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Abstract

We consider a synchronous dispersion process introduced in [1] and we
show that on the infinite line the final set of occupied sites takes up O(n)
space, where n is the number of particles involved.

1 Introduction

This note concerns a synchronous dispersion process introduced by Cooper,
McDowell, Radzik, Rivera and Shiraga [1]. In their model, configurations of
particles on the vertices of a graph evolve in discrete time; at each time step,
each particle at a vertex with at least 2 particles in total moves to a neighbour
chosen independently and uniformly at random; we say the vertex topples. (The
dispersion process thus ends at the first step when each vertex has at most one
particle.) In [1], they study the behavior of this process on various graphs when
begun from a configuration consisting of n particles at one vertex of the graph,
with all other vertices initially empty.

They studied this process on a variety of graphs, one of which was the two-
way infinite path L, with vertex set Z and edge set {{i, i + 1}, i ∈ Z}. They
proved that if the initial configuration of particles consists just of n particles
at the origin 0, then w.h.p. the furthest particle from the origin is at distance
O(n log n) when the process stops. In this note we reduce this to O(n).

Theorem 1. Suppose that we begin the dispersion process on L with n particles
at the origin. Then there is an absolute constant c > 0 such that w.h.p. the
furthest particle from the origin is at distance at most cn when the process
stops.

The proof we give here does not depend on synchronous topples; in fact, we
can allow an adversary to choose, at each time t, a subset of vertices all with at
least two particles, and then topple all vertices in that subset.
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Remark. This version corrects [3]. In particular, given a biased random walk to
the left, letting an adversary choose when the walk takes a step cannot increase
the probability that the walk makes it to some x > 0, nor can it increase the
expected number of arrivals to x > 0, but it is not true that it cannot increase
the probability that the walk is at x > 0 at some fixed time, a hypothesis
that was implicitly used in the claim of equation (3) in [3]. The proof here
starts from the same perspective—analyzing the same ordered process as in [3],
defined below, and using the fact that gaps between particles in this process
tend to contract—but is written to bound and leverage the expected number of
“arrivals” gaps make to a large value, rather than the probability that a gap is
at a large value at a particular time. We give a complete self-contained proof
here, so that no reference to [3] is required.

2 Proof of Theorem 1

For our proof, we will study another equivalent process; which we call the ordered
disperson process on L. In the ordered dispersion process, each particle pj has
an assigned label j from 1 to n. We let pj,t denote the position of particle
j at time t, and Nx,t denote the number of particles at position x at time t.
To compute one time step of the ordered process, the rules for the original
dispersion process can be applied, and then the particles simply relabeled so
that j1 < j2 implies pj1,t ≤ pj2,t.

Of course, it is also possible to characterize the ordered process in more
complicated way without relabeling. In this view, the probability that a particle
moves left or right when its vertex topples is rarely 1

2 , and, in general, depends
both on the number of other particles in its stack, as well as the number of
particles occupying the vertices adjacent to its vertex, and whether those vertices
topple. Our proof works by analyzing this more direct (and more complicated)
view of the ordered process.

A key advantage to this ordered process is that in the ordered process,
particles are biased to move towards empty gaps. In particular, we have the
following:

Observation 2. Suppose at time t − 1 we have that pi,t−1 ≥ pi−1,t−1 + 2. If
pi,t−1 topples at time t− 1, then we have that

pi,t = pi,t−1 − 1 with probability at least
3

4
.

Proof. We have Pr(pi,t = pi,t−1 − 1) = 1− 2−a where a = Npi,t−1,t−1.

The basic idea behind our proof is to show, by induction on j, that particle pj
arrives at sites x far to the right very few times in expectation. (It is important
to note that we are only bounding the number of arrivals at x, not the total
time spent there.) In particular, we can imagine watching pj after each time
it separates from pj−1 at some vertex xj−1. So long as it remains distance 2
from pj−1, Observation 2 ensures that its steps behave like a left-biased random
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walk. On the other hand, the following observation ensures that once it is within
distance 1 of pj−1, it has a reasonable chance of visiting it. Together these two
facts will imply that each time pj and pj−1 separate at a vertex xj−1, pj visits
sites x� xj few times in expectation before its next encounter with the particle
pj−1, as will be encapsulated in Lemma 4, below.

