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Foreword

This is a somewhat extended version of my course given in the Doccourse in Barce-
lona, Spring 2008.

Two students, Itziar Bardaji Goikoetxea and Llúıs Vena helped me to prepare the
final version, and here I wish to express my sincere thanks to them.
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Overview

This booklet is devoted to certain aspects of combinatorial number theory, or addi-
tive combinatorics as it is now often called. This change of terminology reflects a shift
in the emphasis of problems investigated. First it was mainly infinite sequences and
finite sets of integers; this naturally led to sets of residues, then sets in finite groups,
and also sets of lattice points, then sets in general commutative groups. (We shall now
and then mention results that do not need commutativity, but will not pursue this aim
forcefully.)

In classical additive number theory we start with a given set, say of primes, and
try to understand how an integer can be expressed as a sum of elements of this set. In
combinatorial (or structural, or inverse) theory we do the opposite: given an additive
assumption about a set, say that it has few or many sums, we try to understand its
structure. (This is not always explicit in the formulation; we can equivalently say “if
a set has few sums, it has property A” or “if a set has property non-A, it has many
sums”; we will not attempt uniformity here.)

Historically, combinatorial additive theory grew out of the classical. Though a few
isolated results existed before, the turning point is Schnirelmann’s approach to the
Goldbach problem. Goldbach’s conjecture asserts that any integer > 3 can be expressed
as a sum of 2 or 3 primes, depending on parity. Schnirelmann proved the weaker result
that there is a bound k so that every integer is a sum of at most k primes, or in other
words, the primes form an additive basis. To this end he established that (very loosely
speaking; exact formulations will be given in Chapter 3) integers that can be written
as a sum of two primes have positive density; and every set having positive density is
a basis. For the Goldbach problem Schnirelmann’s approach was soon superseded by
Vinogradov’s trigonometric sum method; however, it kindled the interest in addition of
general sets.

In the first chapter we consider questions of the following kind. Suppose we know
the cardinality of a (finite) set and we know also the number of sums of pairs. What
can we say about the number of differences, or of sums of triples? The understanding of
such cardinality problems is of paramount importance for understanding the structure.

First we explain the most important tool, Plünnecke’s inequality, then two further
inequalities independent of it. These will be applied to study the connection between
|A|, |A + B| and |A + kB|, with particular emphasis on the case B = A.

In the second chapter we prove Freiman’s structure theorem.
In the third chapter we tell results connecting geometrical position or position within

a group and cardinality of sumsets.
In the fourth chapter we give some results about density.
In the fifth chapter we explore some connections with topology and measure.
Here I express my sincere thanks to
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4 OVERVIEW

Notation

Let A and B be sets in a (mostly commutative) group. We will call the group
operation addition and use additive notation. The sumset of these sets is

A + B = {a + b : a ∈ A, b ∈ B}.
Similarly

A−B = {a− b : a ∈ A, b ∈ B} = {a + (−b)}.
For repeated addition we write

kA = A + · · ·+ A, k times;

in particular, 1A = A, 0A = {0}.
The set kA is typically different from

k · A = {ka : a ∈ A};
this will appear rarely.1This should cause no difficulty in a country where ortoraphy
distinguishes between -ll– and –l·l–.

We will use Zq = Z/(qZ) to denote the set of residue classes modulo q.

Exercises and problems

The book contains exercises and problems; the difference between them is that an
exercise is what I can solve. Some exercises are called a prexercise; this means that the
solution will be included in the text, just I feel it may benefit the reader to meditate on
it at that point before (or better, instead) reading the proof.

The next collection of exercises is deliberately vague. There are obvious answers (for
instance, |A − A| < n2 in the next), not obvious but doable which will be told later,
and finding the exact bound would be an important new result.

Exercise 1. Let |A| = n and assume that |2A| ≤ αn. Find a bound for |A− A|.
Exercise 2. Let |A| = n and assume that |2A| ≤ αn. Find a bound for |3A|.
Exercise 3. Let |A| = n and assume that |A− A| ≤ αn. Find a bound for |2A|.

1*



CHAPTER 1

Cardinality inequalities

1. Introduction

Let A,B be sets in a group, |A| = m, |B| = n. The cardinality of A + B can
be anywhere between max(m,n) and mn. Our aim is to understand the connection
between this size and the structure of these sets.

Exercise 4. If A,B ⊂ Z, |A| = m, |B| = n, prove that

|A + B| ≥ m + n− 1

and describe the cases of equality.

Exercise 5. Given three positive integers m,n, s such that m + n − 1 ≤ s ≤ mn,
find sets A,B ⊂ Z such that |A| = m, |B| = n, |A + B| = s.

In this chapter we present some inequalities of the following kind: if a sumset, say
A + B is small (in various senses), then so are some other sums. The most frequently
applied one of them sounds as follows.

Theorem 1.1. Let A, B be finite sets in a commutative group and write |A| = m,
|A + B| = αm. For arbitrary nonnegative integers k, l we have

|kB − lB| ≤ αk+lm.

Observe that there is no a priori assumption on the size of B; however, with such
assumptions sometimes the conclusion can be strengthened.

We end this introduction by mentioning some basic ideas.
(i) Direct product. Assume A1, A2, . . .Ak are subsets of a group G with cardi-

nalities of sumsets
|Ai1 + Ai2 + · · ·+ Aim| = N(i1, . . . , im).

Let A′
1, . . . be another collection of sets in another group G′ with corresponding values

N ′(. . . ). If we form the direct products

Bi = Ai × A′
i = {(a, b) : a ∈ A, b ∈ B} ⊂ G×G′,

then we have

|Bi1 + Bi2 + · · ·+ Bim| = N(i1, . . . , im)N ′(i1, . . . , im).

This explains the multiplicative nature of many of the results – when a quantity is
estimated in terms of others, this is mostly in the form of a product of powers. This
method can often be used to build large examples starting from a single one. It will be
used now and then in the opposite way: we apply a result for a power of a small set to
get better results for the small set (see Section 6).

(ii) Projection. If we start from sets of integers, the above construction gives us
sets of integral vectors. This is, however, not an essential difference. If we have sets

5



6 1. CARDINALITY INEQUALITIES

Ai ⊂ Zd and a finite number of sum-cardinalities are prescribed, then we can construct
sets of integers that behave the same way. Indeed, the linear map

(x1, . . . , xd) → x1 + mx2 + · · ·+ md−1xd

will not add any new coincidence between sums if m is large enough.
This observation will be used without any further mentioning. If we construct a set

in Zd with certain properties, we shall tacitly realize that a set of integers can also be
constructed if necessary; a set in several dimensions often exhibits the structure more
clearly.

Exercise 6. Extend Exercise 4 to sets in Zd.

On the other hand if we know that a set is proper d-dimensional, this may yield
further results.

Exercise 7. Improve Exercise 4 for sets in Z2 that do no lie on a single line.

(iii) Torsion. The above consideration shows that from our point of view the
structure of Zk is not richer than that of Z. We can add that no torsionfree group
produces anything new either. Indeed, let G be a torsionfree group and take a finite
subset (the union of all finite sets which we want to add). This generates a subgroup
G′; and, as a finitely generated torsionfree group, G′ is isomorphic to Zk for some k.

Exercise 8. Extend Exercise 4 to sets in any commutative torsionfree group.

Exercise 9. Extend Exercise 4 to sets in any noncommutative torsionfree group.

2. Plünnecke’s method

Plünnecke [39] developed a graph-theoretic method to estimate the density of sum-
sets A + B, where A has a positive density and B is a basis. I published a simplified
version of his proof [47, 48]. Other accounts (of my version) were published by Malouf
[32] and Nathanson [33]. In the sequel we adopt Malouf’s terminology.

Plünnecke observed that the cardinality properties of the sets A, A + B, A + 2B,
. . . , are well reflected by the following directed graph. We take h+1 copies of the group
where these sets are situated, and build a graph on these sets as vertices by connecting
an x ∈ A + jB to an y ∈ A + (j + 1)B if y = x + b with some b ∈ B. We call this
graph the addition graph. These graphs have certain properties which follow from the
commutativity of addition, and hence Plünnecke called them commutative; we shall
retain this terminology.

We consider directed graphs G = (V, E), where V is the set of vertices and E is that
of the edges. If there is an edge from x to y, then we also write x → y. A graph is
semicommutative, if for every collection (x; y; z1, z2, . . . , zk) of distinct vertices such that
x → y and y → zi there are distinct vertices y1, . . . , yk such that x → yi and yi → zi. G
is commutative, if both G and the graph Ĝ obtained by reversing the direction of every
edge of G are semicommutative.

Our graphs will be of a special kind we call layered. By an h–layered graph we mean
a graph with a fixed partition of the set of vertices

V = V0 ∪ V1 ∪ · · · ∪ Vh

into h + 1 disjoint sets (layers) such that every edge goes from some Vi−1 into Vi.
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Exercise 10. If there is no isolated point, then this partition is unique.

To avoid the separate formulation of certain degenerate cases we do not exclude
isolated points.

For X,Y ⊂ V , we define the image of X in Y as

im(X, Y ) = {y ∈ Y : there is a directed path from some x ∈ X to y}.
The magnification ratio is defined by

µ(X,Y ) = min

{ | im(Z, Y )|
|Z| : Z ⊂ X,Z 6= ∅

}
.

For a layered graph we write
µj(G) = µ(V0, Vj).

Now Plünnecke’s main result can be stated as follows.

Theorem 2.1 (Plünnecke [39]). In a commutative layered graph µ
1/j
j is decreasing.

That is, for j < h we have µh ≤ µ
h/j
j . An obvious (and typically the only avail-

able) upper estimate for µj is |Vj|/|V0|. This yields the following corollary (in fact, an
equivalent assertion).

Theorem 2.2. Let j < h be integers, G a commutative layered graph on the layers
V0, . . . , Vh. Write |V0| = m, |Vj| = s. There is an X ⊂ V0, X 6= ∅ such that

| im(X, Vh)| ≤ (s/m)h/j|X|.
Exercise 11. Deduce Theorem 2.1 from Theorem 2.2.

These fundamental results will be proved in the next three sections. Now we mention
some important corollaries.

An application of the above theorem to the addition graph yields the following result.

Theorem 2.3. Let j < h be integers, A, B sets in a commutative group and write
|A| = m, |A + jB| = αm. There is an X ⊂ A, X 6= ∅ such that

|X + hB| ≤ αh/j|X|.
It is not true in general that a proper choice for X is A itself. |A+hB| can be much

larger, it can be greater than m1+C(h), even if α < 2. X has to be selected carefully.
For more details on this phenomenon see Section 10.

Since |X + hB| ≥ |hB| and |X| ≤ m, we get the following immediate consequence.

Corollary 2.4. Let j < h be integers, A, B sets in a commutative group and write
|A| = m, |A + jB| = αm. We have

|hB| ≤ αh/jm.

This is less general than Theorem 1.1, which will be proved in Section 8.
In the torsionfree case, using |X +hB| ≥ |X|+ |hB|− 1 instead (see exercises 4,8,9)

we obtain the following result, which is stronger for α near to 1 (and gives the correct
order of magnitude).

Corollary 2.5. Let j < h be integers, A, B sets in a torsionfree commutative
group and write |A| = m, |A + jB| = αm. We have

|hB| ≤ (
αh/j − 1

)
m + 1.
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Exercise 12. Let A,B be finite sets (in any commutative group), |A| = n, |A+B| =
λn. Show that there is a set T such that |T | ≤ λ and B ⊂ T + (A− A).

Exercise 13. Let A be a finite set (in any commutative group), |A| = n, |2A| = λn.
From Plünnecke’s theorem we know that |kA| ≤ λkn. For fixed λ this is an exponential
function of k. Find a bound of the form f(k, λ)n, where f(k, λ) is, for fixed λ, a
polynomial of k.

Prexercise. Let A be a finite set (in any commutative group). Prove that |kA|
is for k > k0 actually equal to some polynomial of k (Hovanskii’s theorem). (The
polynomial and the value of k0 depend on the set A.)

Exercise 14. Let A ⊂ Z. Show that

k|(k + 1)A| ≥ (k + 1)|kA| − 1.

The commutativity of the addition graph requires two assumptions: one is the com-
mutativity of addition, the other is that the same set B is added repeatedly. Still, an
application to different summands and noncommutative operation is possible; we will
consider this in Sections 6 and 11.

Besides the complete addition graph we used above, a more general graph may be
useful. Given three sets A,B, C we build on them the restricted addition graph as
follows. The layers will be V0 = A, V1 = (A + B) \ C, Vj = (A + jB) \ (C + (j − 1)B)
for j > 1. (We can omit this distinction by defining 0B = {0}.) Again, there is an edge
from an x ∈ Vj to a y ∈ Vj+1 if y = x + b with some b ∈ B. The case C = ∅ returns the
complete addition graph. An important case is C = A, where in each stage we get the
“new sums”.

Lemma 2.6. The restricted addition graph is commutative.

Proof. Consider a typical path of length 2, x → y → z with x ∈ Vj−1, y ∈ Vj,
z ∈ Vj+1. This means y = x + b, z = y + b′ with b, b′ ∈ B. We claim that x → x + b′ →
x + b′ + b = z is also a path in our graph. To see this we only need to check x + b′ ∈ Vj,
that is, x + b′ ∈ A + jB and x + b′ /∈ C + (j− 1)B. The first follows from x ∈ Vj−1, and
the negation of the second would imply z = x+ b′+ b ∈ C + jB, which would contradict
z ∈ Vj+1.

We apply this substitution to a collection x → y → zi to find distinct yi with
x → yi → zi, and to a collection xi → y → z to find xi → yi → z; this is what we need
to establish commutativity. ¤

By applying Plünnecke’s theorem 2.1 to this graph we obtain the following.

Theorem 2.7. Let j < h be integers, A, B,C sets in a commutative group and
write |A| = m, |(A+ jB) \ (C +(j− 1)B)| = αm. There is an X ⊂ A, X 6= ∅ such that

|(X + hB) \ (C + (h− 1)B)| ≤ αh/j|X|.

3. Magnification and disjoint paths

In this section we prove the following result.

Theorem 3.1. Let G be a commutative layered graph with layers V0, . . . , Vh, |V0| =
m. If µh ≥ 1, then there are m (vertex)-disjoint paths from V0 to Vh.
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The outdegree and indegree of a vertex x will be denoted by

d+(x) = d+(x,G) = |{y : x → y}| ,
d−(x) = d−(x,G) = |{y : y → x}| .

Lemma 3.2. In a commutative graph if x → y, then we have

(3.1) d+(x) ≥ d+(y),

(3.2) d−(x) ≤ d−(y).

This is an immediate consequence of the definition of commutativity; we formulate
it as a lemma to emphasize its importance.

Definition 3.3. Given a graph G = (V, E) and two sets X, Y ⊂ V of vertices,
the channel between them is the graph G(X,Y ) = (V , E) defined as follows. We take
all directed paths starting in X and ending in Y , put all the vertices on these paths
(including the endpoints) into V and connect two vertices if they are connected in G.
(It is easily seen that in a layered graph this is the same as putting all the vertices on
the above mentioned paths into E.)

Lemma 3.4. If G is commutative, so is every channel G(X,Y ).

This is again an immediate consequence of the definition.
We see that the inequalities of Lemma 3.2 hold for every channel in a commutative

graph, and this is the only property we will use.

Exercise 15. Suppose that a directed graph has the property that inequalities (3.1)
and (3.2) hold for every channel in it. Is it necessarily commutative?

Proof of Theorem 3.1. Let r be the maximal number of disjoint paths from V0

to Vh. By Menger’s theorem (see e. g. Ore [36] Ch. 12, or almost any book on graph
theory) we know that there is a separating set S of cardinality r, that is, a set with the
property that every path contains a vertex from S.

For a vertex x ∈ Vi we say that i is its index, and denote it as i = ind x.
From the separating sets of cardinality r we select one for which

(3.3)
∑
s∈S

ind s

is minimal. We are going to show that

(3.4) S ⊂ V0 ∪ Vh.

Let Ω1, . . . , Ωr be r disjoint paths from V0 to Vh. S has one element on each Ωi, say si.
Assume that (3.4) fails, and for some j, 1 ≤ j ≤ h− 1 we have

|S ∩ Vj| = q > 0.

We may assume that
S ∩ Vj = {s1, . . . , sq}.

For 1 ≤ i ≤ q let xi be the predecessor and yi the successor of si on Ωi, so that

Ωi = (. . . , xi, si, yi, . . . ).

The set
S ′ = {x1, . . . , xq, tq+1, . . . , tr}
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cannot separate V0 and Vh because of the minimality of the index sum (3.3). Conse-
quently there is a path Γ from V0 to Vh that avoids S ′. It cannot avoid S, so it contains
some vertex from s1, .., sq, say s1. The predecessor x of s1 on Γ is a vertex

x /∈ {x1, . . . , xq}.
Write

M = {s1, . . . , sq}, M+ = {y1, . . . , yq}, M− = {x1, . . . , xq},
M ′ = M− ∪ {x}, G ′ = G(M ′,M+).

We claim that the set of vertices of G ′ is M ′ ∪M ∪M+. To see this suppose that
there were a path Λ from x or from some xi to some yj that avoids M . In this case
taking Γ or Ωi from V0 to x or xi, then Λ to yj, then Ωj from yj to Vh we would get a
path from V0 to Vh that avoids S, a contradiction.

