m paint
¢, red if e, is incident with a vertex of degree <k—1in G;_;. Let m'=<([, I1,).
The blue-red subgraph of G, is distributed exactly as G(n, m, k) and so Gyell
‘a.s. as IT is monotone. Furthermore G, _1 ¢ I, as (Gw-1)<k. O

In view of this we can prove Theorem 1.2 if we can prove that G(n, m, k) € 1,
.a.s. where m is as defined in Lemma 3.1. We shall use this value for m throughout
this section.

We state the following lemma which can easily be verified.

Lemma 3.2, Let G=G, ,, and let SMALL={ve V,:ds(v)<logn/ 10} and LARGE
=V, —SMALL. The following properties hold a.s.

5(G)=k-1, (3.12)
|{ve V,:dg(v)=k—1}|<logn, (3.1b)
|SMALL|<n'?, (3.1¢c)

no pair of small vertices are adjacent or share a common neighbor, (3.1d)
0#S< LARGE, |S|<n/logn implies |N(S)|> |S|1logn/100, (3.1e)
dg(v)<Slogn for veV,. (3.1f)

From this we easily derive

“Lemma 3.3. Let G=G(n, m, k) and let SMALL, LARGE be as in Lemma 3.2,
The G has the following properties a.s.

If {v, w} is a red edge then dg(v)=k and w e LARGE, assuming
dg(v) <dg(w). (32

Let X be a matching of G that is only incident with large vertices and let H= G—-X.
Then there exist real constants o, f,.>0 such

0£ScV,, |S|<an implies |Nu(S)|=k|S], (3.3a)
|S|>axn implies |{v,w}eE(G):veS,w¢S}|>pinlogn. (3.3b)

Proof. (3.2) follows from (3.1b) and (3.Ic). (3.32) is proved in a similar way to
Lemma 2.2, and we can take f,=o(1 —)/2 in (3.3b). [
For non-negative integer A, if graph G contains 4 disjoint hamiltonian cycles
h

H, H,, ..., Hylet G— | H, be called an h-subgraph of G.
i=1 21
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Let ¢(G)=(h, p), where

h=maximum number of disjoint hamiltonian cycles in G,

0 if k=2h,
maximum cardinality of a matching
p=1in any h-subgraph of G if k=2h+1,

maximum length of a path
in any h-subgraph of G if k>2h+2.

Thus G € 1T, if and only if ¢(G)=0(k, n)=(1k/2], |n/2] (k—21k/2])).
If p(G)=(h, p) we define a p-subgraph of G to be any h-subgraph of G con-
taining either a matching of size p or a path of length p as the case may be.

Lemma 3.4. Suppose G=G(n, m, k) satisfies the conditions (2) and (b) of Lemma 3.2
and let X be as in (b) there. Let s=[oyn), then for n large

there exists a p-subgraph H of H=G—-X, A={a,, az,y ..., a,}, Ay, A, ...,
A SV, 125, such that for i=1,2, ..., t, |4|>1, a,¢ 4; and if ae 4,
then e={a, a,} ¢ E(H) and ¢(H+ e)# o(H). (3.9

Proof. Let H be any @-subgraph of H.

Suppose first that k=2h+1 and p<|n/2]. Let A={a: a s left exposed by some
maximum cardinality matching of H}={a,,a,,...,q}. Let A;={a:a and q
are left exposed by some maximum cardinality matching of H }<=A. Then we
deduce as in Lemma 2.3 that |Nz(4,)|<|4,| and hence that [Nu(d,)|<k|4|
and hence that |4,|>s. .

If k>2h+1 let P be a path of length p in H and let a;, be one endpoint of P.
Posa [20] shows that there exists a set 4, such that |Ny(4,)|<2|4,| and each
b e 4, is an endpoint of a path of length p joining @, and b. We see by reasoning
as above that |4,|>s. We must show a, ¢ Nj(4,). Now (3.3) can be used to show
that H is connected for nlarge and so if a, € Nj(4,), P is not a longest path of H
or H contains 4+1 disjoint hamiltonian cycles. We take 4={a,} U 4, and
repeat the argument for a € 4, with any path of length p with a as endpoint. [J

We now use the coloring argument (as in Lemma 2.4) to prove
Lemma 3.5.

lim Pr(G(n, m, k)ell)=1.
n-o0 22
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Proof. Let 9,={G=G(n, m, k) : (3.2) holds and G has exactly ¢ red edges}. Note
that each G € %, has the same probability of being chosen. Next let 4,={Ge%,:
(3.3b) holds and ¢(G)#0 (k, n)}.

In view of (3.1b) and Lemma 3.2, this lemma will follow if we prove

lim |%|/|¢]=0 oO<t<|logn|. (3.5)

n—+ o

Let w=[logn] and for Ge %, let EY%G), E'(G) denote the blue and red edges
respectively. Consider now all the (™) ways of choosing w blue edges and recoloring

them green.
For G € %, and X< E*(G), | X|=w, define

1 if (a) p(H)=¢(G), where H=G—-X,
(b) H satisfies (3.3),
a(G, X)= (c) where H*=(V,, EXG)—X), 6(H")=k—1 and
H?® has exactly t vertices of degree k—1,
0 otherwise.

Let Q be the set of blue-red edge-colored graphs obtainable by deleting w blue
edges from a graph G in &,. »

For He Q let X,={S< V¥ —E(H):there exists G=G(H, 5) € ¥, with EYG)
=FE*H)u S and E'(G)=E'(S)} and let AH=‘|{Se Xy :a(GH, S), S)= 1}]

We prove (3.5) by showing :

Ge%, implies Y a(G, X)>(1—o(1))('::> (1 -—li'_"_3>w (3.62)

X< E5(G) logn
|X]=w
Ag<(1—02) | Xu|(1+0(D), (3.6b)
for then
S= a(G,X)=z(1-o0(1 1——— ] |
3, %06 020-00)(] i, 12
|X|=w
and

s< Y A,,s(l—ai)”HanXHl(l+0(1))

He
=(1—a§)<$) 19| (1 +0(D))

and (3.5) follows. 923
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Proof of (3.6a). Given Ge @, with ¢ (G)=(h, p) choose 4 disjoint hamiltonian

cycles H,, H,, ..., H, plus a path or matching 4 of size p as necessary. Now there

are at least (1—o(1))(})(1—(k+3)/logn)” ways of choosing a matching X
h

that only meets small vertices of G and does not meet A U | J H;. For each such
i=1

X, a(G, X)=1, on using Lemma 3.3.

Proof of (3.6b). Let H € Q. If H does not satisfy (3.4) or H® does not have ¢ vertices
of degree k—1 then 4,=0. So assume these conditions hold. It follows that
S € X, if and only if SV ?— E(H) and S does not meet any vertices of degree
k—1in H®. (We included the last condition in (3.4) in order to give such a simple
description of Xj.) Let H be the p-subgraph guaranteed by (3.3).

According to (3.3) we can only have a(G(H, X), X)=1 if no edge of S joins
a;€ A to A,. But there are at least (a3n* —kn)/2 possibilities for choosing such an
edge (we subtract kn/2 to account for those that may occur in E(H)—E(H)).
(3.6b) follows along with the lemma. []

Proof of Theorem 1.2. Just use Lemma 3.1 and Lemma 3.4. [
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