Observation 3. Suppose at time t − 1 we have that pi,t−1 = pi−1,t−1 + 1. If
pi,t−1 topples at time t− 1 then we have that

pi,t = pi,t−1 with probability at least
1

4
.

The proof is a straightforward calculation and we defer it to Section 3.
The following lemma is what we use to analyze the walk of a particle pj from

its last encounter with pj−1 until its next one. The adversary plays the role of the
aspects of the dispersion process we are not controlling when analyzing the walk
of pj ; for example, we will not constrain the movement of pj−1 (which affects
when pj may revisit pj−1) or particles pk, k > j (which affect, for example, with
what bias ≥ 3/4 the particle pj moves left).

Lemma 4. Let p > 1
2 , r > 0 and consider a process {Sn} on Z which begins

with the token at S0 = 0, and where at every step an adversary can choose to
either:

1. Randomly move the token left, right, or keep it in place; St+1 = St + ξt
for t ∈ {−1, 0,+1}. The probability Pr(ξt = −1) it moves left must be at
least p. OR:

2. Take an arbitrary step St+1 = St + ξ (ξt ∈ {−1, 0,+1}) to the left, right,
or in place, but must also choose choose a random εt = Bernoulli(r) and
end the walk if εt = 1.

Then with ρ and c as in (3) below, no matter how the adversary plays,

∀x ∈ Z,E
(∣∣{n | Sn = x}

∣∣) ≤ ρmax(0,x)−c. (1)

Note the bound is of the form one would expect for a left-biased random walk in
the absence of the adversary, so the content here is just that the adversary does
not have enough power to affect things too much. The proof is straightforward
and we defer it until Section 3. We will apply the lemma in the particular case
where

p =
3

4
and r =

1

4
. (2)

For these values the proof we give shows we can take ρ =
√

3/2, c = 59. In
particular, when we apply the Lemma the walk Sn will start at 1, and then we
will take

ρ =

√
3

2
and c = 60. (3)
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Now let us consider n+ 1 particles p0, . . . , pn at positions

p0,t ≤ p1,t ≤ · · · ≤ pn,t

as functions of time t, initially all at the origin 0, and under the sorted dynamics
where particles will always be indexed from left to right. For j = 1, . . . , n we let
gj,t = pj,t − pj−1,t. Thus gj,0 = 0 for all 0. We also define g0,t ≡ ∞, to be the
gap “to the left” of the first particle. Assume that the process finishes within
T steps.

We will aim to show that it is unlikely that pn makes it to x = Kn for
some large constant K, by bounding the expected number of visits of pn to x.
For particle i and any x ∈ Z, we define arrivalst1i (x) to be the number of times
t ≥ t1 that the particle pi arrives at x in time period t ≥ t1 of the process; this
is the number of times t ≥ max(1, t1) that pi,t−1 6= x and pi,t = x. We write
arrivalsi(x) = arrivals0

i (x).
For each particle j, we will consider its trajectory from its last coincidence

with pj−1 at some vertex xj−1 until its next coincidence with pj−1. Observations
2 and 3 allow us to use Lemma 4 to analyze the number of visits pj will make
to a location x before the next such coincidence.

In particular, as g0,t ≡ ∞, we have for all x ∈ Z that the number arrivals0(x)
of times t that the particle p0 will ever land on x (e.g., when p0,t−1 6= x and
p0,t = x) satisfies

E(arrivals0(x)) ≤ ρmax(0,x)−c (4)

by Lemma 4. (Without using more about the process, we don’t know whether
the time p0 actually spends at x may greatly exceed this estimate; we are just
bounding the number of steps when it arrives there.)