Now we have the following chain of inequalities:
q∑

i=1

d+(xi,G ′) ≥
q∑

i=1

d+(si,G ′) =

q∑
i=1

d−(yi,G ′)

≥
q∑

i=1

d−(si,G ′) =

q∑
i=1

d+(xi,G ′) + d+(x,G ′)

>

q∑
i=1

d+(si,G ′),

a contradiction. Here the inequalities are applications of Lemma 3.2, the equalities
express the fact that both sides are enumerations of the number of edges between M
and M+, and between M ′ and M , respectively. This contradiction proves (3.4). The
separating property of S means that every upward path from V0 \S must end in Vh∩S.
There are such paths (unless S ⊃ V0, and in this case we are done), the assumption
µh ≥ 1 means that the number of their possible endpoints is at least |V0 \ S|, so we have

|Vh ∩ S| ≥ |V0 \ S| = |V0| − |V0 ∩ S| ,
therefore

r = |S| = |Vh ∩ S|+ |V0 ∩ S| ≥ |V0| .
¤

Corollary 3.5. In a commutative graph if µh ≥ 1, then µj ≥ 1 for 1 ≤ j ≤ h.

Proof. Take a collection of m disjoint paths from V0 to Vh. For any X ⊂ V0 the
paths that start from X cross Vj in |X| different vertices that all belong to im(X,Vj). ¤

This is a particular case of Theorem 2.1 that will be used to deduce the general case
in the next section.

4. Layered product

Definition 4.1. Let G ′ = (V ′, E ′) and G ′′ = (V ′′, E ′′) be h-layered graphs with
layers V ′

i and V ′′
i , resp. Their layered product is the h–layered graph on the layers

Vi = V ′
i × V ′′

i , and two vertices (x′, x′′) ∈ Vi and (y′, y′′) ∈ Vi+1 are connected if both
x′ → y′ and x′′ → y′′. This graph will be denoted by G = G ′G ′′. For repeated products
with identical factors the usual power notation Gn will be used.
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Observe that this is a proper subgraph of the usual product of these graphs.

Lemma 4.2. The layered product of commutative graphs is commutative as well.

This is an immediate consequence of the definitions.

Lemma 4.3. Magnification ratios are multiplicative: if G,G ′,G ′′ are h-layered graphs
with magnification ratios µi, µ

′
i, µ

′′
i , resp., and G = G ′G ′′, then µi = µ′iµ

′′
i for all i.

Proof. The inequality µi ≤ µ′iµ
′′
i is obvious: if µ′i is attained at a subset Z ′ ⊂ V0

and µ′′i at Z ′′ ⊂ V ′′
0 , then Z = Z ′ × Z ′′ ⊂ V0 gives the upper bound.

To prove the reverse inequality first consider a special case: h = 1, G ′′ consists
of two copies W0,W1 of a set W , and from a w ∈ W0 there is a unique edge to the
corresponding vertex in W1, consequently µ′′1 = 1.

Take a set
X ⊂ V0 = V ′

0 ×W.

We have
X =

⋃
w∈W

Xw,

where Xw is the set of those elements of X whose second coordinate is w. We obtain

|im(X,V1)| =
∑

|im(Xw, V1)| ≥
∑

µ′1 |Xw| = µ′1 |X|
as desired.

Now consider the general case. We construct an auxiliary 3-layered graph H on the
layers

U0 = V ′
0 × V ′′

0 = V0, U1 = V ′
j × V ′′

0 , U2 = V ′
j × V ′′

j = Vj.

We connect an (x′, x′′) ∈ U0 to (y′, x′′) ∈ U1 (second coordinates equal) if there is a
path from x′ to y′ in G ′, and we connect (y′, x′′) ∈ U1 to (y′, y′′) ∈ U2 (first coordinates
equal) if there is a path from x′′ to y′′ in G ′′. Clearly from (x′, x′′) to (y′, y′′) in H if and
only if there is one in G, so

µ2(H) = µj(G).

The subgraphs H1, spanned by U0 ∪ U1 and H2, spanned by U1 ∪ U2 fall into the
particular case treated above, which means

µ1(H1) = µ(U0, U1) ≥ µj(G ′), µ1(H2) = µ(U1, U2) ≥ µj(G ′′).
Finally we have

µ2(H) = µ(U0, U2) ≥ µ(U0, U1)µ(U1, U2) ≥ µj(G ′)µj(G ′′)
by the previous inequality and this completes the proof of the reverse inequality µi ≥
µ′iµ

′′
i . ¤

5. The independent addition graph

We define the independent addition graph Inh as follows. Take a set B (say, of
integers), |B| = n, such that all h-fold sums b1 + · · · + bh, bi ∈ B, are different, unless
they are rearrangements of each other, and A = {0}, and build the addition graph on
them. Since |V0| = 1, the j-th magnification ratio of this graph is clearly

µj(Inh) = |Vj| = |jB| .
Exercise 16. Calculate |jB| as a function of j and n.
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Since the number of formal j-fold sums is nj and a sum occurs at most j! times, we
have

(5.1)
nj

j!
≤ µj(Inh) = |jB| ≤ nj.

We shall also use the inverse of this graph. Here we have

µh(Înh) = |hB|−1 ≥ n−h,

and for j < h

µj(Înh) ≤ |(h− j)B|
|hB| ≤ h!n−j.

Exercise 17. Find the exact value of µj(Înh).

These graphs will be used in the proof of Plünnecke’s theorem.

Proof of Theorem 2.1. We want to prove µh ≤ µ
h/j
j . We know that µj ≥ 1

whenever µh ≥ 1, and this settles the case µh = 1.
Take now a graph G with µh < 1. Consider the layered product G∗ = GkInh. If we

select k and n so that

µk
h

nh

h!
≥ 1,

then (with the natural notation) we have µ∗h ≥ 1, hence µ∗j ≥ 1, which then implies

µk
j n

j ≥ 1,

using the appropriate part of inequality (5.1).
To optimize this take

n = 1 +
[(

h!µ−k
h

)1/h
]
≤ 2h!1/hµ

−k/h
h = chµ

−k/h
h .

The previous inequality gives

µj ≥ n−j/k ≥ c
−1j/k
h µ

j/k
h → µ

j/h
h

as k →∞.
Finally assume that µh > 1. Consider the layered product G∗ = GkÎnh. If we select

k and n so that

µk
hn

−h ≥ 1,

then similarly we get µ∗h ≥ 1 and hence µ∗j ≥ 1, which then implies

µk
j h!n−j ≥ 1,

using inequality (5.1) again.
Our choice of n is now

n =
[
µ

k/h
h

]
,

and the previous inequality gives

µj ≥ h!−1/knj/k → µ
j/h
h

as k →∞. ¤
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6. Different summands

An application to different summands is less straightforward, however, the case j = 1
of Theorem 2.3 can be extended in this way as follows [47].

Theorem 6.1. Let A, B1, . . . , Bh be sets in a commutative group G and write |A| =
m, |A + Bi| = αim. There is an X ⊂ A, X 6= ∅ such that

(6.1) |X + B1 + · · ·+ Bh| ≤ α1α2 . . . αh|X|.
Proof. Take auxiliary sets T1, . . . , Th ⊂ G such that |Ti| = ni (which will be

specified soon) and all the sums

y + t1 + · · ·+ th, y ∈ A + B1 + · · ·+ Bh, ti ∈ Ti

are distinct. (This may be impossible in a finite group; in this case first embed it into
an infinite one.) Now apply case j = 1 of Theorem 2.3 to the sets A and

B =
⋃

(Bi + Ti).

Observe that

|A + B| ≤
∑

|A + Bi + Ti| ≤
∑

|A + Bi| |Ti| = m
∑

niαi.

We obtain the existence of a set X ⊂ A such that

|X + hB| ≤ |X|
(∑

niαi

)h

.

On the other hand X + hB ⊃ X + B1 + · · ·+ Bh + T1 + · · ·+ Th, consequently we have

|X + hB| ≥ |X + B1 + · · ·+ Bh|n1 . . . nh.

A comparison of these inequalities gives

(6.2) |X + B1 + · · ·+ Bh| ≤
(∑

niαi

)h

(n1 . . . nh)
−1 |X| .

To make this quotient small we put ni = n/αi with suitable n; since the numbers αi are
rational, this can be achieved with integers. Then inequality (6.2) turns into

(6.3) |X + B1 + · · ·+ Bh| ≤ hh
∏

αi |X| ,
which is worse than we claimed by a factor hh.

To remove this factor we consider two 1-layered graphs. The first, say G is built on
the sets A and A+B1 + · · ·+Bh in the natural way. The other, say G ′ is built similarly
from the direct powers

Ak = A× · · · × A,Bk
1 , . . . , Bk

h

considered as sets in the k-th direct power of our initial group. Let µ and µ′ be the
magnification ratios of these graphs. The previous argument told us µ ≤ hh

∏
αi, and

the same, when applied to the sets Ak, Bk
j instead, gives

µ′ ≤ hh
(∏

αj

)k

.

Now observe that G ′ is isomorphic to Gk, so µ′ = µk by Lemma 4.3. The above inequality
thus reduces to

µ ≤ hh/k
∏

αj.

with an arbitrary k. As k →∞, we obtain (6.1). ¤
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The case of general j can also be extended (a paper by Gyarmati, Matolcsi, Ruzsa
in preparation [18])).

Theorem 6.2. Let j < h be integers, and let A, B1, . . . , Bh be finite sets in a
commutative group G. Let K = {1, 2, . . . , h}, and for any I ⊂ K put

BI =
∑
i∈I

Bi,

|A| = m, |A + BI | = αIm.

Write

(6.4) β =


 ∏

L⊂K,|L|=j

αL




(j−1)!(h−j)!/(h−1)!

.

There exists an X ⊂ A, X 6= ∅ such that

(6.5) |X + BK | ≤ β|X|.
7. Plünnecke’s inequality with a large subset

We show an extension of Theorem 2.2 with a bound on the size of the selected
subset.

Theorem 7.1. Let j < h be integers, G a commutative layered graph on the layers
V0, . . . , Vh. Write |V0| = m, |Vj| = s, γ = h/j. Let an integer k be given, 1 ≤ k ≤ m.
There is an X ⊂ V0, |X| ≥ k such that
(7.1)

| im(X, Vh)| ≤
( s

m

)γ

+

(
s

m− 1

)γ

+ · · ·+
(

s

m− k + 1

)γ

+ (|X| − k)

(
s

m− k + 1

)γ

.

Proof. We use induction on k. The case k = 1 is Theorem 2.2.
Assume we know it for k; we prove it for k + 1. The inductive assumption gives us

a set X, |X| ≥ k with a bound on | im(X, Vh)| as given by (7.1). We want to find a set
X ′ with |X ′| ≥ k + 1 and

(7.2) | im(X ′, Vh)| ≤
( s

m

)γ

+

(
s

m− 1

)γ

+· · ·+
(

s

m− k

)γ

+(|X ′|−k−1)

(
s

m− k

)γ

.

If |X| ≥ k + 1, we can put X ′ = X. If |X| = k, we apply Theorem 2.2 to the graph
obtained from G by omitting the vertices in X. This yields a set Y ⊂ V0 \X such that

| im(Y, Vh)| ≤
(

s

m− k

)γ

|Y |

and we put X ′ = X ∪ Y . ¤
The following variant will be more comfortable for calculations.

Theorem 7.2. Let j < h be integers, G a commutative layered graph on the layers
V0, . . . , Vh. Write |V0| = m, |Vj| = s, γ = h/j. Let a real number t be given, 0 ≤ t < m.
There is an X ⊂ V0, |X| > t such that

(7.3) | im(X, Vh)| ≤ sγ

γ

(
1

(m− t)γ−1
− 1

mγ−1

)
+ (|X| − t)

(
s

m− t

)γ

.
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Proof. We apply Theorem 7.1 with k = [t] + 1. The right side of (7.3) can be

written as sγ
∫ |X|
0

f(x) dx, where f(x) = (m−x)−γ for 0 ≤ x ≤ t, and f(x) = (m− t)−γ

for t < x ≤ |X|. Since f is increasing, the integral is ≥ f(0) + f(1) + · · ·+ f(|X| − 1).
This exceeds the right side of (7.1) by a termwise comparation. ¤

We state the consequences of this result for the complete and restricted addition
graphs.

Theorem 7.3. Let j < h be integers, A, B sets in a commutative group and write
|A| = m, |A + jB| = s, γ = h/j. Let a real number t be given, 0 ≤ t < m. There is an
X ⊂ A, |X| > t such that

|X + hB| ≤ sγ

γ

(
1

(m− t)γ−1
− 1

mγ−1

)
+ (|X| − t)

(
s

m− t

)γ

.

Theorem 7.4. Let j < h be integers, A, B,C sets in a commutative group and
write |A| = m, |(A + jB) \ (C + (j − 1)B)| = s, γ = h/j. Let a real number t be given,
0 ≤ t < m. There is an X ⊂ A, |X| > t such that

|(X + hB) \ (C + (h− 1)B)| ≤ sγ

γ

(
1

(m− t)γ−1
− 1

mγ−1

)
+ (|X| − t)

(
s

m− t

)γ

.

We state separately the case j = 1, h = 2 which will be applied in the sequel.

Corollary 7.5. Let A, B sets in a commutative group and write |A| = m, |A +
iB| = s. Let a real number t be given, 0 ≤ t < m. There is an X ⊂ A, |X| > t such
that

|X + 2B| ≤ s2

(m− t)2

(
|X| − t(t + m)

2m

)
.

Corollary 7.6. Let A, B, C be sets in a commutative group and write |A| = m,
|(A+B)\C| = s. Let a real number t be given, 0 ≤ t < m. There is an X ⊂ A, |X| > t
such that

|(X + 2B) \ (C + B)| ≤ s2

(m− t)2

(
|X| − t(t + m)

2m

)
.

Theorem 6.1 can also be modified to yield large subsets.

Theorem 7.7. Let A, B1, . . . , Bh be sets in a commutative group G and write |A| =
m, |A + Bi| = αim. Let a real number t be given, 0 ≤ t < m. There is an X ⊂ A,
X 6= ∅ such that

(7.4) |X +B1 + · · ·+Bh| ≤ α1α2 . . . αhm
h

(
1

h

(
1

(m− t)h−1
− 1

mh−1

)
+

(|X| − t)

(m− t)h−1

)
.

The proof follows that of Theorem 7.1 with the difference that in the inductive step
we apply Theorem 6.1 to the sets A \X, B1, . . . , Bh. The available upper estimate for
|(A \X) + Bi| is naturally αim.

8. Sums and differences

With Plünnecke’s method one can get various inequalities for cardinalities of sum-
sets, but it stops to work when differences are also involved (we shall give reasons why).
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As far as I know the first inequality connecting sums and differences is due to Freiman
and Pigaev [11]. They prove that

(8.1) |A + A|3/4 ≤ |A− A| ≤ |A + A|4/3.

We prove the following [43].

Theorem 8.1. Let A, Y, Z be finite sets in a (not necessarily commutative) group.
We have

(8.2) |A||Y − Z| ≤ |A− Y ||A− Z|.
Prexercise. Try to prove this inequality instead of reading the proof.

Exercise 18. Let

A = {(x1, . . . , xd) ∈ Zd : xi ≥ 0,
∑

xi ≤ n}.
a) Calculate |A|.
b) What are the elements of A− A?
c) What are the limits of |A + A|/|A| and |A− A|/|A| as n →∞ for fixed d?

Proof. We will map the pairs (a, x), a ∈ A, x ∈ Y − Z into (A− Y )× (A− Z) in
an injective way.

List the elements of Y somehow, say y1, . . . , yk. Now given a pair (a, x), from all
possible representations of x in the form x = y − z, y ∈ Y , z ∈ Z select the one for
which y = yi with minimal i, and map this pair into (a − y, a − z). Take another pair
(a′, x′) with representation x′ = y′ − z′. If we had

a− y = a′ − y′, a− z = a′ − z′,

then subtracting these equations (carefully in the noncommutative case!) we get y−z =
y′ − z′. Since both representations are minimal in the above sense, we conclude y = y′,
then z = z′ and a = a′. ¤

Substituting Y = −Y and Z = −Z, we obtain the following version.

(8.3) |A||Y − Z| ≤ |Y + A||Z + A|.
Inequality (8.2) has the following interpretation (I cannot recall who made this

observation). Define

ρ(X, Y ) = log
|X − Y |√
|X| |Y | .

Then (8.2) can be written as

ρ(Y, Z) ≤ ρ(Y, A) + ρ(A,Z),

a triangle-inequality like property. ρ is also symmetric. A marked difference from
distances is that ρ(X,X) is typically positive.

Exercise 19. Show that ρ(X, Y ) ≥ 0, and find the cases of equality.

Substituting Y = Z = −A in (8.2) we obtain the following inequality:

Corollary 8.2. If |A| = m, |2A| ≤ αm, then |−A+A| ≤ α2m and |A−A| ≤ α2m.

The second inequality above follows from the first via replacing A by −A and ob-
serving that 2(−A) = −(2A).

We can also substitute Y = Z = −2A to obtain the following inequality.
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Corollary 8.3. If |A| = m, |3A| ≤ αm, then | − 2A + 2A| ≤ α2m.

The exponent 2 in Corollary 8.2 is best possible (though an improvement to some-
thing like α2/(log α)c is conceivable). This can be seen by considering the lattice points
inside a d-dimensional simplex

{
(x1, . . . , xd) ∈ Rd : xi ≥ 0,

∑
xi ≤ n

}
,

where 2d ≈ α. Denoting the volume of this simplex by v (= nd/d!), the number of
lattice points is about v, the size of the sumset is about the volume of this simplex
dilated by 2, that is, 2dv, while the size of the difference set is about the volume of the
difference set of this simplex, which is easily calculated to be

(
2d
d

)
v. Note that for a

convex set the volume of the sumset is always 2d times the original; the volume of the
difference set varies and by a theorem of C. A. Rogers and G. G. Shephard [41], the
simplex yields the maximum.

This example is analyzed in detail by Hennecart, Robert and Yudin [22]; they
attribute the underlaying idea to Freiman and Pigaev’s above mentioned paper [11].
See also A. Granville’s survey [15], section 1.5.

One difference from the Plünnecke inequalities is the noncommutative nature of
the above result. From Corollary 2.4 we obtain a similar implication: if |A| = m,
|A−A| ≤ αm, then |2A| ≤ α2m. This fails in noncommutative groups, see Section 11.

Another difference is the following. To go to differences one would require the case
“h = −1” of Theorem 2.3, which might be expected to sound as follows:

“if |A| = n, |A + B| = αn, then there is a nonempty X ⊂ A such that |X − B| ≤
α′|X|, with α′ depending only on α.”

This is, however, false; we have the following results by Gyarmati, Hennecart, Ruzsa
[17].

Theorem 8.4. Let α > 2. Then for any c <
√

2 log 2√
3

and infinitely many m, there

exist two sets A and B such that |A| = m, |A+B| ≤ αm and for any non-empty X ⊂ A,
one has

|X −B|
|X| ≥ exp

(
c
√

(log(α/2))(log m)(log log m)−1
)

.

Theorem 8.5. Let A and B be non-empty and finite subset of some abelian group
such that |A| = m,|A + B| ≤ αm. Then there exists some non-empty subset X of A
such that

(8.4)
|X −B|
|X| ≤ α exp

(
2
√

(log α)(log m)
)

.

Inequality (8.2) together with Plünnecke’s can be used to deduce the basic Theorem
1.1, which is sufficient for most of the applications ([50], Lemma 3.3) and which we
repeat below.

Theorem 8.6. Let A, B be finite sets in a commutative group and write |A| = m,
|A + B| = αm. For arbitrary nonnegative integers k, l we have

(8.5) |kB − lB| ≤ αk+lm.
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Proof. By symmetry we may assume k ≤ l. Assume also k ≥ 1, since the case
k = 0 is contained in Corollary 2.4. An application of Theorem 2.3 with j = 1, h = k
gives us a set X ⊂ A such that

|X + kB| ≤ αk |X| .
Another application with j = k, h = l and X in the place of A gives a set X ′ ⊂ X such
that

|X ′ + lB| ≤ αl |X ′| .
Now apply Theorem 8.2 to the sets −X ′, kB and lB to obtain

|X ′| |kB − lB| ≤ |X ′ + kB| |X ′ + lB| ≤ αk+l |X ′| |X| .
Now we divide by |X ′| and use |X| ≤ m to get inequality (8.5). ¤

The sum-sum analogue of Theorem 8.1 can be deduced from Plünnecke’s inequality.

Theorem 8.7. In any commutative group we have

(8.6) |A||Y + Z| ≤ |A + Y ||A + Z|.
Proof. Indeed, applying Theorem 6.1 we get a set X ⊂ A such that

|X + Y + Z| ≤ |X| |A + Y |
|A|

|A + Z|
|A| ,

and to obtain (8.6) we just have to use |X + Y + Z| ≥ |Y + Z| and |X| ≤ |A|. ¤
Exercise 20. Prove Freiman and Pigaev’s inequality (8.1).

9. Double and triple sums

We present an inequality which sometimes nicely complements Plünnecke’s.

Theorem 9.1. Let X,Y, Z be finite sets in a commutative group. We have

(9.1) |X + Y + Z|2 ≤ |X + Y ||Y + Z||X + Z|.
This inequality may be extended to the noncommutative case as follows.

Theorem 9.2. Let X, Y, Z be finite sets in a not necessarily commutative group.
We have

(9.2) |X + Y + Z|2 ≤ |X + Y ||Y + Z|max
y∈Y

|X + y + Z|.

Proof. We use induction on |Y |. For |Y | = 1 (9.2) reduces to the obvious inequality

|X + y + Z| ≤ |X||Z|.
Assume now we know (9.2) for smaller sets. Fix y as the element of Y which

maximizes |X + y + Z|. Write

|X + y + Z| = m, Y \ {y} = Y ′,

|(X + Y + Z) \ (X + Y ′ + Z)| = a, |(X + Y ) \ (X + Y ′)| = b, |(Y + Z) \ (Y ′ + Z)| = c.

With these notations (9.2) can be rewritten as

(9.3) (|X + Y ′ + Z|+ a)2 ≤ m(|X + Y ′|+ b)(|Y ′ + Z|+ c).

We shall obtain (9.3) as the sum of the following three inequalities:

(9.4) |X + Y ′ + Z|2 ≤ m|X + Y ′||Y ′ + Z|,
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(9.5) 2a|X + Y ′ + Z| ≤ m(c|X + Y ′|+ b|Y ′ + Z|),
(9.6) a2 ≤ mbc.

Of these inequalities (9.4) follows from the induction hypothesis.
Clearly every element of (X + Y + Z) \ (X + Y ′ + Z) is of the form x + y + z

with x ∈ X, z ∈ Z, hence a ≤ m. We can map this set into the Cartesian product of
(X + Y ) \ (X + Y ′) and (Y + Z) \ (Y ′ + Z) by mapping a typical element x + y + z into
the pair (x+y, y+z). This pair determines x+y+z uniquely and clearly x+y /∈ X +Y ′

as otherwise we would have x + y + z ∈ X + Y ′ + Z; similarly y + z /∈ Y ′ + Z. This
mapping shows a ≤ bc. The product of these inequalities gives (9.6).

By multiplying inequalities (9.4) and (9.6) and taking the square root we obtain

a|X + Y ′ + Z| ≤ m
√

bc|X + Y ′||Y ′ + Z|;
(9.5) now follows from the arithmetic-geometric mean inequality. ¤

In the commutative case this inequality can be extended to more than 3 sets as
follows (Gyarmati, Matolcsi, Ruzsa [19]).

Theorem 9.3. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary commutative
semigroup. Put

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak.

We have

(9.7) |S| ≤
(

k∏
i=1

|Si|
) 1

k−1

.

Curiously, one of the arguments relies on invertibility, the other on commutativity,
so we do not have any result for noncommutative semigroups. Neither could we extend
the above noncommutative argument for more than three summands, and hence the
following question remains open.

Problem 9.4. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary noncommu-
tative group. Put

S = A1 + · · ·+ Ak,

ni = max
a∈Ai

|A1 + · · ·+ Ai−1 + a + Ai+1 + · · ·+ Ak| .
Is it true that

(9.8) |S| ≤
(

k∏
i=1

ni

) 1
k−1

?

We finish this section by a meditation on the sizes of 2A and 3A.
Write |A| = m, |2A| = n. Corollary 2.4 implies |3A| ≤ n3/m2, and Theorem 9.1

implies |3A| ≤ n3/2. The first is better for n ≤ m4/3, the second for larger values. The
two together describe the maximal possible value of |3A| up to a constant.

Theorem 9.5. Let m,n be positive integers satisfying m ≤ n ≤ m2. There is a set
A of integers such that |A| ³ m, |2A| ³ n and

|3A| ³ min
(
n3/m2, n3/2

)
.
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Proof. We construct A in Z3. Take two integers k, l such that k ≤ l ≤ k3 and put

A1 = {(x, y, z) : 0 ≤ x, y, z < k},
A2 = {(x, 0, 0), (0, x, 0), (0, 0, x) : 0 ≤ x < l},

and A = A1 ∪ A2.
We have m = |A| = k3 + 3(l − k) ³ k3, so the proper choice is k ∼ m1/3. Further

2A = 2A1 ∪ (A1 + A2) ∪ 2A2. The cardinality of the parts is of order k3, k2l and l2,
respectively. The first is always smaller than the second, hence

n = |2A| ³ max(k2l, l2);

the threshold of behaviour is at l = k2. Hence the proper choice of l is

l ∼ min(
√

n, n/m2/3)

and the claim follows from the fact that |3A| ≥ |3A2| ≥ l3. ¤

10. A + B and A + 2B

In this section we consider the following problem. Let |A| = m, |A+B| = αm. How
large can |A + 2B| be? In the case B = A the answer was given at the end of the last
section. A similar bound can be found by Plünnecke’s method if A and B are about
the same size. Without any assumption on B, however, the situation changes.

An application of Theorem 9.1 immediately yields

(10.1) |A + 2B| ≤ |A + B|
√
|2B|;

this inequality was already proved differently in [56], Theorem 7.2. To estimate |2B|
we can use Corollary 2.4 to obtain |2B| ≤ α2m; combined with (10.1) we get

|A + 2B| ≤ α2m3/2.

In [56], Theorem 7.1 examples are given (for every rational α and infinitely many m)
such that

(10.2) |A + 2B| ≥
(

α− 1

4

)2

m3/2.

These results describe the order of magnitude for fixed α > 1 unless α is near to 1.
We now explore what happens for small values of α. In the extremal case α = 1

clearly also A + 2B = m. The transition is somewhat less clear.

Theorem 10.1. Let A,B be finite sets in a commutative group G, |A| = m, |A +
B| = αm, 1 < α ≤ 2. We have

(10.3) |A + 2B| ≤ αm +
3

2
(α− 1)m

√
|2B|,

consequently

(10.4) |A + 2B| ≤ αm + 3(α− 1)m3/2;

if G is torsionfree, then

(10.5) |A + 2B| ≤ αm + 3(α− 1)3/2m3/2;
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Proof. We apply Corollary 7.6 with the choice C = A + b, where b is an arbitrary
element of B. The s in the hypothesis will be

s = |(A + B) \ (A + b)| = (α− 1)m,

and we obtain (for every 0 ≤ t < m) the existence of an X ⊂ A, |X| > t such that

|(X + 2B) \ (C + B)| ≤ s2

(m− t)2

(
|X| − t(t + m)

2m

)
.

Since |C + B| = |A + B| = αm, this implies

|(X + 2B)| ≤ αm +
s2

(m− t)2

(
|X| − t(t + m)

2m

)
.

For A \X we use an obvious estimate:

|(A \X) + 2B| ≤ |A \X||2B| = (m− |X|)|2B|,
and sum the last two inequalities to get

(10.6) |(A + 2B)| ≤ αm +

(
s2

(m− t)2
− |2B|

)
|X|+ m|2B| − s2

(m− t)2

t(t + m)

2m
.

We choose t so that the coefficient of |X| vanishes, that is,

(10.7)
s2

(m− t)2
= |2B|.

Such a t exists in the interval (0,m) as long as |2B| ≥ s2/m2 = (α−1)2, which certainly
holds under our assumption α ≤ 2. (We do not really need this restriction; however,
for α > 2 this estimate is weaker than (10.1), due to the factor 3/2.) With this choice
(10.6) becomes

(10.8) |(A + 2B)| ≤ αm + |2B|
(

m− t(t + m)

2m

)
= αm + |2B|(m− t)(2m + t)

2m
.

We estimate 2m + t by 3m, and we express m− t by (10.7):

m− t =
s√
|2B| =

(α− 1)m√
|2B| .

After these substitutions (10.8) becomes (10.3).
To deduce (10.4) we use Corollary 2.4 and α ≤ 2.
To deduce (10.5) we use Corollary 2.5: in a torsionfree group

|2B| ≤ 1 + (α2 − 1)m ≤ 4(α− 1)m,

since α = |A + B|/m ≥ 1 + 1/m, and put this into (10.3). ¤
We remark that the summand αm in these estimates can actually be the main term,

as α may be as small as 1 + O(1/m). In the general estimate (10.4) the threshold is
1 + O(m−1/2), in the torsionfree estimate (10.5) it is 1 + O(m−1/3).

Still there is a gap between the exponent 2 of α−1 in the example (10.2) and 3/2 in
the upper estimate (10.5). We now show by an example that the exponent 1 of α−1 for
general groups in (10.4) is exact. Take a group G which has two k-element subgroups
H1, H2 such that H1 ∩H2 = {0}. Write H = H1 + H2 and let

A = H ∪ {a1, . . . , at}, B = H1 ∪H2,
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where a1, . . . , at lie in different nonzero cosets of H. Observe that 2B = H. We have

m = |A| = k2 + t,

αm = |A + B| = k2 + t(2k − 1),

α− 1 =
2t(k − 1)

m
,

|A + 2B| = (t + 1)k2 = αm + (α− 1)(k − 1)m/2.

Since k − 1 ∼ √
m as long as t = o(k2) (and in the interesting case t = O(k)), the only

difference from the upper estimate (10.4) is a factor of 6.

11. On the noncommutative case

Our attention was focused on commutative groups, with special emphasis on itegers.
At several places, namely at Theorem 8.1 and Theorem 9.2, we mentioned the possibility
of a noncommutative extension. We now explore the limits of this extension.

First we collect some examples that show how certain attempts of extension fail.
These examples use a free group, which is “very noncommutative”; it is possible that
for groups “nearer” to commutative ones in some sense some results can be extended.

First recall some results that did not require commutativity. Thoerem 8.1 told us

(11.1) |A||Y − Z| ≤ |A− Y ||A− Z|.
This had the following consequences (Corollary 8.2): if |A| = m, |2A| ≤ αm, then
| − A + A| ≤ α2m and |A− A| ≤ α2m.

We first show that the two cases in the above corollary are not superfluous, in a
noncommutative group | −A + A| and |A−A| can be very different (of course, without
the assumption on 2A).

Indeed, take a free group generated by the elements a, b and put

A = {ia + b : 1 ≤ i ≤ m} ∪ {ia : 1 ≤ i ≤ m}.
Then |A| = 2m and

−A = {−b− ja : 1 ≤ j ≤ m} ∪ {−ja : 1 ≤ j ≤ m}.
Here A− A contains the 2m2 different elements ia± b− ja, while

−A + A = {(i− j)a} ∪ {(i− j)a + b} ∪ {−b + (i− j)a} ∪ {−b + (i− j)a + b},
altogether 4m elements.

So if the sumset is small, both difference sets are small without commutativity. In
the commutative case from Corollary 2.4 we obtain a similar implication: if |A| = m,
|A− A| ≤ αm, then |2A| ≤ α2m. This also fails in noncommutative groups. As above,
take a free group with generators a, b and put

A = {ia + b : 1 ≤ i ≤ m}.
Then both difference sets A− A and −A + A have 2m− 1 elements, while |2A| = m2.

Between double and triple sums we had the following inequality without commuta-
tivity (Theorem 9.2).

(11.2) |X + Y + Z|2 ≤ |X + Y ||Y + Z|max
y∈Y

|X + y + Z|.
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We show by an example that the maximum cannot be omitted and cannot even be
replaced by an average, even in the case of identical sets. As before, take a free group
with generators a, b and put

X = Y = Z = {a, 2a, . . . , na, b}.
We have |X| = n + 1, |2X| = 4n and |3X| > n2 since all the elements ia + b + ja,
1 ≤ i, j ≤ n are distinct. From the n + 1 sets X + y + X, y ∈ X only one is of size n2,
namely the one with y = b, all the others have O(n) elements.

For a constrast, by applying Corollary 2.4, with similar values of |X| and |2X| in a
commutative group we would have |3X| ≤ 43n.

These examples suggest that commutativity is not only an assumption heavily used
in Plünnecke’s method, but a typical result will fail without it. The last example suggest
a possible noncommutative replacement.

Problem 11.1 (A noncommutative Plünnecke?). Theorems 9.1 and 9.2 suggest a
way to find noncommutative analogues of inequalities that for commutative groups were
proved by Plünnecke’s method. I formulate the simplest possible of them. Let A,B be
finite sets in a noncommutative group, and define α by

max
b∈B

|A + b + B| = α|A|.

Must there exist a nonempty X ⊂ A such that

|X + 2B| ≤ α′|X|
with an α′ depending only on α?

I rather expect a negative answer.
However, Plünnecke’s method can be modified to handle some noncommutative

situations. We give a simple example of this.

Theorem 11.2. Let A, B1, B2 be sets in a (typically noncommutative group) G and
write |A| = m, |B1 + A| = α1m, |A+B2| = α2m. There is an X ⊂ A, X 6= ∅ such that

(11.3) |B1 + X + B2| ≤ α1α2|X|.
Proof. We take 4 copies of G and build a 2-layered graph on them. V0 contains

the set A in one copy, V1 contains the sets B1 + A and A + B2 in different copies, and
V2 contains B1 + A + B2; edges are drawn in the natural way.

We claim that this graph is commutative. Indeed, take vertices such that x → y →
zi, i = 1, . . . , k. The edge x → y can go either to B1 + A or A + B2; assume the first,
the other is similar. Then x ∈ A, y = b + x with some b ∈ B1 and zi = b + x + ci

with ci ∈ B2. Then with yi = x + ci we have x → yi → zi; observe that these replacing
vertices are in the other half of V1 than the original one.

The other side of commutativity goes similarly. If we have xi → y → z, and
y ∈ B1 +A, then there are elements bi ∈ B1 such that bi +xi = y, and c ∈ B2 such that
z = y + c. The replacing edges are again xi → xi + c → bi + xi + c = y + c = z in the
other half of the graph.

Note that this was based on a special kind of commutativity: adding an element
from the left and adding another from the right commute — this property bears the
name “associativity”.
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Applying Plünnecke’s graph theorem 2.1 to this graph we obtain a set X ⊂ A such
that

(11.4) |B1 + X + B2| ≤ (α1 + α2)
2 |X| .

If α1 = α2 = α, this is 4α2 rather than the α2 claimed in (11.3), if they are rather
different, it can be much worse. We can improve the situation by embedding G into
a larger group G′ = G × H1 × H2, where the Hi are cyclic groups, |Hi| = ni, and we
identify G with G × {0} × {0}. In G′ we consider the sets A′ = A, B′

i = Bi ×Hi. We
have α′i = αini, and an application of (11.4) yields an X ⊂ A such that

|B′
1 + X + B′

2| = n1n2 |B1 + X + B2| ≤ (α1n1 + α2n2)
2 |X| .

If we select the ni so that α1n1 = α2n2, this gives

(11.5) |B1 + X + B2| ≤ 4α1α2 |X|
in the general case.