Now let ξi,t,x be the indicator random variable

ξi,t,x =

{
1 if pi−1,t−1 = pi,t−1 = x and pi,t > pi−1,t

0 otherwise,

which is 1 for i, t, x at times that pi has just moved to the right of pi−1, after
coinciding with it at x. The plan of our proof is to use Lemma 4 to analyze
the trajectory of a particle pi each time it separates from pi−1, until their next
coincidence. ξi,t,x is the indicator random variable telling us that at time t, such
a separation of pi, pi−1 has just happened at x.

Write firstarrivalst1i (x) for the number of times t1 ≤ t ≤ t′ that pi arrives at
x (pi,t−1 6= x, pi,t = x), where t′ ≤ ∞ is minimum such that pi,t′ = pi−1,t′ . This
is precisely the quantity whose expectation we will control with Lemma 4.

Our goal now is to count arrivals of particle j to a vertex x using the indicator
variables ξi,t,x by considering the sum∑

xj−1∈Z

∑
t

ξj,t,xj−1
firstarrivalstj(x).

Given a value of x, this counts the number of times t′ such that:
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• pj arrives at x at time t′,

• there is a t < t′ such that

– pj separated from pj−1 at time t′,

– there is no time t′′ with t < t′′ < t′ when pj , pj′ coincide.

Thus each arrival to pj is counted at most once in the sum, but the sum doesn’t
count arrivals where pj and pj−1 move to x together (either from x − 1 or x).
This motivates the definition of soloarrivalsi(x), which is the number of times t
when:

• pi arrives at x (i.e., pi,t−1 6= x, pi,t = x) AND

• at least one of pi−1,t−1 = pi,t−1 and pi−1,t = pi,t is false.

In particular, soloarrivalsi(x) doesn’t count the arrivals of pi to x if it arrives
there “with” pi−1, and from the same vertex. We have:

Observation 5.

soloarrivalsj(x) =
∑

xj−1∈Z

∑
t

ξj,t,xj−1
firstarrivalstj(x).

Proof. Each contribution to soloarrivalsj(x) comes from an arrival of particle
pj to x that occurs at a time t′ where we have that pi−1,t′−1 6= pi,t′−1 or else
that pi−1,t′−1 = pi,t′−1 and pi−1,t′ 6= x. In the first case, there some maximum
t ≤ t′ − 1 such that ξj,t,y = 1 for some y; in the second case, ξj,t′,y = 1 for
y = pi−1,t′−1 = pi,t′−1. In either case, we can write xj−1 = y for this y.
The visit at time t′ then contributes exactly 1 to the count firstarrivalstj(x); in
particular, there can be no time τ ∈ [t, t′) when pi−1,τ = pi,τ , because then
either the visit at time t′ doesn’t contribute to the count soloarrivalsj(x), or
else t was not the largest t ≤ t′ for which ∃y, ξj,t,y = 1.

Now taking expectations, we have

E(soloarrivalsj(x)) =
∑

xj−1∈Z

∑
t

E(ξj,t,xj−1firstarrivalstj(x))

=
∑

xj−1∈Z

∑
t

Pr(ξj,t,xj−1
= 1)E

(
firstarrivalstj(x) | ξj,t,xj−1

= 1
)

(5)

Moreover, Lemma 4 gives that:

Observation 6.

E(firstarrivalstj(x) | ξj,t,xj−1 = 1) ≤ ρmax(x−xj−1,0)−c. (6)
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Proof. To handle conditioning on ξj,t,xj−1=1, consider conditioning on any his-
tory of the process up to time t compatible with ξj,t,xj−1=1, e.g., any history
up to time t for which we had pj−1,t−1 = pj,t−1 = xj−1 and pj,t = xj−1 + 1,
pj−1,t = xj−1 − 1. Given any such history, we can couple the effect of the
remaining process on the particle pj with the adversarial process that is the
subject of Lemma 4, where “ending” the walk corresponds to the next time τ
when pj,τ = pj,τ−1. In particular, at any time τ > t when pj moves but pj , pj−1

have not yet coincided after time t, either:

• pj−1,τ ≤ pj,τ − 2, in which case there is at least a 3
4 chance that pj ’s move

is to the left, or else

• pj−1,τ = pj,τ − 1, in which case there is at least probability 1
4 that on

the next step, we have pj−1,τ+1 = pj,τ+1 (corresponding to “ending” the
adversarial walk).