We can remove the factor 4 like in the previous proof. We take the 1-layered graph
built on the layers A and B1 + A + B2. We are interested in the magnification ratio µ
of this graph. We take the similar graph made from the sets Ak, Bk

i . This graph is the
same as the k-th power of the previous graph, thus its magnification ratio is µk. An
application of (11.5) gives µk ≤ 4(α1α2)

k; taking k -th roots and making k → ∞ we
obtain (11.3). ¤

We mention without proof how this result can be generalized to several summands,
with an extra condition.

Definition 11.3. A collection of sets B1, . . . , Bk in a (noncommutative) group is
exocommutative, if for all x ∈ Bi, y ∈ Bj with i 6= j we have x + y = y + x.

Theorem 11.4. Let A,B1, B2, . . . , Bk, C1, C2, . . . , Cl be sets in a (typically noncom-
mutative group) G and write |A| = m, |Bi + A| = αim, i = 1, . . . , h, |A + Cj| = βjm
j = 1, . . . , l. Assume that both B1, . . . , Bk and C1, . . . , Cl are exocommutative. Then
there is an X ⊂ A, X 6= ∅ such that

(11.6) |B1 + . . . + Bk + X + Ci + . . . + Cl| ≤ α1 . . . αkβ1 . . . βl|X|.
The moral seems to be that it is hopeless to undestand sets such that |2A| ≤ α |A| in

general groups. On the other hand, if we start with an assumption on a threefold sum,
say |A| = m, |3A| ≤ gam, then an iterated application of Theorem 8.1 gives estimates
for arbitary sum-difference combinations. For instance, putting Y = Z = −2A we get
|−2A + 2A| ≤ α2m, then with Y = Z = A− 2A and putting −A into the place of A we
get an estimate for a sixfold sumset and so on. It is the step from 2 to 3 which fails in
lack of commutativity.

Finally we add that a weaker conclusion can be drawn from the assumption |2A| ≤
αm, namely, that there is an A′ ⊂ A, |A′| > (1− ε)m such that 3A′ and hence each kA′

is small.
To this end we apply an argument like in Section 7. Theorem 11.2 above assures

the existence of a nonempty set X such that, if |L + A| ≤ αm and |A + R| ≤ βm then
|L + X + R| ≤ αβ|X|.

Choose an ε > 0, let m = |A| and define X1 = X. If |X1| > (1− ε)|A| we are done.
If this is not the case we apply Theorem 11.2 on A1 = A \X1, with this procedure we
obtain an X2 ∈ A1 with a similar property. If X1 ∪ X2 is still not large enough, we
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continue with the procedure till we get X ′ = X1 ∪ . . . ∪ Xh for some h and such that
|X ′| > (1− ε)m. To bound |L + X ′ + R| we need to estimate

|L + Ai|
|Ai|

for all 1 ≤ i ≤ h. Such a bound is α|A|/|Ah| ≤ α/ε, since |Ah| ≥ ε|A| and |L + Ai| ≤
|L + A|. Similarly

|Ai + R|
|Ai| ≤ β

ε
|A|,

for all i. Hence, by adding all the pieces Xi, we obtain

|L + A′ + R| ≤ αβ

ε2
|A′|.

We had pay an ε2 price to get |A′| > (1 − ε) |A|; this can be somewhat improved with
a more involved argument like in Section ref g.





CHAPTER 2

Structure of sets with few sums

1. Introduction

We want to describe sets that have few sums. If |A| = m, then clearly |A + A| ≥ m
in every group (with equality for cosets), which can be improved to 2m − 1 for sets of
integers (or torsionfree groups in general). What can we say if we know that |A + A| ≤
αm, where α is constant or grows slowly as n → ∞? That is, we are looking for
statements of the form

|A| = m, |A + A| ≤ αm =⇒ (. . . ).

Such a condition (. . . ) is adequate, if this implication can be reversed to some degree,
that is, there is an implication in the other direction

(. . . ) =⇒ |A + A| ≤ α′m,

with α′ = α′(α) depending only on α and not on m or other properties of the set.
Between such results we can distinguish on two grounds. First, the smaller the value

of α′, the better the description; next, subjectively, the more we learn on the structure
of the set the happier we are.

As an example consider the following implications (see chapter 1, Section 8):

|A| = m, |A + A| ≤ αm =⇒ |A− A| ≤ α2m

and
|A| = m, |A− A| ≤ αm =⇒ |A + A| ≤ α2m.

If we combine the two we get that

|A + A| ≤ αm =⇒ |A− A| ≤ α2m =⇒ |A + A| ≤ α4m, α′ = α4,

so this is an adequate description with a very good value of α′, but it tells little about
the structure of A and it is not surprising. Indeed,

a + b = c + d ⇐⇒ a− c = d− b,

so a coincidence between sums corresponds to a coincidence between differences. In
particular, this shows that |A + A| attains its maximal value m(m + 1)/2 exactly when
|A−A| attains its maximal value m(m−1)+1. (Such sets, with no nontrivial coincidence
between sums or differences, are often called Sidon sets.)

There is a similar connection between minimal values of these quantities. For sets
of integers the minimal value of both |A+A| and |A−A| is 2m−1, and equality occurs
only for arithmetic progressions.

Still, the connection here is less obvious than it looks. We illustrate this by the case
of near-maximal values. Suppose that |A + A| ≥ κm2; does it follow that |A − A| ≥
κ′m2 with some κ′ depending on κ? The answer is negative in a rather strong way:
|A + A| > m2/2 − m2−δ and |A − A| < m2−δ can happen with some constant δ > 0.
Similarly |A− A| > m2/2−m2−δ and |A + A| < m2−δ is also possible [52].

27
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A set of integers with a minimal sumset (|A + A| = 2m − 1) is necessarily an
arithmetic progression. This easy result exhibits some stability. A set with a nearly
minimal sumset is almost an arithmetic progression, as the following result shows.

Theorem 1.1 (G. Freiman[10]). If A ⊂ N, |A| = m, |A + A| ≤ 3m− 4, then A is
contained in an arithmetic progression of length ≤ |A + A| −m + 1 ≤ 2m− 3.

(Proof in the next chapter.)
Beyond 3m, however, a single arithmetic progression is insufficient, as the following

example shows. Take

A = {1, . . . , m/2} ∪ {t + 1, . . . , t + m/2},
. . . . . . . . . . . . . . . . . .

we have |A + A| = 3m − 3, and A cannot be covered by a progression shorter than
t + m/2. The reason is that this set has a hidden two-dimensional structure:

. . . . . . . . .

. . . . . . . . .

These sets are not isomorphic algebraically, but they behave analogously regarding the
coincidence of sums. To describe such sets we need multidimensional, or generalized
arithmetic progressions.

Definition 1.2. Let q1, . . . , qd and a be elements of an arbitrary commutative group,
l1, . . . , ld positive integers. A d-dimensional generalized arithmetic progression is a set
of the form

(1.1) P = P (q1, . . . ., qd; l1, . . . , ld; a) = {a + x1q1 + · · ·+ xdqd : 0 ≤ xi ≤ li}
(a projection of a cube). More exactly, we think of it as a set together with a fixed
representation in the form (1.1); this representation is in general not unique. We call d
the dimension of P , and by its size we mean the quantity

‖P‖ =
d∏

i=1

(li + 1),

which is the same as the number of elements if all sums in (1.1) are distinct. In this
case we say that P is proper.

Exercise 21. If P is a d-dimensional progression, then

|2P | < 2d |P | ≤ 2d‖P‖
.

The principal result sounds as follows.

Theorem 1.3 (G. Freiman[10]). If A ⊂ Z, |A| = n, |A + A| ≤ αn, then A is
contained in a generalized arithmetic progression of dimension ≤ d(α) and size ≤ s(α)n.

This is an adequate description with the simplest possible structure: if A ⊂ P , then

|A + A| ≤ |P + P | < 2d‖P‖ ≤ 2dsn,

α′ = 2d(α)s(α).
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More generally we have

|kA| ≤ kd‖P‖
. This shows that this dimension is closely connected with the rate of growth of |kA| as
a function of k.

For a comprehensive account of this theory up to 1996 see Nathanson’s book [33].
Three basic questions arise here:
1) to find good bounds for d(α), s(α);
2) is this the “real” form?
3) how to extend this from Z to other groups.

Bounds: due to works by the author [50, 53], Y. Bilu [2], M. C. Chang [5] we
know that d < α (best possible) and s < eαc

. It is also known that a bound for s must
be À 2α; probably the proper order is ecα.

The real form: probably a flexible form (several covering sets, projections of lattice
points in more general convex bodies) would give better bounds for α′.

Other groups. For sets situated in Zm or in general commutative torsionfree
groups verbatim the same result holds (and later we shall formulate and prove it in this
setting).

In groups with torsion a new phenomenon arises, namely any coset has |A+A| = |A|.
For groups with a strong torsion property this alone suffices to characterize sets with
small sumsets.

Recall that the exponent of a group G is the smallest positive integer r such that
rg = 0 for every g ∈ G.

Theorem 1.4. Let G be a commutative group of exponent r, A ⊂ G, |A| = m,

|A + A| ≤ αm. A is contained in a coset of a subgroup of size ≤ α2rα4
m.

We shall start (in the next section) with the proof of this theorem, which is simple
and highlights some aspects of the case of integers.

General commutative groups
In a general commutative group, a set with a small sumset can be covered by a

combination of the two mentioned structures, cosets and generalized arithmetic pro-
gressions.

Theorem 1.5 (Green-Ruzsa [16]). Let G be a commutative group, A ⊂ G, |A| = m,
|A+A| ≤ αm. A is contained in a set of the form H +P , where H is a subgroup, P is a
generalized arithmetic progression, the dimension of P is ≤ d(α) and |H||P | ≤ s(α)m.

For the quantities we have the following bounds: d(α) ¿ αc, s(α) ¿ eαc
.

Noncommutative groups.

For general groups, I do not even have a decent conjecture. There is a structure
theorem for SL2(R) (Elekes-Király[6]). Roughly speaking, it asserts that a set with a
small sumset is contained in a few cosets of a commutative subgroup, and within a coset
we have a generalized arithmetic progression structure.
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2. Torsion groups

In this section we prove Theorem 1.4, in a superficially more general form.

Theorem 2.1. Let r ≥ 2 be an integer, and let G be a commutative group of
exponent r. Let A ⊂ G be a finite set, |A| = m. If there is another set A′ ⊂ G such
that |A′| = m and |A + A′| ≤ αm (in particular, if |A + A| ≤ αm or |A − A| ≤ αm),
then A is contained in a subgroup H of G such that

|H| ≤ f(r, α)m,

where
f(r, α) = α2rα4

.

Proof. Let b1, b2, . . . , bk be a maximal collection of elements such that bi ∈ 2A−A
and the sets bi − A are all disjoint. We have

bi − A ⊂ 2A− 2A,

hence ∣∣∣
⋃

(bi − A)
∣∣∣ = km ≤ |2A− 2A| ≤ α4m

(the last inequality follows from Theorem 1.1 of Chapter 1). This implies k ≤ α4 .
Take an arbitrary x ∈ 2A − A. Since the collection b1, . . . , bk was maximal, there

must be an i such that
(x− A) ∩ (bi − A) 6= ∅,

that is, x− a1 = bi − a2 with some a1, a2 ∈ A, which means

x = bi + a1 − a2 ∈ bi + (A− A).

Hence

(2.1) 2A− A ⊂
⋃(

bi + (A− A)
)

= B + A− A,

where B = {b1, . . . , bk} .
Now we prove

(2.2) jA− A ⊂ (j − 1)B + A− A (j ≥ 2)

by induction on j. By (2.1) , this holds for j = 2. Now we have

(j + 1)A− A = (2A− A) + (j − 1)A

⊂ B + A− A + (j − 1)A by (2.1)

= B + (jA− A)

⊂ B + (j − 1)B + A− A

= jB + A− A,

which provides the inductive step.
Let H and I be the subgroups generated by A and B, respectively. By (2.2) we have

(2.3) jA− A ⊂ I + (A− A)

for every j. We have also

(2.4)
⋃

(jA− A) = H,
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which easily follows from the fact that the order of the elements of G is bounded. (2.3)
and (2.4) imply that

H ⊂ I + (A− A).

Since I is generated by k elements of order ≤ r each, we have

|I| ≤ rk ≤ rα4

,

consequently

|H| ≤ |I||A− A| ≤ α2rα4

m

(the estimate for |A− A| follows again from Theorem 1.1, Ch. 1). ¤

Remark. Take a group of the form G = Zn
r , where Zr is a cyclic group of order r,

and a set A ⊂ G of the form

A = (a1 + G′) ∪ · · · ∪ (ak + G′)

with a subgroup G′, where the cosets are all disjoint. Here |A| = m = k|G′|, and if all
the sums ai + aj lie in different cosets of G′, then

|A + A| = k(k + 1)

2
|G′| = αm, α =

k + 1

2
.

The subgroup generated by A can have as many as rk|G′| elements, hence our function

f(r, α) = α2rα4

cannot be replaced by anything smaller than

rk = r2α−1.

By recent improvements of the above argument by Green-Ruzsa and then Sanders, the
above bound is now almost achieved.

The following conjecture of Katalin Marton would yield a more efficient covering in
a slightly different form.

Conjecture 2.2. If |A| = n, |A + A| ≤ αn, then there is a subgroup H of G such
that |H| ≤ n and A is contained in the union of αc cosets of H, where the constant c
may depend on r but not on n or α.

In the most optimistic form c would be 1 + o(1)..
This is equivalent to the following problem, which I think is interesting in its own

right.

Conjecture 2.3 (Equivalent conjecture.). Let G be as above, f : G → G a function
such that f(x + y) − f(x) − f(y) assumes at most α distinct values. Then f has a
decomposition f = g + h, where g is a homomorphism and h assumes ≤ αc values.

The equivalence is meant in a loose sense, the values of c need not be the same.
(The proof of this equivalence is unpublished.)
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3. Freiman isomorphism and small models

Definition 3.1. Let G1, G2 be commutative groups, A1 ⊂ G1, A2 ⊂ G2. We say
that a mapping ϕ : A1 → A2 is a homomorphism of order r in the sense of Freiman, or
an Fr-homomorphism for short, if for every x1, . . . , xr, y1, . . . , yr ∈ A1 (not necessarily
distinct) the equation

(3.1) x1 + x2 + · · ·+ xr = y1 + y2 + · · ·+ yr

implies

(3.2) ϕ(x1) + ϕ(x2) + · · ·+ ϕ(xr) = ϕ(y1) + ϕ(y2) + · · ·+ ϕ(yr).

We call ϕ an Fr-isomorphism, if it is (1-1) and its inverse is a homomorphism as well,
that is, (3.2) holds if and only if (3.1) does. If we say Freiman-homomorphism or
isomorphism without specifying r, then the first nontrivial case r = 2 is meant.

Any affine linear function is an Fr-isomorphism for every r, and the nondegenerate
ones are Fr-isomorphisms.

Prexercise. If one of two F -isomorphic sets contains an l-term arithmetic pro-
gression, then so does the other.

Prexercise. If A and B are Fr-isomorphic with r = q(k + l), then kA − lA and
kB − lB are Fq-isomorphic.

Prexercise. The F -homomorphic image of a d-dimensional arithmetic progression
is also a d-dimensional arithmetic progression with the same “lengths” l1, .., ld.

A Freiman isomorphism preserves additive properties up to a point. We show that
being a generalized arithmetic progression is such a property.

Lemma 3.2. Let G, G′ be commutative groups. If a set P ′ ⊂ G′ is the homomorphic
image of a generalized arithmetical progression P (q1, . . . , qd; l1, . . . , ld; a) ⊂ G, then there
are elements q′1, . . . , q

′
d, a

′ ∈ G′ such that

(3.3) P ′ = P (q′1, . . . , q
′
d; l1, . . . , ld; a

′)

and the homomorphism is given by

(3.4) φ(a + x1q1 + · · ·+ xdqd) = a′ + x1q
′
1 + · · ·+ xdq

′
d.

Proof. Define a′ and q′i by

a′ = φ(a), q′i = φ(a + qi)− φ(a).

We prove (3.4) by induction on r = x1 + · · · + xd. For r ≤ 1 it is an immediate
consequence of the definition. Assume that r ≥ 2 and the statement holds for every
smaller value. Consider an element

x = x1q1 + · · ·+ xdqd, x1 + · · ·+ xd = r.

Since r ≥ 2, either there are subscripts i 6= j such that xi ≥ 1 and xj ≥ 1, or there is a
subscript for which xi ≥ 2. In the second case write j = i. In both cases the sums

y = x− xi, z = x− xj, u = x− xi − xj

are in P , their sums of coefficients are at most r − 1 and they satisfy x + u = y + z.
This implies φ(x)+φ(u) = φ(y)+φ(z), that is, φ(x) = φ(y)+φ(z)−φ(u). Substituting
(3.4) for y, z and u into this equation we conclude that (3.4) holds for x as well, which
completes the inductive step. ¤
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Lemma 3.3. Let G, G′ be commutative groups, and let A ⊂ G, A′ ⊂ G′ be Fr-
isomorphic sets. Assume that r = r′(k + l) with nonnegative integers r′, k, l. The sets
kA− lA and kA′ − lA′ are Fr′-isomorphic.

Proof. Let φ be the isomorphism between A and A′. For an

x ∈ kA− lA, x = a1 + · · ·+ ak − b1 − · · · − bl

we define naturally

ψ(x) = φ(a1) + · · ·+ φ(ak)− φ(b1)− · · · − φ(bl).

The facts that this depends only on x and not on the particular representation, and
that ψ is an Fr′-isomorphism, follow immediately from the definition. ¤

With this concept we can formulate principle (iii) from the Introduction of Chapter
1 exactly.

Lemma 3.4. Let A be a finite set in a torsionfree commutative group, and let r be
any positive integer. There is a set A′ ⊂ Z which is Fr-isomorphic to A.

The proof, as also outlined there, consists of first applying the structure theorem of
finitely generated torsionfree groups to reduce the general case to sets lying in Zd, and
then a suitable projection to go to Z.

We define the Freiman dimension of a set A ⊂ Rk as the largest d for which there
is an isomorphic properly d-dimensional set.

Exercise 22. For a set A ⊂ Zd the following are equivalent:
a) its Freiman dimension is d,
b) every Freiman homomorphism from A to any Rk is affine linear.

The first step towards finding the structure of a set will be to find a Freiman-
isomorphic image, or “model”, which is comfortably sitting in a small group or interval.

Theorem 3.5. Let A be a finite set in a torsionfree commutative group, |A| = m,
r ≥ 2 an integer and |rA− rA| = n.
(a) For every q ≥ n there exists a set A′ ⊂ A, |A′| ≥ m/r which is Fr-isomorphic to a
set T ′ of residues modulo q.
(b) There is a set A∗ ⊂ A, |A∗| ≥ m/r2 which is Fr-isomorphic to a set T ∗ of integers,

T ∗ ⊂ [0, n/r].

Proof. In view of the previous lemma we may assume that A ⊂ Z.
The isomorphism in (a) will be given by a function

ϕ(a) = [ξa] (mod q)

for a suitably chosen real number ξ ∈ [0, q], and the set A′ will be one of the r sets

Aj =

{
a ∈ A :

j − 1

r
≤ {ξa} <

j

r

}
, j = 1, . . . , r.

We claim that for a suitable choice of ξ the restriction of ϕ is an isomorphism on each
set Aj; clearly at least one of them will have ≥ m/r elements.

This isomorphism means that for arbitrary a1, . . . , ar, b1, . . . , br ∈ Aj the congruence

(3.5) [ξa1] + · · ·+ [ξar] ≡ [ξb1] + · · ·+ [ξbr] (mod q)
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should be equivalent to the equality

a1 + · · ·+ ar = b1 + · · ·+ br.

First we show that this equality implies

[ξa1] + · · ·+ [ξar] = [ξb1] + · · ·+ [ξbr],

and a fortiori the congruence (3.5) for every ξ. Indeed,

(3.6)
∑(

[ξai]− [ξbi]
)

= ξ
∑

(ai − bi)−
∑({ξai} − {ξbi}

)
.

If all the fractional parts are in an interval [u, u + 1/r), then the absolute value of the
last sum is < 1. The left side, as an integer with absolute value < 1, must be 0.

Assume now congruence (3.5). The left side of (3.6) is a multiple of q, and the right
side is of the form ξt + δ, where t ∈ rA− rA and |δ| < 1. We want to infer t = 0, that
is, we try to exclude all possible equalities of the type kq = ξt + δ, or

ξ =
kq − δ

t
wit For a given value of t this is a collection of t + 1 intervals of total length 2. If the
union of these systems of intervals does not cover [0, q], we can find a ξ which is not
contained in any of them. The number of values of t that we have to take into account
is (n − 1)/2, since t and −t induce the same collection of excluded intervals. Hence a
sufficient condition is 2(n− 1)/2 < q, or q ≥ n.

To prove part (b), we combine this map ϕ with ψ : Zq → Z, where ψ is the smallest
nonnegative representation of a residue class. We split the integers of the interval
[0, q − 1] into r almost equal subintervals of type [(i− 1)q/r, iq/r), i = 1, . . . , r. The r-
fold sums from a fixed interval lie in an interval of length < q, thus they are incongruent
modulo q unless they are equal. This division splits A′ into r parts, and any can serve
as A∗. In this way we can achieve

|A∗| ≥ |A′|/r ≥ m/r2.

The isomorphic image of A∗ lies in an interval of type [(i−1)q/r, iq/r), and a shift takes
it into [0, q/r]. For q we take the smallest guaranteed value q = n. ¤

Exercise 23. Let p be a prime, A ⊂ Zp, |A| = n, k a positive integer. If p > kn,
then there is a t ∈ Zp, t 6= 0 such that ||at/p|| ≤ 1/k for all a ∈ A.

Exercise 24. Let A ⊂ N, |A| = n. Prove that there is a Freiman isomorphic set
contained in [0, 4n].

Exercise 25. Show that the bound in the previous exercise cannot be improved
below 2n−2.

4. Elements of Fourier analysis on groups

In this section we collect some basic facts about the Fourier transform which will be
used in the next section. Detailed proofs are not given; instead the main statements are
split into several exercises, which even the uniniatiated reader may try to solve. It is
not necessary to solve these exercises to understand the next section; the prerequisites
are here in the form of definitions and statements, but it certainly helps.

A group will mean a commutative group; a character is a homomorphism γ : G →
C1, where C1 = {z : |z| = 1} (with multiplication). So if the operation in G is
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denoted additively, then γ(x+ y) = γ(x)γ(y). The characters of G form a group (under
pointwise multiplication). We write mostly Γ to denote this group. Its unity is γ0 ≡ 1,

the principal character. We write γ̄(g) = γ(g); it is the inverse, and at the same time
the pointwise complex conjugate of γ.

Characters of a cyclic group Zq are simple. Indeed, if γ is a character and γ(1) = ω,
then γ(n) = ωn. Since γ(q) = γ(0) = 1, we see that ω must be a q-th root of unity, say
ω = e2πik/q with some k, consequently

γ(n) = e2πikn/q.

If we restrict our attention to cyclic groups, which is the most important object for
the sequel, then we could just use the above functions and not even mention the word
“character”. I think, however, that this is the natural way of presentation (some reasons
are given later).

The above formula shows that Zq has exactly q characters, moreover they also form
a cyclic group of order q. This is not so obvious for other groups.

We write G1 < G to denote that G1 is a subgroup of G.

Exercise 26. Let G1 < G, g ∈ G\G1, γ a character of G1. γ can be extended to a
character of the group G2 generated by G1 ∪ {g}.

Exercise 27. This γ above can be extended to a character of G. Consequently, for
any g ∈ G, g 6= e (e =unity) there is a character γ with γ(g) 6= 1 (in other words, the
charaters separate G).

Exercise 28. The only important property of C1 in the above exercises is that it
is divisible. A group G is divisible if for every g ∈ G and positive integer k there is an
h ∈ G such that hk = g. (We use multiplicative notation here for compatibility with
C1.) Show that the previous exercises hold with the set of homomorphisms to any fixed
divisible group in the place of C1.

Exercise 29. Extend the previous three exercises to infinite groups.

Exercise 30.
∑

g∈G γ(g) = 0 unless γ = γ0 ≡ 1. Hint: compare it to
∑

g∈G γ(ag).

Exercise 31.
∑

γ∈Γ γ(g) = 0 unless g = 0.

Exercise 32. |Γ| = |G|. Hint: consider
∑

g∈G

∑
γ∈Γ γ(g).

Exercise 33. For a g ∈ G, we define a character g∗ of Γ by g∗(γ) = γ(g). The

mapping g → g∗ embeds G into Γ̂, the group of characters of Γ. Show that this is an
isomorphism.

Exercise 34. The previous exercise fails for infinite groups. In fact, it is wrong for
each infinite group.

Exercise 35. If G = G1 ×G2, then Γ is isomorphic to Γ1 × Γ2.

Exercise 36. For finite groups, Γ is isomorphic to G.

Exercise 37. The previous exercise also provides a direct access exercises 32 and
33. It is of limited value, since this isomorphy is not natural: we cannot find a way
to define a 1–1 correspondence between G and Γ. Try to formulate this observation
exactly and then prove it.
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Exercise 38. For functions α, β : G → C we define a direct product by

(α, β) = |G|−1
∑
g∈G

α(g) ˜β(g).

This turns Γ into an orthonormal system: for γ, γ′ ∈ Γ we have (γ, γ′) = 0 if γ 6= γ′,
=1 if γ = γ′.

Exercise 39. Every funtion α on G has a development into a character series
α =

∑
γ∈Γ cγγ. Express the coefficients cγ. Find the development of the indicator

function of an element.

Definition 4.1. Let ϕ : G → C be a function on the group G. Its Fourier transform
is the function f : Γ → C defined by

f(γ) =
∑
g∈G

ϕ(g)γ(g).

The Fourier transform is often denoted by f = ϕ̂

For a cyclic group G = Zq the characters are the functions

γk(n) = e2πik/n, k = 0, 1, . . . , q − 1.

Consequently the Fourier transform of a function ϕ is given by

f(γk) =
∑

n

e2πikn/qϕ(n).

If we identify this character γk with its subscript k ∈ Zq, we can also say that the
Fourier transform is

f(k) =
∑

n

e2πikn/qϕ(n),

which is frequently done when no other group is used. In this booklet we will distinguish
G and Γ, elements and characters, for methodological reasons.

Given the Fourier transform of a function, we can reconstruct the function from it
as follows.

Statement 4.2 (Fourier inversion formula.). Let ϕ be a function on G and f = ϕ̂
its Fourier transform. We have

ϕ(x) =
1

|G|
∑
γ∈Γ

f(γ)γ(x).

Exercise 40. Prove the inversion formula. (Is this a new exercise or an old one?)

Exercise 41. How does the inversion formula look for the group Zq?

Another important fact is the analog of the Parseval (or Plancherel) identity.

Statement 4.3 (Parseval formula.). Let ϕ be a function on G and f = ϕ̂ its Fourier
transform. We have ∑

γ∈Γ

|f(γ)|2 = |G|
∑
x∈G

|ϕ(x)|2 .

Exercise 42. Prove the Parseval formula.



4. ELEMENTS OF FOURIER ANALYSIS ON GROUPS 37

Exercise 43. Let ϕ1, ϕ2 be functions on G, with Fourier transforms f1, f2. What
is the connection between the direct products (ϕ1, ϕ2) and (f1, f2)?

The case of 0-1 valued functions is of special imporance for us. Let A ⊂ G be any
set, and consider its indicator function

ϕ(x) =

{
1, if x ∈ A,

0, if x /∈ A.

Its Fourier transform is

(4.1) f(γ) =
∑
a∈A

γ(a).

With an abuse of terminology we shall call this the Fourier transform of the set A and
denote it by Â(γ).

Exercise 44. What does the Parseval formula tell for the Fourier transform of a
set?

Exercise 45. What does the inversion formula tell for the Fourier transform of a
set?

Exercise 46. If the Fourier transform of a set A is f , what is the transform of the
set −A?

Let now A1, A2 be sets in G with Fourier transforms f1, f2. By using the definition
(4.1) and multiplying we obtain

f1(γ)f2(γ) =
∑
x∈G

r(x),

where
r(x) = |{(a1, a2) : ai ∈ Ai, a1 + a2 = x}| ,

the number of representations of x as a sum with summands from our sets. The inversion
formula now gives

r(x) =
1

|G|
∑
γ∈Γ

f1(γ)f2(γ)γ(x),

and in principle this gives a complete description of the sumset. This is the basis
of the usage of analytic methods in additive number theory (under various names, like
generating functions, circle method, Hardy-Littlewood method, depending on particular
appearances).

Exercise 47. If the Fourier transform of a set A is f , whose transform is |f |2?
For the next exercises let A be a set of integers, |A| = n and

Â(t) =
∑
a∈A

e2πiat, t ∈ R.

Exercise 48. What is the connection between this function Â of a real variable for
A ⊂ Z and the function Â(γ) for A ⊂ Zq?

Exercise 49. What is the arithmetical meaning of the integral
∫ 1

0
|Â(t)|4dt? What

is its minimal value?
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Exercise 50. What is the maximal value of the integral in the previous exercise,
and for which sets does it occur?

Exercise 51. How can one express the number of three-term arithmetical progres-
sions in A (that is, the number of pairs a, d such that a, a + d, a + 2d ∈ A) by the

function Â?

Exercise 52. And what happens if we count only those where d > 0?

5. Bohr sets in sumsets

Definition 5.1. If G is a commutative group, γ1, . . . , γk are characters of G and
εj > 0, we write

B(γ1, . . . , γk; ε1, . . . , εk) = {g ∈ G : | arg γj(g)| ≤ 2πεj for j = 1, . . . , k}
and call these sets Bohr sets. In particular, if ε1 = · · · = εk = ε, we shall speak of a
Bohr (k, ε)-set. (We take the branch of arg that lies in [−π, π).)

In locally compact groups these sets form a base for the Bohr topology; we shall
work with finite groups, but we preserve the name that suggests certain ideas.

We shall work mainly with the simplest possible cyclic groups Zq. Here a typical
character is of the form

γ(x) = e2πiux/q, u ∈ Zq,

so arg γ(x) = 2π‖ux/q‖, where ‖t‖ = min({t}, 1 − {t}) denotes the absolute fractional
part of t, its distance from the nearest integer. In these formulas we were tacitly
cheating a bit; for u, x ∈ Zq we replaced them by any integer in the corresponding
residue class, and though ux/q can have many different values, it is unique modulo one,
so the fractional part and the exponential are uniquely determined.

Hence a Bohr set in Zq can be written as

B(u1, . . . , uk; ε1, . . . , εk) = {x ∈ Zq : ‖ujx/q‖ ≤ εj for j = 1, . . . , k}.
We shall see in the next section that Bohr sets are rather similar to multidimensional

arithmetic progressions.

Lemma 5.2. Let G be a finite commutative group, |G| = q. Let A be a nonempty
subset of G and write |A| = m = βq. The set D = 2A − 2A (the second difference set
of A) contains a Bohr (k, ε)-set with some integer k < β−2 and ε = 1/4.

This is essentially a result of Bogolyubov [3] which he used to study the Bohr
topology on the integers.

Proof. Let Γ denote the group of characters. For γ ∈ Γ put

f(γ) =
∑
a∈A

γ(a).

We have ∑
γ∈Γ

|f(γ)|2 = mq = βq2

(Parseval formula) and f(γ0) = m for the principal character γ0(≡ 1).
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Recall that f(γ) is the series corresponding to the set −A. Multiplying two copies
of f and two copies of f we find that

|f(γ)|4 =
∑

r(x)γ(x),

where r(x) counts the quadruples a1, a2, a3, a4 ∈ A such that a1 + a2 − a3 − a4 = x. A
Fourier inversion now gives

r(x) =
1

q

∑
γ∈Γ

|f(γ)|4γ(x).

Therefore we have x ∈ D for those elements x for which

(5.1)
∑
γ∈Γ

|f(γ)|4γ(x) 6= 0.

To estimate (5.1), we split the characters γ 6= γ0 into two groups. We put those
for which |f(γ)| ≥ √

βq into Γ1 and the rest into Γ2. We claim that x ∈ D whenever
Re γ(x) ≥ 0 is satisfied for all γ ∈ Γ1. Indeed, we have

∣∣∣∣∣
∑
γ∈Γ2

|f(γ)|4γ(x)

∣∣∣∣∣ < βq2
∑
γ∈Γ2

|f(γ)|2 < β2m2q2 = m4,

consequently

Re
∑
γ∈Γ

|f(γ)|4γ(x) ≥ m4 + Re
∑
γ∈Γ2

|f(γ)|4γ(x) ≥ m4 −
∣∣∣∣∣
∑
γ∈Γ2

|f(γ)|4γ(x)

∣∣∣∣∣ > 0.

The condition Re γ(x) ≥ 0 is equivalent to | arg γ(g)| ≤ π/2, thus we have a Bohr
(k, 1/4) set with k = |Γ1|. We estimate k. We have

kβm2 ≤
∑
γ∈Γ1

|f(γ)|2 <
∑
γ∈Γ

|f(γ)|2 = βq2,

hence k ≤ (q/m)2 = β−2 as claimed. ¤
This theorem used four copies of the set A. A similar result as Theorem 5.2 holds

for 3 sets, even for different ones.

Theorem 5.3. If A1, A2, A3 are subsets of G, a commutative group with |G| = q
and |Ai| ≥ βiq then, for some t, A1 + A2 + A3 ⊃ t + B(γ1, . . . , γk, η), where k and η
depend only on the densities βi.

The corresponding result for two copies does not hold, not even for the difference
set A − A. The reason for this is the following. A Bohr set always contains a long
arithmetic progression. This will be proved in a stronger form in the next section.

Prexercise. A Bohr (k, ε) set in Zq contains an arithmetical progression of length
nδ, where δ > 0 depends on k and ε.

However, the set A − A may not contain an arithmetic progression of length qδ,
with δ = δ(β), assuming |A| ≥ βn. The maximal length of the arithmetic progression

may be < elog q2/3+ε
. On the other hand it is known that it is À elog q1/2−ε

( Green and
Bourgain).
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6. Some facts from the geometry of numbers

We consider sets situated in an Euclidean space Rd.

Definition 6.1. A set L ⊂ Rd is a lattice, if it is a discrete subgroup and it is not
contained in any smaller dimensional subspace.

Any such lattice is necessarily isomorphic to Zd, that is, there are linearly indepen-
dent vectors e1, . . . , ed ∈ Rd such that

L = {x1e1 + · · ·+ xded : xi ∈ Z}.
Definition 6.2. A set F ⊂ Rd is a fundamental domain of this lattice if the

sets F + x, x ∈ L cover Rd without overlap (one representant from each coset of L).
(Sometimes overlaps of boundaries is permitted.)

An example is

F = {x1e1 + · · ·+ xded : 0 ≤ xi < 1}.
Exercise 53. Prove that measurable fundamental domains all have the same vol-

ume.

On the example of the domain above one can see that this is the absolute value of
the determinant formed by the vectors ei, which is hence independent of the choice of
the basis (ei).

Definition 6.3. The common value of volumes of fundamental domains and abso-
lute value of determinants of matrices formed by integral bases is called the determinant
of the lattice.