Lemma 4 then gives the desired bound. Note that at time τ = t, the particle pj
deterministically moves to xj−1 + 1 since we are conditioning on ξj,t,xj−1

= 1,
so our coupled adversarial process actually begins with the token at 1, not 0 as
stated in Lemma 4, and so we can use the choices for ρ, c given in (3).

Now (5) and (6) give that

E(soloarrivalsj(x)) ≤
∑

xj−1∈Z
ρmax(x−xj−1,0)−c

∑
t

Pr(ξj,t,xj−1
= 1)

=
∑

xj−1∈Z
E

(∑
t

ξj,t,xj−1

)
ρmax(x−xj−1,0)−c. (7)

Now we will use:

Observation 7.∑
t

ξj,t,x ≤ 1x=0 + arrivalsj−1(x) ≤ 1x=0 +
∑
i<j

soloarrivalsi(x). (8)

Proof. The first inequality follows from the fact that each time t that pj and
pj−1 coincide at x at time t−1 and then are separated, pj−1 leaves x (in particu-
lar, pj−1,t = x−1, pj,t = x+1), and so we can associate each such separation to
the last time pj−1 arrived at x, except for the very first separation from x = 0,
which is accounted for by the 1x=0 term. The second inequality is because for
each arrival of pj−1 at x at time t > 0, there is some smallest i < j such that pi
is arriving at x at time t, and the arrival is counted by soloarrivalsi(x).
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Applying (8) to (7), we have that

E(soloarrivalsj(x)) ≤
∑

xj−1∈Z
E

(∑
t

ξj,t,xj−1

)
ρmax(0,x−xj−1)−c

≤
∑

xj−1∈Z

1xj−1=0 +
∑
i<j

E(soloarrivalsi(xj−1))

 ρmax(0,x−xj−1)−c (9)

Now let Xj(x) denote the set of all sequences 0 = x−1, x0, x1, x2, . . . , xj = x,
for xi ∈ Z. For some sequence σ ∈ Xj(x), we let

φ(σ) =

j∑
i=0

max(xi−1 − xi, 0).

Using (9), we aim to prove inductively that

E(soloarrivalsj(x)) ≤ (j + 1)
∑

σ∈Xj(x)

ρx+φ(σ)−jb, (10)

for some constant b ≥ c. Equation (4) serves as the base case for j = 0. For the
sake of intuition, note that the x0, x1, . . . , xj−1 corresponds to a sequence for
which there exist times t0 ≤ t1 ≤ · · · ≤ tj−1 such that for each 1 ≤ i ≤ j − 2,
pi−1 and pi coincided at xi−1 at time ti−1, and did not coincide again before
time ti. Sequences σ with large φ(σ) are wasteful, in the sense that progress to
the right made by one particle is lost by the next one, which ends up limiting
the contribution of such sequences to soloarrivalsj(x), as will be captured by
(10).

Note that the induction hypothesis (10) applied for i < j gives that∑
i<j

E(soloarrivalsi(x)) ≤
∑
i<j

(i+ 1)
∑

σ∈Xi(x)

ρx+φ(σ)−ib

=
∑
i<j

(i+ 1)ρx−ib
∑

σ∈Xi(x)

ρφ(σ) ≤ j
∑

σ∈Xj−1(x)

ρx+φ(σ)−(j−1)b

j−1∑
k=0

ρkb

≤ j

1− ρb
∑

σ∈Xj−1(x)

ρx+φ(σ)−(j−1)b. (11)

In particular, returning to (9), we get by induction and and the fact that∑
σ∈Xi(x)

ρφ(σ) ≥
∑

σ∈Xi−1(x)

ρφ(σ) for all i.
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we get that

E(soloarrivalsj(x))

≤
∑

xj−1∈Z

1xj−1=0 +
∑
i<j

E(soloarrivalsi(xj−1))

 ρmax(0,x−xj−1)−c

≤
∑

xj−1∈Z

1xj−1=0 +
j

1− ρb
∑

σ∈Xj−1(x)