Exercise 54. If L ⊂ Zd is a lattice, its determinant is the same as its index in Zd

as a subgroup.

Definition 6.4. Let Q be a closed neighbourhood of 0, and let L be a lattice in Rd.
The successive minima of Q with respect to the lattice are the smallest positive numbers
0 < λ1 ≤ · · · ≤ λd such that there are linearly independent vectors a1, . . . , ad ∈ L,
ai ∈ λiQ.

Imagine this as follows. Take a small homothetic image εQ and blow it up slowly.
First the only lattice point inside is the origin, then at λ1 another appears. As we
increase λ, it may happen that the next lattice points are multiples of a1, like 2a1 at
2λ1, but at some point λ2 we get another, which is not a multiple of the first and so on.

Exercise 55. Show that the first appearing vectors ai may not form a basis of L.

We will need the following important theorem of Minkowski.

Lemma 6.5 (Minkowski’s inequality for successive minima.). Let Q be a closed neigh-
bourhood of 0, and let L be a lattice in Rd. Let 0 < λ1 ≤ · · · ≤ λd be the successive
minima of Q with respect to L. We have

(6.1) λ1 . . . λd ≤ 2d det L

vol Q
.
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7. A generalized arithmetical progression in a Bohr set

We show that Bohr sets contain large generalized arithmetical progressions. We will
do this for cyclic groups only; for general groups see Green and Ruzsa [. . . ]

Theorem 7.1. Let q be a positive integer, u1, . . . , ud residues modulo q such that
(u1, u2, . . . , ud, q) = 1, ε1, . . . , εd real numbers satisfying 0 < εj < 1/2. Write

(7.1) δ =
ε1 . . . εd

dd
.

There are residues v1, . . . , vd and nonnegative integers l1, . . . , ld such that the set

(7.2) P = {v1x1 + . . . vdxd : |xi| ≤ li}
satisfies

(7.3) P ⊂ B(u1, . . . , ud; ε1, . . . , εd),

the sums in (7.2) are all distinct and

(7.4) |P | = ‖P‖ =
∏

(2lj + 1) ≥
∏

(lj + 1) > δq.

Proof. Let L be the d dimensional lattice of integer vectors (x1, . . . , xd) satisfying

x1 ≡ xu1, . . . , xd ≡ xud (mod q)

with some integer x. This lattice is the union of q translations of the lattice (qZ)d

(here we need the coprimality condition, otherwise there may be coincidences), hence
its determinant is qd−1.

Let Q be the rectangle determined by |xj| ≤ εj, j = 1, . . . , d and let λ1, . . . , λd denote
the successive minima of Q with respect to the lattice L. These are the smallest positive
numbers such that there are linearly independent vectors a1, . . . , ad ∈ L, ai ∈ λiQ. By
Minkowski’s inequality (6.1) we have

(7.5) λ1 . . . λd ≤ 2d det L

vol Q
=

qd−1

ε1 . . . εd

.

Write

ai = (ai1, . . . , aid).

The condition ai ∈ λiQ means that |aij| ≤ λiεj. Since ai ∈ L, there are residues vi such
that aij ≡ viuj (mod q). These are our vj’s and we put

li =

[
q

dλi

]
.

First we show that P ⊂ B. Consider an x ∈ P , x = x1v1 + · · ·+ xdvd. We have

xuj =
∑

xiviuj ≡
∑

xiaij (mod q),

consequently
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∥∥∥∥
xuj

q

∥∥∥∥ =

∥∥∥∥
∑ xiaij

q

∥∥∥∥

≤
∑∣∣∣∣

xiaij

q

∣∣∣∣(7.6)

≤
∑ liλiεj

q
≤

∑ εj

d
= εj.

Next we show that these elements are all distinct. If x1, . . . , xd and y1, . . . , yd give
the same sum, then with zj = xj − yj we have

∑
zivi ≡ 0 (mod q), |zi| ≤ 2li.

Multiplying this congruence by uj we infer that
∑

ziaij ≡ 0 (mod q)

for all j. Moreover a calculation like above yields∣∣∣
∑

ziaij

∣∣∣ ≤
∑

liλiεj ≤ 2εjq < q.

Consequently
∑

ziaij = 0 for every j, which means that
∑

ziai = 0; by view of the
linear independence of the vectors ai, zi = 0 for all i, q. e. d.

Finally we prove (7.4). We have

li + 1 >
q

dλi

,

hence ∏
(li + 1) >

qd

ddλ1 . . . λd

≥ q

dd
ε1 . . . εd = δq

by (7.5). ¤
It is easy to see that the result need not hold if (u1, . . . , ud, q) > 1; consider, for

instance, the case q = r2, d = 1, u1 = r. It can be shown that a d + 1 dimensional
arithmetical progression can always be found in B.

Lemma 7.2. Let q be a prime, and let A be a nonempty set of residues modulo q with
|A| = βq. There are residues v1, . . . , vd and nonnegative integers l1, . . . , ld such that the
set

(7.7) P = {v1x1 + . . . vdxd : |xi| ≤ li}
satisfies P ⊂ D = 2A− 2A, the sums in (7.7) are all distinct and

(7.8) ‖P‖ =
∏

(2lj + 1) ≥
∏

(lj + 1) > δq.

where d ≤ β−2 and

(7.9) δ = (4d)−d ≤ (β2/4)1/β2

.

Proof. This follows from a combination of Lemma 5.2 and Theorem 7.1. The
assumption that q is a prime guarantees the coprimality assumption required in Theorem
3.1. ¤
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8. Freiman’s theorem

We prove Freiman’s Theorem 1.3 in the following form.

Theorem 8.1. Let A,B be finite sets in a torsionfree commutative group satisfying
|A| = |B| = m, |A + B| ≤ αm. There are numbers d, s depending on α only such that
A is contained in a generalized arithmetical progression of dimension at most d and size
at most sm.

Since a bound on A + B immediately gives a bound on 2A, the generalization to
different sets is not important as long as we do not give bounds for d and s. Given
a set in a torsionfree group we can find Freiman-isomorphic sets in Z, however, it is
not completely obvious (though not very difficult) to deduce the existence of a covering
progression from that of an isomorphic image. The form above is just the natural one
in our treatment.

Proof. We apply Theorem 3.5 for r = 8 and a prime number q > |rA − rA|. By
Chebyshev’s theorem we can find such a prime with

q < 2|rA− rA| ≤ 2α16m;

the second inequality follows from Theorem 1.1 of Chapter 1. We obtain a set A′ ⊂ A,
which is F8-isomorphic to a set T of residues modulo q, |A′| ≥ m/r = m/8.

Applying Lemma 7.2 we find a d′ dimensional proper arithmetical progression P ⊂
2T − 2T of size ≥ δm, where d′ = d′(α) and δ = δ(α) > 0 depend on α only.

By Lemma 3.3 the F8-isomorphism between T and A′ induces an F2-isomorphism be-
tween 2T−2T and 2A′−2A′. The image P ′ of P is a proper d′-dimensional arithmetical
progression by Lemma 3.2 and we have P ′ ⊂ 2A′ − 2A′ ⊂ 2A− 2A.

Select a maximal collection of elements a1, . . . , at ∈ A such that the sets P ′ + ai are
pairwise disjoint. We estimate t. Since these sets are all subsets of A + P ′ ⊂ 3A− 2A,
we have

t ≤ |3A− 2A|
‖P ′‖ ≤ α5m

δm
= α5/δ(α).

For every a ∈ A there is an ai such that

(a + P ′) ∩ (ai + P ′) 6= ∅.
Thus there are p, p′ ∈ P ′ such that a + p = ai + p′, that is, a = ai + p′ − p. This means
that

(8.1) A ⊂ {a1, . . . , at}+ P ′ − P ′.

Since P ′ is a d-dimensional arithmetical progression, so is P ′ − P ′, and obviously

‖P ′ − P ′‖ ≤ 2d‖P ′‖ ≤ 2d|2A− 2A| ≤ 2dα4m.

The set {a1, . . . , at} can be covered by the t-dimensional arithmetical progression

P (a1, . . . , at; 1, . . . , 1; 0).

Hence the right side of (8.1) can be covered by an arithmetical progression of dimension
d = d′ + t and size sm, s = 2dα4. Since both t and d were bounded in terms of α, the
proof is completed. ¤
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9. Arithmetic progressions in sets with small sumset

We show that sets with small sumset contain long arithmetic progressions. This
will be a (necessarily) conditional result, depending on our knowledge of arithmetic
progressions in dense sets. The first such result is again due to Freiman [10, Theorem
2.30]. He considered three-term progressions only, since Szemerédi’s theorem on long
progressions was not yet available.

Let rk(n) denote the maximal number of integers that can be selected from the
interval [1, n] without including a k term arithmetical progression and write

ωk(n) = n/rk(n).

Szemerédi’s celebrated theorem [59] tells us that ωk(n) → ∞ for every fixed k. The
best known estimates are due to Gowers [13, 14] for general k, and to Bourgain [4] for
k = 3.

Theorem 9.1. Assume that |A| = n and A does not contain any k-term arithmetical
progression. We have

(9.1) |A + A− A− A| ≥ 1

4
ωk(n)n,

(9.2) |A + B| ≥ 1√
2
ωk(n)1/4n1/4|B|3/4

for every set B,

(9.3) |A + B| ≥ 1√
2
ωk(n)1/4n

for every set B such that |B| = n,

(9.4) |A + A| ≥ 1√
2
ωk(n)1/4n,

(9.5) |A− A| ≥ 1√
2
ωk(n)1/4n.

By Bourgain’s result we have ω3(n) À (log n)1/2−ε. Applying this estimate we obtain
the following version of Freiman’s theorem.

Corollary 9.2. Assume that |A| = n and A does not contain any 3-term arith-
metical progression. For every constant c < 1/8 and n > n0(c) we have

(9.6) |A + B| ≥ 1

2
n(log n)c

for every set B such that |B| = n, in particular

(9.7) |A + A| ≥ 1

2
n(log n)c,

(9.8) |A− A| ≥ 1

2
n(log n)c.

Problem 9.3. Can the exponent 1/4 in (9.4)- (9.5) be improved to 1 or at least to
1− ε?



9. ARITHMETIC PROGRESSIONS IN SETS WITH SMALL SUMSET 45

Proof. Write |A| = n and |2A−2A| = βn. We apply the case r = 2 of Theorem 3.5,
part (b). We get a set A∗ ⊂ A, |A∗| ≥ n/4 which is isomorphic to a set T ⊂ [0, βn/2].
By Lemma 3.2 T contains no k-term arithmetical progression.

Since in an interval of length n there can be at most rk(n) integers without k-term
arithmetical progression and the interval [0, βn/2] can be covered by [1 + β/2] such
intervals, we have

n/4 ≤ |T | ≤ [1 + β/2]rk(n) ≤ βrk(n),

therefore

β ≥ 1

4

n

rk(n)
,

which is equivalent to (9.1).
To obtain (9.2) we apply Theorem 1.1, Ch. 1 and (9.1):

|A + B| ≥ |B|3/4|2A− 2A|1/4 ≥ 1√
2
|B|3/4ωk(n)1/4n1/4.

(9.3) is the case |B| = n of (9.2), while (9.4)- (9.5) are the cases B = A and B = −A
of (9.3).

¤





CHAPTER 3

Location and sumsets

1. Introduction

This chapter is about questions of the following kind. Assume we have finite sets
A,B in a group G. What can we say about A + B if we know the structure of G, or we
have some information about how these sets are situated within G? The “what” will
be in most cases a lower estimate for the cardinality.

A familiar example is the classical Cauchy-Davenport inequality.

Theorem 1.1. Let p be a prime, A,B ⊂ Zp nonempty sets. We have

|A + B| ≥ min(|A|+ |B| − 1, p).

Prexercise. Prove the Cauchy-Davenport inequality by comparing |A + B| and
|A′ + B′| for suitably chosen sets of the form

A′ = A ∪ (B + t), B′ = B ∩ (A− t).

For another example consider Freiman’s Theorem 1.1 from Chapter 2: If A ⊂ Z,
|A| = m, |A + A| ≤ 3m− 4, then A is contained in an arithmetic progression of length
≤ |A + A| −m + 1 ≤ 2m− 3.

Definition 1.2. The reduced diameter diam A of a set A ⊂ Z is the smallest u such
that A is contained in an arithmetic progression {b, b + q, . . . , b + uq}. (Later we shall
generalize and rename this concept.)

Now we can formulate Freiman’s theorem equivalently as follows.

Theorem 1.3. For any set A ⊂ Z with |A| = m and diam A = u we have

|2A| ≥ min(m + u, 3m− 3).

This illustrates that the distinction between “direct” and “inverse” or “structural”
results is often only a case of style. This chapter will contain results that are more
naturally expressed in the “direct” form.

First we consider finite groups, then lattices Zd, then more general structures.

2. The Cauchy-Davenport inequality

Here we give a proof of Theorem 1.1. Several proofs are known, we present a well-
known one as outlined in the prexercise above, mainly for the sake of presenting a
method in the simplest form which will be used several times later.

This is based on two transformations:
(1) Translation. If we replace A,B by sets A+x, B+y, the cardinalities of A,B, A+B

remain unchanged.

47
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(2) Transfusion (elements go from A to B). We replace A,B by A′ = A ∩ B and
B′ = A ∪B. This operation does change the cardinalities but preserves their sum:

(2.1) |A′|+ |B′| = |A ∩B|+ |A ∪B| = |A|+ |B| .
It does not increase the sumset: we have

(2.2) A′ + B′ ⊂ A + B.

This operation yields a new pair of sets if A 6⊂ B and A ∩B 6= ∅.
Proof of Theorem 1.1. Write |A| = m, |B| = n.
We use induction on m. The case m = 1 is obvious. Assume now we know the

statement for every pair of sets where 1 ≤ |A| ≤ m− 1.
Given a pair of sets A,B with |A| = m, we try to make a transfusion. If we get a

new pair A′, B′ with 1 ≤ |A′| ≤ m−1, then (2.1) and (2.2) complete the inductive step.
If this does not work, we have either A ⊂ B or A ∩B = ∅.

Now combine this transfusion with a translation. If it never works, we know that
for every x we have either A + x ⊂ B or (A + x) ∩B = ∅.

Take now an y ∈ A−A, y 6= 0; such an y exists if A has at least two elements. Start
with an x such that (A + x) ∩ B 6= ∅ (any x ∈ B − A). Then A + x ⊂ B by the above
dichotomy, and then (A + x + y) ∩B 6= ∅ again: if y = a′ − a, then

a + x + y = a′ + x ∈ B.

By repeating this argument we see that all x, x+y, x+2y, . . . are in this category. This
list contains all elements of Zp, that is, always A+x ⊂ B. Hence B = Zp and the claim
holds again evidently. ¤

A set is sumfree, if it has no three elements such that x + y = z (so we exclude
2x = z too; if we do not, the following exercises change only minimally).

Exercise 56. What is the size of the largest sumfree subset of [1, n]?

Exercise 57. What is the size of the largest sumfree subset of Zp, p prime?

Exercise 58. Every A ⊂ N, |A| = n has a sumfree subset of cardinality ≥ n/3.

Exercise 59. Same problem with n/3 + 1 for n sufficiently large. (Bourgain’s
theorem, extremely difficult.)

Exercise 60. The set of positive integers has no partition into finitely many sumfree
parts.

3. Kneser’s theorem

We show how to extend the Cauchy-Davenport theorem to composite moduli and
general commutative groups. A verbatim extension fails, since A + A = A if A is a
subgroup.

Definition 3.1. Let S be a nonempty set in a commutative group G. The stabilizer
or group of periods of S is the set

stab S = {x ∈ G : x + S = S}.
(This is clearly a subgroup of G.)
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Theorem 3.2. Let A,B be finite sets in a commutative group G, S = A + B and
H = stab S. We have

(3.1) |A + B| ≥ |A + H|+ |B + H| − |H| .
If (3.1) holds with strict inequality, then

(3.2) |A + B| ≥ |A + H|+ |B + H| ≥ |A|+ |B| .
This clearly implies the Cauchy-Davenport theorem, as in Zp the only possibilities

are H = {0} or H = Zp.

Lemma 3.3. Let S be a finite set in a group, S = S1 ∪ S2. We have

(3.3) |S|+ |stab S| ≥ min (|Si|+ |stab Si|) .

Proof. The claim is obvious if Si = S for either i, so we assume they are proper
(and consequently nonempty) subsets.

Write stab Si = Hi, stab S = H. We may also assume that H0 = H1 ∩ H2 = {0},
since otherwise every set is a union of cosets of H0 and the claim can be reduced to the
corresponding claim in the factor group G/H0.

Write |Hi| = hi. Let H = H1 +H2; clearly
∣∣H

∣∣ = h1h2. Each coset of H is the union
of h2 cosets of H1 as well as h1 cosets of H2.

We can rewrite (3.3) as

(3.4) |S \ Si| ≥ hi − |H| for some i.

We shall see how to find lower estimates for |S \ Si|.
Consider a typical nonempty intersection of S with a coset of H, say H + x. Some

of the h2 cosets of H1 inside it, say k1, are in S1, and some k2 of the h1 cosets of H2 are
in S2. From each coset of H1 exactly k2 elements are in S2 and h1− k2 in S \ S2, hence∣∣(S \ S2) ∩ (H + x)

∣∣ = k1(h1 − k2)

and similarly ∣∣(S \ S1) ∩ (H + x)
∣∣ = k2(h2 − k1).