ρxj−1+φ(σ)−(j−1)b

 ρmax(0,x−xj−1)−c

=
∑

xj−1∈Z

1xj−1=0ρ
x−c +

j

1− ρb
∑

σ∈Xj(x)

ρx+φ(σ)−(j−1)b−c


≤ 1xj−1=0ρ

x−c +
j

1− ρb
∑

σ∈Xj(x)

ρx+φ(σ)−(j−1)b−c

≤ (j + 1)
∑

σ∈Xj(x)

ρx+φ(σ)−jb, (12)

by choosing b = c+ 1 as in (2), (3), giving

ρc−b ≥ 1

1− ρb
.

This completes the inductive proof of (10).

In particular, the expected number of visits of pn to Kn is at most∑
j≤n

E(soloarrivalsj(Kn)) ≤
∑
j≤n

(j + 1)
∑

σ∈Xj(Kn)

ρKn+φ(σ)−jb

≤ n2ρ(K−b)n
∑

σ∈Xn(Kn)

ρφ(σ), (13)

and so it remains to bound the sum∑
σ∈Xn(Kn)

ρφ(σ).

For the sake of intuition, note first that the contribution to the sum from terms
for which φ(σ) = 0 is precisely (

Kn+ n− 1

n− 1

)
,

whose product with ρKn goes to 0 very quickly. In particular, by Markov’s
inequality and (13) the proof of Theorem 1 is complete if we can show that

n2ρ(K−b)n
∑

σ∈Xn(Kn)

ρφ(σ) = o(1). (14)

8



To this end, let m = Kn and

Xf
n(m) = {x ∈ Xn(m) | φ(x) = f}, Af = |Xf

n(m)|.

Note that

A0 =

(
m+ n

n

)
≤ (e(K + 1))n. (15)

We have
Af =

∑
`≥0

∑
|S|=`

∑
∑

i∈S fi=f
∀i, fi≥1

|{x : xi = xi−1 + gi}|

where gi = −fi, i ∈ S and gi ≥ 0 for i /∈ S and∑
i/∈S

gi = m+ f.

So for f ≥ 1 we have

Af ≤
min{f,n}∑
`=1

∑
|S|=`

(
f − 1

`− 1

)(
m+ f + n− `

n− `

)
=

min{f,n}∑
`=1

(
n

`

)(
f − 1

`− 1

)(
m+ f + n− `

n− `

)
≤ 2n

min{f,n}∑
`=1

(
f − 1

`− 1

)(
m+ f + n− `

n− `

)
.

Now consider cases as follows:
Case 1: f ≤ Kn.
Then as m = Kn we have

Af ≤ 2nn

(
Kn

n

)(
m+Kn+ n

n

)
≤ 2nn(eK)n(e(2K + 1))n.

Case 2: f > Kn.
Then we have

Af ≤ 2nnmax
`≤n

((
f

`

)(
m+ f + n

n

))
≤ 2nn

(
fe

n

)n(
2ef

n

)n
In particular we get that

∑
σ∈Xn(m)

ρφ(σ) =
∑
f≥0

∑
σ∈Xf

n(m)

ρf ≤
Kn∑
f=0

|Af |+
n2∑

f=Kn

|Af |ρf

≤ (Kn+ 1)(10K)4n +
20n

n2n

n2∑
f=Kn

ρff2n (16)
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In the last sum, the ratio of the (f + 1)st term to the fth term is

ρ

(
1 +

1

f

)2n

≤ ρe2n/f ,

which is at most 1 for

f ≥ 2n

ln(ρ−1)
.

For example, for ρ =
√

3/2, if K ≥ 15, so that f ≥ 15n in the last sum in (16),
we have ∑

σ∈Xn(m)

ρφ(σ) ≤ (Kn+ 1)(10K)4n +
20nn2

n2n
ρKn(Kn)2n ≤ K10n

for large n, and this proves (14) for large n and K > b (e.g., we can take
K = 62).

3 Remaining proofs

It remains to prove Observation 3 and Lemma 4.

Proof of Observation 3. Let x = pi−1,t−1, a = Nx,t−1 and b = Nx+1,t−1. If x+1
topples at time t− 1 but x does not, we have Pr(pi,t = pi,t−1) = (1− 2−b).

If both topple, let k = Binom(a, 1
2 ), ` = Binom(b, 1

2 ) be the random variables
counting the the number of particles that move left from the pile at x and x+1,
respectively. Let Lx−1, Lx and Lx+1 denote the number of particles at vertices
≤ x− 1, ≤ x, and ≤ x+ 1 after these two topples. We have

Lx−1 = i− 1− (a− k), Lx = i− 1 + `− (a− k), Lx+1 ≥ i− 1 + `.

So if ` > a − k and a − k > 0, then Lx−1 < i − 1 and Lx ≥ i, so that pi and
pi−1 coincide at x. On the other hand, if a− k > ` and ` ≥ 1, then Lx ≤ i− 2
and Lx+1 ≥ i, so that pi and pi−1 coincide at x+ 1.

So pi and pi−1 will coincide if k < a and ` > 0 and a 6= k+ `. For a = b = 2
one can check that this has probability exactly 1

4 . More generally, we have

Pr(k < a) Pr(` > 0) Pr(k + ` 6= a | k < a, ` > 0)

= (1− 2−a)(1− 2−b)

(
1−

a−1∑
k=0

(
a
k

)
2a − 1

(
b

a−k
)

2b − 1

)

= (1−2−a)(1−2−b)

(
1−

(
a+b
a

)
− 1

(2a − 1)(2b − 1)

)
= (1−2−a)(1−2−b)−

(
a+b
a

)
− 1

2a+b
.

(17)
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For a+ b ≥ 4 we have that
((
a+b
a

)
− 1
)
/2a+b ≤ 5

16 which gives that

Pr(k < a) Pr(` > 0) Pr(k + ` 6= a | k < a, ` > 0)

≥ (1− 2−a)(1− 2−b)− 5

16
, (18)

which is then minimized by minimizing a, b. Using a = b = 2 gives the claimed
bound of 1

4 .

Proof of Lemma 4. First note that suffices to prove the the lemma for x ≥ 0,
since for any fixed x < 0, we can simply start the analysis once the process has
reached x. So we will assume x ≥ 0; in particular, we can take max(0, x) = x
in (1).

Ahead of time, we fix 4 separate random streams that will be used for:

(A) Steps when the adversary chooses option 1,

(B) The choice of εt, when the adversary chooses option 2,

(C) Any other randomness used by the adversary when choosing option 2, and

(D) Any randomness used by the adversary to determine which option to
choose on a given step.

Each of these stream can be implemented as a sequence of independent uniform
U [0, 1] random variables; when making a choice that requires randomness, the
adversary observes the next unobserved uniform in the appropriate sequence,
and can use the value of that random variable as input to the decision. In
particular, preselecting the random stream for (B) is equivalent to choosing a
geometric random variable κ̄2 ≥ 1 of parameter r so that the adversary will
observe εt = 1 if and only if they are choosing option 2 for the κ̄2nd time.

Now fix some strategy σ of the adversary and let S0, S1, . . . denote the
(infinite) random walk the strategy would produce under an alternative scenario
where the random stream for (B) is not used, and instead on every step σ
chooses option 2, the strategy observes εt = 0. Here Sk =

∑
`≤k ξk, where

ξk ∈ {−1, 0,+1} is the change in position at the kth step of the walk. Note that
by our pre-selection of randomness, the walk produced by σ when using all the
pre-selected randomness (i.e., not always just observing εt = 0) will be either
this whole walk or a finite initial segment of it, depending on the adversary’s
choices.