If there is a coset of H such that 0 < k1 < h2 and 0 < k2 < h1, then we multiply
the above equations to obtain

|S \ S2| |S \ S1| ≥ k1k2(h1 − k2)(h2 − k1) ≥ (h1 − 1)(h2 − 1),

hence at least one of the inequalities

|S \ Si| ≥ hi − 1

is true and we are done.
If there is no such coset, but there is one in which k1 = 0 < k2 and a different one

in which k2 = 0 < k1, then by using the first coset to estimate S \ S1 and the second to
estimate S \ S2 we get

|S \ S2| |S \ S1| ≥ h1h2,

stronger than before.
Finally assume that one of the above possibilities is missing, say the first. In this

case we claim that S is a union of cosets of H1. We check this on each coset of H + x.
This happens obviously if H + x ⊂ S. If this inclusion fails, then clearly k1 < h2 and
k2 < h1, so one of them must vanish; we excluded k1 = 0 < k2, so k2 = 0.

This means H ⊃ H1 and then for i = 1 the right side of (3.4) is ≤ 0. ¤
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Lemma 3.4. Let S be a finite set in a group, S = S1 ∪ S2 ∪ · · · ∪ Sk. We have

(3.5) |S|+ |stab S| ≥ min (|Si|+ |stab Si|) .

This follows from the previous one by an immediate induction.

Proof of Kneser’s theorem. Fix a b ∈ B, and consider all possible finite sets
Ab, Bb ⊂ G with the properties

(3.6) b ∈ Bb, Ab ⊃ A, Ab + Bb ⊂ A + B, |Ab|+ |Bb| = |A|+ |B| .
Such sets do exist, for instance, Ab = A, Bb = B. Fix from among them one for which
|Bb| is minimal. Put Sb = Ab + Bb. We have

⋃
Sb = S.

Indeed, one inclusion follows from the second inclusion in (3.6), the other from Ab + b ⊂
Sb.

We try to find a pair with smaller |Bb| by a transfusion:

B′ = Bb ∩ (Ab − t), A′ = Ab ∪ (Bb + t).

To preserve the first condition in (3.6) we need b ∈ Ab − t, that is,

t ∈ Ab − b.

The inclusions and the equality of cardinality sums hold automatically. The minimality
assumption means that each such B′ satisfies B′ = Bb, that is, Bb ⊂ Ab − t, hence
Bb + t ⊂ Ab. Forming the union of these inclusions we obtain

Ab ⊃
⋃

t∈Ab−b

(Bb + t) = Ab + Bb − b.

This can be reformulated as

Bb − b ⊂ stab Ab.

Clearly stab Sb ⊃ stab Ab, so for each b we have

|Sb|+ |stab Sb| ≥ |Sb|+ |Bb| ≥ |Ab|+ |Bb| = |A|+ |B|
An application of the previous lemma to these sets Sb gives

|S|+ |stab S| ≥ min (|Sb|+ |stab Sb|) ≥ |A|+ |B| .
If we apply this inequality to the sets A+H and B +H, since A+H +B +H = A+B
and stab(A + H + B + H) = H, we obtain (3.1). To get inequality (3.2) observe that
each quantity in (3.1) is a multiple of |H|, so if they are not equal, then the left exceeds
the right at least by |H|. ¤

Exercise 61. What is the size of the largest sumfree subset of Zn, n composite?
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4. Sumsets and diameter, part 1

In this section we prove Freiman’s Theorem 1.3 in a generalized form.
Translate A so that its minimal element is 0, and divide each element by their

greatest common divisor. After these operations we can write A as

A = {a1, . . . , am}, a1 = 0, am = u

and we know that
gcd(a1, . . . , am) = 1.

Under these conditions the claim is |2A| ≥ min(m + u, 3m− 3).
This theorem can be extended to the addition of different sets in several ways; we

mention two possibilities. In both let A,B ⊂ Z, A = {a1, . . . , am}, B = {b1, . . . , bn}
with 0 = a1 < · · · < am = u, 0 = b1 < · · · < bn = v.

Theorem 4.1 (Freiman [9]). If gcd(a1, . . . , am, b1, . . . , bn) = 1 and u ≤ v, then

|A + B| ≥ min(m + v, m + n + min(m,n)− 3).

Theorem 4.2 (Lev and Smelianski [30]). If gcd(b1, . . . , bn) = 1 and u ≤ v, then

(4.1) |A + B| ≥ min(m + v, n + 2m− 2− δ),

where δ = 1 if u = v and δ = 0 if u < v.

Proof. Let A′, B′ be the images of A,B in Zv; we have

|A′| = m′ = m− δ, |B′| = n′ = n− 1.

Kneser’s theorem tells us

(4.2) |A′ + B′| ≥ |A′ + H|+ |B′ + H| − |H|
with H = stab(A′ + B′). Write |H| = q. We have q|v (and then H consists exactly of
the multiples of v/q). The choice of the two possibilities in (4.1) depends on whether
q = v or q < v.

In any case we have

(4.3) |A + B| ≥ |A′ + B′|+ m.

Indeed, A + B has at least one element in each residue class of A′ + B′. We can exhibit
m classes when it has at least two, namely those of a1, . . . , am where ai and ai + v are
those elements if u < v. If u = v, this is only m− 1 classes, but in the class of 0 there
are 3 elements, 0, v and 2v. If A′ + B′ = Zv, this gives us the required v + m.

If H is a proper subgroup, we will improve (4.3) as follows. Write

|A′ + H| = kq, |B′ + H| = lq.

We have l ≥ 2; indeed, B cannot be in a proper subgroup by the assumption

gcd(b1, . . . , bn) = 1.

The set A′ + B′ consists of ≥ k + l− 1 > k cosets, so there is one free of elements of A′.
Fix such a coset. If A + B has t elements with residues in this coset, we can improve
(4.3) to

(4.4) |A + B| ≥ |A′ + B′|+ m + (t− q),

since in (4.3) only the excess in classes of A was counted.
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This coset is the sum of a coset in A′ + H and one in B′ + H. Assume that A and
B have r and s elements with residues in these classes, respectively. Then A + B has
at least r + s− 1, so (4.4) implies

(4.5) |A + B| ≥ |A′ + B′|+ m + r + s− 1− q.

In these classes A′, B′ have at most r and s elements, while A′+H, B′+H have exactly
q, so we have

|A′ + H| ≥ m′ + q − r, |B′ + H| ≥ n′ + q − s.

On substituting this into (4.2) and applying (4.5) we obtain

|A + B| ≥ m′ + n′ + m− 1 = 2m + n− 2− δ.

¤

5. The impact function

Let G be a semigroup (in most cases it will be a commutative group).

Definition 5.1. For a fixed finite set B ⊂ G we define its impact function by

ξB(m) = ξB(m,G) = min{|A + B| : A ⊂ G, |A| = m}.
This is defined for all positive integers if G is infinite, and for m ≤ |G| if G is finite.
This function embodies what can be told about cardinality of sumsets if one of

the set is unrestricted up to cardinality. The name is a translation of Plünnecke’s
“Wirkungsfunktion”, who first studied this concept systematically for density [38].

Some of the previous results, like the Cauchy-Davenport inequality, can be refor-
mulated with this concept; some, like Lev and Smeliansky’s Theorem 4.2 cannot, since
about A other assumptions than its size are also used.

Exercise 62. Let G be a finite group. Prove the following “sort of concavity” of
the impact function: for 2 ≤ n < |G|, n - |G| there is a number 1 ≤ k ≤ n− 1 such that

ξ(n− k) + ξ(n + k) ≤ 2ξ(n).

Exercise 63. Use the previous exercise to deduce the Cauchy-Davenport inequality.

Exercise 64. (= Exercise 9). Let A,B be finite sets in a (not necessarily commu-
tative) torsionfree group. Show that

|A + B| ≥ |A|+ |B| − 1.

Exercise 65. In a finite group the graph of the impact function has a certain
symmetry with respect to the line x + y = |G|. Formulate exactly and prove.

We show that the dependence on G can be omitted.

Theorem 5.2. Let G′ be a commutative group, G a subgroup of G′, and let B ⊂ G
be a finite set. If G is infinite, we have

(5.1) ξB(m,G′) = ξB(m,G)

for all m. If G is finite, say |G| = q, then for m = kq + r, 0 ≤ r ≤ q − 1 we have

(5.2) ξB(m,G′) = ξB(r,G) + kq.
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Proof. Take an A ⊂ G′, |A| = m with |A+B| = ξB(m,G′). Let A = A1 ∪ · · · ∪Ak

be its decomposition according to cosets of G. For each 1 ≤ i ≤ k take an element xi

from the coset containing Ai so that the sets Ai − xi are pairwise disjoint; this is easily
done as long as G is infinite. The set

A′ =
⋃

(Ai − xi)

satisfies A′ ⊂ G, |A′| = m and

|A′ + B| ≤
∑

|Ai − xi + B| =
∑

|Ai + B| = |A + B| = ξB(m,G′),

hence ξB(m,G) ≤ ξB(m,G′). The inequality in the other direction is obvious.
In the finite case from all the sets A at which the minimum is attained select one

for which k is minimal, and with k so fixed min |Ai| is minimal. We claim that all but
one Ai are cosets of G; this clearly implies (5.2).

Assume |A1| ≤ · · · ≤ |Ak| and Ai ⊂ G + xi. We try to replace A1, A2 by sets

A′
1 = A1 ∩ (A2 − y), A′

2 = (A1 + y) ∪ A2

with suitable y ∈ x2 − x1 + G.
We claim that this operation does not change the cardinality of A and does not

increase that of A + B. Indeed,

|A′
1|+ |A′

2| = |A′
1 + y|+ |A′

2| = |(A1 + y) ∩ A2|+ |(A1 + y) ∪ A2| =
|A1 + y|+ |A2| = |A1|+ |A2| .

Write Ai + B = Ci, A′
i + B = C ′

i. Then

C ′
1 ⊂ C1 ∩ (C2 − y), C ′

2 = (C1 + y) ∪ C2

and the comparison of cardinalities goes like for A1, A2.
If A2 does not fill the complete coset, we can find y so that a prescribed element of

A1 be missing from A′
1 which would give an example with smaller |A1|, or smaller k if

A′
1 = ∅. ¤

This proof was adapted from arguments in chapters 3 and 4 of Plünnecke’s above
mentioned book [38].

In view of this result we will omit the ambient group G from the notation and write
just ξB(m) instead.

Let G be a torsionfree group. Take a finite B ⊂ G, and let G′ be the subgroup
generated by B−B, that is, the smallest subgroup such that B is contained in a single
coset. Let B′ = B − a with some a ∈ B, so that B′ ⊂ G′. The group G′, as any finitely
generated torsionfree group, is isomorphic to the additive group Zd for some d. Let
ϕ : G′ → Zd be such an isomorphism and B′′ = ϕ(B′). By Theorem 5.2 we have

ξB = ξB′ = ξB′′ ,

so when studying the impact function we can restrict our attention to sets in Zd that
contain the origin and generate the whole lattice; we then study the set “in its natural
habitat”.

Definition 5.3. Let B be a finite set in a torsionfree group G. By the dimension
of B we mean the number d defined above, and denote it by dim B.
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Observe that this dimension is not necessarily equal to the geometrical dimension.
In the case when B ⊂ Rk with some k, this is its dimension over the field of rationals.

The reduced diameter makes sense exactly for one-dimensional sets.

6. Estimates for the impact function in one dimension

We give some estimates that use the diameter and cardinality.
It is possible to give an estimate using the diameter only.

Theorem 6.1. Let B be a one-dimensional set in a torsionfree commutative group,
diam B = v ≥ 3.
(a) For

m >
(v − 1)(v − 2)

2

we have ξB(m) = m + v.
(b) If

(k − 1)(k − 2)

2
< m ≤ k(k − 1)

2

with some integer 2 ≤ k < v, then ξB(m) ≥ m + k.
Equality holds for the set B = {0, 1, v} ⊂ Z.

For v ≤ 2 we have obviously ξB(m) = m+v for all m (such a set cannot be anything
else than a v + 1-term arithmetic progression).

This will be deduced from the following result, where the cardinality of B is also
taken into account.

Theorem 6.2. Let B be a one-dimensional set in a torsionfree commutative group,
diam B = v ≥ 3, |B| = n. Define w by

(6.1) w = min
d|v, d≤n−2

d

[
n− 2

d

]
.

For every m we have

(6.2) ξB(m) ≥ m + min

(
v,

w

2
+ min

t∈N

(
m

t
+

tw

2

))
.

The minimum is attained at one of the integers surrounding
√

2m/w. Unlike the
previous theorem, typically we don’t have examples of equality, and the extremal value
and the structure of extremal sets is probably complicated. Also the value of w depends
on divisibility properties of v and n. After the proof we give some less exact but simpler
corollaries.

Proof. By Lemma 5.2 we may assume that B ⊂ Z, its smallest element is 0 and
it generates Z; then its largest element is just v.

Lemma 6.3. Let B′ be the set of residues of elements of B modulo v. For every
nonempty X ⊂ Zv we have

(6.3) |X + B′| ≥ min(|X|+ w, v).
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Proof. By Kneser’s theorem we have

|X + B′| ≥ |X + H|+ |B′ + H| − |H|
with some subgroup H of the additive group Zv. Write |H| = d; clearly d|v. If d = v,
we have |X + H| = v and we are ready. Assume d < v. B′ contains 0 and it generates
Zv, hence it cannot be contained in H so we have |B′ + H| ≥ 2|H| = 2d. This gives the
desired bound if d > n− 2. Assume d ≤ n− 2. Since |B′ + H| is a multiple of d and it
is at least |B′| = n− 1, we obtain

|B′ + H| ≥ d

⌈
n− 1

d

⌉
= d

(
1 +

[
n− 2

d

])
≥ d + w.

¤
We resume the proof of Theorem 6.2. Take a set A ⊂ Z, |A| = m. We are going to

estimate |A + B| from below.
For j ∈ Zv let u(j) be the number of integers a ∈ A, a ≡ j (mod v) and let U(j) be

the corresponding number for the sumset A + B. We have

(6.4) U(j) ≥ u(j) + 1

whenever U(j) > 0; this follows by adding the numbers 0, v to each element of A in this
residue class if u(j) > 0, and holds obviously for u(j) = 0. We also have

(6.5) U(j) ≥ u(j − b)

for every b ∈ B′. Write
r(k) = {j : u(j) ≥ k},
R(k) = {j : U(j) ≥ k}.

Inequality (6.4) implies

(6.6) R(k) ⊃ r(k − 1) (k ≥ 2),

and inequality (6.5) implies

(6.7) R(k) ⊃ r(k) + B′ (k ≥ 1).

First case: U(j) > 0 for all j. In this case by summing (6.4) we get

|A + B| =
∑

U(j) ≥ v +
∑

u(j) = |A|+ v.

Second case: there is a j with U(j) = 0. Then we have |R(k)| < v for every k > 0.
An application of Lemma 6.3 to the sets r(k) yields, by view of (6.7)

(6.8) |R(k)| ≥ |r(k)|+ w

as long as r(k) 6= ∅. Let t be the largest integer with r(t) > 0. We have (6.8) for
1 ≤ k ≤ t, and (6.6) yields

(6.9) |R(k)| ≥ |r(k − 1)|
for all k ≥ 2. Consequently for 1 ≤ k ≤ t + 1 we have

(6.10) |R(k)| ≥ k − 1

t
|r(k − 1)|+

(
1− k − 1

t

)
(|r(k)|+ w) .

Indeed, for k = 1 (6.10) is identical with (6.8), for k = t + 1 it is identical with (6.9)
and for 2 ≤ k ≤ t it is a linear combination of the two.
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By summing (6.10) we obtain

|A + B| =
∑

k≥1

|R(k)| ≥
t+1∑

k=1

|R(k)|

≥ t + 1

2
w +

(
1 +

1

t

) t∑

k=1

|r(k)| = t + 1

2
w +

(
1 +

1

t

)
|A|,

as claimed in (6.2).
¤

Corollary 6.4. With the assumptions and notations of Theorem 6.2 we have

(6.11) ξB(m) ≥ min

(
m + v,

(√
m +

√
w/2

)2
)

.

Proof. This follows from (6.2) and the inequality of arithmetic and geometric
means. ¤

Proof of Theorem 6.1. Parts (a)-(b) of the theorem can be reformulated as fol-
lows: if ξB(m) ≤ m + k with some k < v, then m ≤ k(k − 1)/2. Theorem 6.2 yields
(using only that w ≥ 1) the existence of a positive integer t such that

m

t
+

t + 1

2
≤ k,

hence

m ≤ kt− t(t + 1)

2
.

The right side, as a function of t, is increasing up to k− 1/2 and decreasing afterwards;
the maximal values at integers are assumed at t = k − 1 and k, and both are equal to
k(k − 1)/2.

To show the case of equality in case (b), write m = k(k−1)/2− l with 0 ≤ l ≤ k−2.
The set A will contain the integers in the intervals [iv, iv + k − 3− i] for 0 ≤ i ≤ l − 1
and [iv, iv + k − 2− i] for l ≤ i ≤ k − 2.

¤

In comparison to the results of Section 4 observe that they never give an increment
exceeding 2n, they are, however, better for small values of m.

Problem 6.5. Find a common generalization of Theorems 6.2 and 4.2.

7. Multidimensional sets

The first result that connects additive properties to geometrical dimension is perhaps
the following theorem of Freiman.

Theorem 7.1 (Freiman[10], Lemma 1.14). Let A ⊂ Rd be a finite set, |A| = m.
Assume that A is proper d-dimensional, that is, it is not contained in any affine hyper-
plane. Then

|A + A| ≥ (d + 1)m− d(d + 1)

2
.
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Proof. We use induction on m.
The starting case is m = 2. Then necessarily d = 1 and the claim is |2A| ≥ 3, which

is indeed true.
Assume now that the statement is true for m and all possible values of d (which are

1 ≤ d ≤ m− 1). We prove it for m + 1. Let A ⊂ Rd, |A| = m + 1. Consider the convex
hull of A, and let a ∈ A be one of its vertices. Put A′ = A \ {a}. We have |A′| = m, so
the statement is true for A′.