But considering still what σ produces with the the pre-selected randomness
for (A), (C), (D) but always observing εt = 0, when choosing option 2, define
now ξi1 , ξi2 , . . . to be the subsequence of the ξi corresponding to steps when the
adversary chooses option 1. Note that each for each j, we have that

Pr
(
ξij = −1 | ξij−1

, ξij−2
, . . . , ξi1

)
≥ p.
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Thus Tk =
∑
j≤k ξij defines a walk T0, T1, . . . on Z that at each step moves to

the left with probability at least p. In particular, we have that there is a λ < 1
such that

∀x ∈ Z,E
(∣∣{n | Tn = x}

∣∣) ≤ λx−d. (19)

Indeed,

E
(∣∣{n | Tn = x}

∣∣) =
∑
n≥x

(
n

(n+ x)/2

)
p(n−x)/2(1− p)(n+x)/2

=

(
1− p
p

)x/2 ∑
n≥x

(
n

(n+ x)/2

)
(p(1− p))n/2

≤
(

1− p
p

)x/2 ∑
n≥x

(4p(1− p))n/2.

In particular, we can take any

λ ≤
√

(1− p)/p), d ≥ − logp

(
1

1−
√

4p(1− p)

)
.

So, for p = 3/4, we can take λ = 1/
√

3, d = 7. Now let κ2 ≥ 0 denote the
number of times the strategy σ chooses option 2 when using all the pre-selected
randomness (i.e., not when just observing εt = 0 deterministically); we have
κ2 ≤ κ̄2 and so κ2 < ∞ with probability 1. (Note that the adversary is not
required to use option 2 κ̄ times.) The actual walk produced by σ using all the
preselected sources of randomness is either the whole walk Sn if κ2 < κ̄2, and an
initial segment of it if κ2 = κ̄2 (ending at the step where the adversary chooses
option 2 for the κ̄2nd time).

Observe that (very crudely), we have that

∣∣{n | Sn = x}
∣∣ ≤ x+κ2∑

y=x−κ2

κ2

∣∣{n | Tn = y}
∣∣. (20)

Indeed, if we define 0 ≤ ν(n) ≤ n to be the number of times ≤ n the strategy
σ chooses option 1, then we have that |Sn − Tν(n)| ≤ κ2; Moreover, n 7→ ν(n)
is at most a κ2-to-1 mapping, so that any visit of Sn to x is one of κ2 visits of
{Sn} to x that correspond to a visit of Tν(n) to a vertex within κ2 of x.

We thus have the inequality

∣∣{n | Sn = x}
∣∣ ≤ x+κ2∑

y=x−κ2

κ2

∣∣{n | Tn = y}
∣∣ =

∑
y∈Z

κ21κ2≥|y−x|
∣∣{n | Tn = y}

∣∣
≤
∑
y∈Z

κ̄21κ̄2≥|y−x|
∣∣{n | Tn = y}

∣∣. (21)
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Now, by our construction, the infinite walks {Sn} and {Tn} are independent of
κ̄2. In particular, together with (19), and using ρ ≥ max(

√
1− r, λ), we obtain

E
(∣∣{n | Sn = x}

∣∣) ≤∑
y∈Z

E
(
κ̄21κ̄2≥|y−x|

∣∣{n | Tn = y}
∣∣)

=
∑
y∈Z

E
(
κ̄2

∣∣κ̄2 ≥ |y − x|
)

Pr
(
κ̄2 ≥ |y − x|

)
E
(∣∣{n | Tn = y}

∣∣)
≤
∑
y∈Z

(
|y − x| − 1 +

1

r

)
(1− r)|y−x|−1λy−d

=

∞∑
k=−∞

(
|k| − 1 +

1

r

)
(1− r)|k|−1λx+k−d

≤
∞∑

k=−∞

(
|k| − 1 +

1

r

)
ρ2|k|−2ρx+k−d

≤
∞∑

k=−∞

(
|k| − 1 +

1

r

)
ρx+|k|−d−2

≤ 2ρx−d−2
∞∑
k=0

(
k − 1 +

1

r

)
ρk

= 2ρx−d−2

(
2rρ− r − ρ+ 1

r(1− ρ)2

)
≤ 3

r(1− ρ)2
ρx−d−2 ≤ ρx−c (22)

for a constant c. In particular, for the special case where r = 1
4 , p = 3

4 , we can
take

λ =
1√
3

d = 7 ρ =

√
3

2
c = 59.
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