The dimension of A′ may be d or d− 1.
Assume first that this dimension is d. Consider the supporting planes of the conves

hull A′. Such a plane L intersects conv A′ in one of its sides, whose vertices are elements
of A′, hence |A′ ∩ L| ≥ d, and the rest of A′ is on one side. At least one of these planes
has the property that a is on the other side. Fix such a plane. Then none of the points
of a + (A′ ∩ L) is a point of 2A′. Hence

|2A| ≥ |2A′|+ |A′ ∩ L|+ 1

(the +1 comes from the element 2a)

≥ (d + 1)m− d(d + 1)

2
+ d + 1 = (d + 1)(m + 1)− d(d + 1)

2
+ d + 1

as wanted.
Consider now the case when the dimension of A′ is d − 1. Then A′ lies on a plane

L and the point a is outside it, hence the sets 2A′, a + A′ and {2a} are all disjoint and
we obtain

|2A| ≥ |2A′|+ |A′|+ 1

≥ dm− (d− 1)d

2
+ m + 1 = (d + 1)(m + 1)− d(d + 1)

2
+ d + 1

again. ¤
This theorem is exact, equality can occur, namely it holds when A is a “long sim-

plex”, a set of the form

(7.1) Ldm = {0, e1, 2e1, . . . , (m− d)e1, e2, e3, . . . , ed}.
In particular, if no assumption is made on the dimension, then the minimal possible
cardinality of the sumset is 2m− 1, with equality for arithmetic progressions.

This result can be extended to sums of different sets. This extension is problematic
from the beginning, namely the assumption “d-dimensional” can be interpreted in dif-
ferent ways. We can stipulate that both sets be d-dimensional, or only one, or, in the
weakest form, make this assumption on the sumset only.

An immediate extension of Freiman’s above result goes as follows.

Theorem 7.2 ([54], Corollary 1.1). If A,B ⊂ Rd, |A| ≤ |B| and dim(A + B) = d,
then we have

|A + B| ≥ |B|+ d|A| − d(d + 1)

2
.

We can compare these results to to the continuous case. Let A, B be Borel sets in
Rd; µ will denote the Lebesgue measure. The celebrated Brunn-Minkowski inequality
asserts that

(7.2) µ(A + B)1/d ≥ µ(A)1/d + µ(B)1/d,
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and here equality holds if A and B are homothetic convex sets, and under mild and
natural assumptions this is the only case of equality. It can also be observed that the
case A = B is completely obvious here: we have

µ(A + A) ≥ µ(2 · A) = 2dµ(A).

Also the constant 2d is much larger than the constant d + 1 in Theorem 7.1. This is
necessary, as there are examples of equality, however, one feels that this is an exceptional
phenomenon and better estimations should hold for “typical” sets. A further difference
is the asymmetrical nature of the discrete result and the symmetry of the continuous
one. Finally, when |A| is fixed, Theorem 7.2 gives a linear increment, while (7.2) yields

µ(A + B) ≥ µ(B) + dµ(A)1/dµ(B)1−1/d.

In the next section we tell what can be said if we use cardinality as the discrete
analog of measure, and prescribe only the dimension of the sets. Later we try to find
other spatial properties that may be used to study sumsets.

The main problems are perhaps the following. What are the best analogs of measure
and dimension for discrete sets? How should a discrete analog of the Brunn-Minkowski
inequality look like? The partial answers explained below also suggest questions in
the continuous case. Should we be satisfied with the usual concepts of measure and
dimension for studying the addition of sets? We return to this in Chapter 5.

Mostly our sets will be in an Euclidean space Rd, and e1, . . . , ed will be the system
of unit vectors. We can think of the dimension dim A of a set A ⊂ Rd as the dimension
of the smallest affine hyperplane containing A, or as in Definition 5.3.

8. Results using cardinality and dimension

We consider finite sets in an Euclidean space Rd.
Put

Fd(m,n) = min{|A + B| : |A| = m, |B| = n, dim(A + B) = d}
F ′

d(m,n) = min{|A + B| : |A| = m, |B| = n, dim B = d},
F ′′

d (m, n) = min{|A + B| : |A| = m, |B| = n, dim A = dim B = d}.
Fd is defined for m + n ≥ d + 2, F ′

d for n ≥ d + 1 and F ′′
d for m ≥ d + 1, n ≥ d + 1. Fd

and F ′′
d are obviously symmetric, while F ′

d may not be (and, in fact, we will see that for
certain values of m,n it is not), and they are connected by the obvious inequalities

Fd(m,n) ≤ F ′
d(m,n) ≤ F ′′

d (m,n).

I determined the behaviour of Fd and of F ′
d for m ≤ n. The more difficult problem

of describing F ′′
d and F ′

d for m > n was solved by Gardner and Gronchi [12]; we shall
quote their results later.

To describe Fd define another function Gd as follows:

Gd(m,n) = n +
m−1∑
j=1

min(d, n− j), n ≥ m ≥ 1

and for m > n extend it symmetrically, putting Gd(m,n) = Gd(n,m). In other words,
if n−m ≥ d, then we have

Gd(m,n) = n + d(m− 1).
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If 0 ≤ t = n−m < d, then for n > d we have

Gd(m,n) = n + d(m− 1)− (d− t)(d− t− 1)

2
= n(d + 1)− d(d + 1)

2
− t(t + 1)

2
,

and for n ≤ d

Gd(m,n) = n +
(m− 1)(2n−m)

2
.

With this notation we have the following result.

Theorem 8.1 ([54], Theorem 1). For all positive integers m, n and d satisfying
m + n ≥ d + 2 we have

Fd(m,n) ≥ Gd(m,n).

Theorem 7.2 is an immediate consequence.
Theorem 8.1 is typically exact; the next theorem summarizes the cases when we

have examples of equality.

Theorem 8.2 ([54], Theorem 2). Assume 1 ≤ m ≤ n. We have

Fd(m,n) = F ′
d(m,n) = Gd(m,n)

unless either n < d + 1 or m ≤ n−m ≤ d (in this case n ≤ 2d).

The construction goes as follows.
Assume 1 ≤ m ≤ n, n ≥ d + 1. Let B be a long simplex, B = Ldn as defined in

(7.1).
If n−m ≥ d, we put

A = {0e1, 1e1, . . . , (m− 1)e1}.
This set satisfies |A| = m. The set A+B consists of the vectors ie1, 0 ≤ i ≤ n+m−d−1
and the vectors ie1 + ej, 0 ≤ i ≤ m− 1, 2 ≤ j ≤ d, consequently

|A + B| = n + d(m− 1) = Gd(m,n).

If n−m = t < d, write t = d− k and assume k ≤ m. Now A is defined by

A = {0e1, 1e1, . . . , (m− k)e1} ∪ {e2, . . . , ek}.
This set satisfies |A| = m. The set A + B consists of the vectors ie1, 0 ≤ i ≤ 2(n− d),
the vectors ie1 + ej, 0 ≤ i ≤ n − d, 2 ≤ j ≤ d, finally ei + ej, 2 ≤ i ≤ k, 2 ≤ j ≤ d,
hence

|A + B| = 2(n− d) + 1 + (d− 1)(n− d + 1) + d(k − 1)− k(k − 1)

2

= n(d + 1)− d(d + 1)

2
− t(t + 1)

2
= Gd(m,n).

These constructions cover all pairs m,n except those listed in Theorem 8.2. Observe
that A is also a long simplex of lower dimension. For a few small values the exact bounds
are yet to be determined.

We now describe Gardner and Gronchi’s [12] bound for F ′
d(m,n). Informally their

main result (Theorem 5.1) asserts that the |A+B| is minimalized when B = Ldn, a long
simplex, and A is as near to the set of points inside a homothetic simplex as possible.
More exactly they define (for a fixed value of n) the weight of a point x = (x1, . . . , xd)
as

w(x) =
x1

n− d
+ x2 + · · ·+ xd.
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This defines an ordering by writing x < y if either w(x) < w(y) or w(x) = w(y) and for
some j we have xj > yj and xi = yi for i < j.

Let Ddmn be the collection of the first m vectors with nonnegative integer coordinates
in this ordering. We have Ddnn = Ldn = B, and, more generally, Ddmn = rB for any
integer m such that

m = |rB| = (n− d)

(
r + d− 1

d

)
+

(
r + d− 1

d− 1

)
.

For such values of m we also have

|A + B| = |(r + 1)B| = (n− d)

(
r + d

d

)
+

(
r + d

d− 1

)
.

With this notation their result sounds as follows.

Theorem 8.3 (Gardner and Gronchi[12], Theorem 5.1). If A,B ⊂ Rd, |A| = m,
|B| = n and dim B = d, then we have

|A + B| ≥ |Ddmn + Ldn|.
For m < n this reproves Theorem 8.2. For m ≥ n the extremal set Ddmn is also

d-dimensional, thus this result also gives the value of F ′′
d .

Corollary 8.4. For m ≥ n > d we have

F ′′
d (m,n) = F ′

d(m,n) = |Ddmn + Ldn|.
A formula for the value of this function is given in [12], Section 6. We quote some

interesting consequences.

Theorem 8.5 (Gardner and Gronchi[12], Theorem 6.5). If A,B ⊂ Rd, |A| = m ≥
|B| = n and dim B = d, then we have

|A + B| ≥ m + (d− 1)n + (n− d)1−1/d(m− d)1/d − d(d− 1)

2
.

Theorem 8.6 (Gardner and Gronchi[12], Theorem 6.6). If A,B ⊂ Rd, |A| = m,
|B| = n and dim B = d, then we have

|A + B|1/d ≥ m1/d +

(
n− d

d!

)1/d

.

This result is as close to the Brunn-Minkowski inequality as we can get by using
only the cardinality of the summands.

9. The impact function and the hull volume

Let G be a torsionfree group. Take a finite B ⊂ G. At the end of Section 5 we
defined a certain “natural image” of B as follows. Let G′ be the subgroup generated by
B −B and B′ = B − a with some a ∈ B, so that B′ ⊂ G′. The group G′ is isomorphic
to the additive group Zd for some d. Let ϕ : G′ → Zd be such an isomorphism and
B′′ = ϕ(B′). By Theorem 5.2 we know

ξB = ξB′ = ξB′′ .

so when studying the impact function we can restrict our attention to sets in Zd that
contain the origin and generate the whole lattice. We used this d as a definition for an
“intrinsic dimension”. This image has further usages.
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Definition 9.1. Let B be a finite set in a torsionfree group G. By the hull volume
of B we mean the volume of the convex hull of the set B′′ described above and denote
it by hv B.

The set B′′ is determined up to an automorphism of Zd. These automorphisms are
exactly linear maps of determinant ±1, hence the hull volume is uniquely defined.

Theorem 9.2. Let B be a finite set in a torsionfree group G, d = dim B, v = hv B.
We have

lim |kB|k−d = v.

A proof can be found in [55], Section 11, though this form is not explicitly stated
there. An outline is as follows. By using the arguments above we may assume that
B ⊂ Zd, 0 ∈ B and B generates Zd. Let B∗ be the convex hull of B. Then kB is
contained in k·B∗. The number of lattice points in k·B is asymptotically µ(k·B∗) = kdv;
this yields an upper estimate. To get a lower estimate one proves that with some
constant p, kB contains all the lattice points inside translate of (k − p) · B∗; this is
Lemma 11.2 of [55].

This means that the hull volume can be defined without any reference to convexity
and measure. Later we will show that this definition can even be extended to commu-
tative semigroups.

It turns out that in Zd, hence in any torsionfree group, the dimension and hull
volume determine the asymptotic behaviour of the impact function.

Theorem 9.3. Let B be a finite set in a torsionfree commutative group G, d =
dim B, v = hv B. We have

lim ξB(m)1/d −m1/d = v1/d.

This is the main result (Theorem 3.1) of [55]. In the same paper I announce the
same result for non necessarily torsionfree commutative groups without proof (Theorem
3.4). In a general semigroup A + B may consist of a single element, so an attempt to
an immediate generalization fails.

Problem 9.4. Does the limit lim ξB(m)1/d − m1/d exist in general commutative
semigroups? Is there a condition weaker than cancellativity to guarantee its positivity?

Theorem 9.3 can be effectivized as follows (Theorems 3.2 and 3.3 of [55]).

Theorem 9.5. With the notations of the previous theorem, if d ≥ 2 and m ≥ v, we
have

ξB(m) ≤ m + dv1/dm1−1/d + c1v
2/dm1−2/d,

ξB(m)1/d −m1/d ≤ v1/d + c2v
2/dm−1/d

(c1, c2 depend on d.) With n = |B| for large m we have

ξB(m) ≥ m + dv1/dm1−1/d − c3v
d+3
2d n−1/2m1− 3

2d ,

ξB(m)1/d −m1/d ≥ v1/d − c4v
d+3
2d n−1/2m−1/(2d).

Probably the real error terms are much smaller than these estimates. For d = 1
we have the obvious inequality ξB(m) ≤ m + v, with equality for large m because the

integers ξB(m)−m cannot converge to v otherwise. For d = 2 already
√

ξB(m)−√m
can converge to

√
v from both directions.
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Theorem 9.6. The impact function of the set B = {0, e1, e2} ⊂ Z2 satisfies

(9.1)
√

ξB(m)−√m >
√

v

for all m.
The impact function of the set B = {0, e1, e2,−(e1 + e2)} ⊂ Z2 satisfies

(9.2)
√

ξB(m)−√m <
√

v

for infinitely many m.

Inequality (9.1) was announced in [55] without proof as Theorem 4.1, and it is a
special case of Gardner and Gronchi’s Theorem 8.6. Inequality 9.2 is Theorem 4.3 of
[55].

I cannot decide whether there is a set such that
√

ξB(m)−√m <
√

v for all m.

10. The impact volume

Besides cardinality we saw the hull volume as a contender for the title “discrete
volume”. For both we had something resembling the Brunn-Minkowski inequality; for
cardinality we had Gardner and Gronchi’s Theorem 8.6, which has the (necessary) factor
d!, and for the hull volume we have Theorem 9.3, which only holds asymptotically.

There is an easy way to find a quantity for which the analogue of the Brunn-
Minkowski inequality holds exactly: we can make it a definition.

Definition 10.1. The d-dimensional impact volume of a set B (in an arbitrarily
commutative group) is the quantity

ivd(B) = inf
m∈N

(
ξB(m)1/d −m1/d

)d
.

Note that the d above may differ from the dimension of B, in fact, it need not be
an integer. It seems, however, that the only really interesting case is d = dim B.

The following statement list some immediate consequences of this definition.

Statement 10.2. Let B be a finite set in a commutative torsionfree group.
(a) ivd(B) is a decreasing function of d.
(b) If |B| = n, then

iv1(B) = n− 1

and

(10.1) ivd(B) ≤ (
n1/d − 1

)d

for every d.
(c) ivd(B) = 0 for d > dimB.
(d) For every pair A,B of finite sets in the same group and every d we have

(10.2) ivd(A + B)1/d ≥ ivd(A)1/d + ivd(B)1/d.

The price we have to pay for the discrete Brunn-Minkowski inequality (10.2) is that
there is no easy way to compute the impact volume for a general set. We have the
following estimates.
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Theorem 10.3. Let B be a finite set in a commutative torsionfree group, dim B = d,
|B| = n. We have

(10.3)

(
n− d

d!

)
≤ ivd(B) ≤ hv B,

with equality in both places if B is a long simplex.

The first inequality follows form Theorem 8.6 of Gardner and Gronchi, the second
from Theorem 9.3.

Problem 10.4. What is the maximal possible value of ivd(B) for n-element d-
dimensional sets? Is perhaps the bound in (10.1) exact?

We now describe the impact volume for another important class of sets, namely
cubes.

Theorem 10.5. Let n1, . . . , nd be positive integers and let

(10.4) B = {(x1, . . . , xd) ∈ Zd : 0 ≤ xi ≤ ni}.
We have

ivd(B) = hv B = v = n1 . . . nd.

Problem 10.6. Is is true that when B is the set of lattice points within a convex
lattice polytope, then hv B and ivd(B) are very near?

They may differ, as the second example in Theorem 9.6 shows.
We shall deduce Theorem 10.5 from the following one.

Theorem 10.7. Let G = G1 ×G2 be a commutative group represented as the direct
product of the groups G1 and G2. Let B = B1 × B2 ⊂ G be a finite set with B1 ⊂ G1,
B2 ⊂ G2. We have

(10.5) ivd(B) ≥ ivd−1(B1)iv1(B2).

Proof. Write ivd(B) = v, ivd−1(B1) = v1, iv1(B2) = v2 (which is = |B2| − 1 if G2

is torsionfree). We want to estimate |A + B| from below for a general set A ⊂ G with
|A| = m.

First we transform them to some standard form; this will be the procedure what
Gardner and Gronchi call compression. Let A1 be the projection of A to G1, and for an
x ∈ A1 write

A(x) = {y ∈ G2 : (x, y) ∈ A}.
Let

A′ = {(x, i) : x ∈ A1, i ∈ Z, 0 ≤ i ≤ |A(x)| − 1}
and

B′ = {(x, i) : x ∈ B1, i ∈ Z, 0 ≤ i ≤ v2}.
We have A′, B′ ⊂ G′ = G1 × Z.

Lemma 10.8. We have

(10.6) |A′| = |A|, |A′ + B′| ≤ |A + B|.
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Proof. The equality is clear. To prove the inequality, write S = A+B, S ′ = A′+B′.
With the obvious notation, we will show that

|S ′(x)| ≤ |S(x)|
for each x. To this end observe that

S(x) =
⋃

x′+x′′=x

(A(x′) + B(x′′)) =
⋃

x′∈x−B1

A(x′) + B2,

hence
|S(x)| ≥ max

x′∈x−B1

|A(x′) + B2| ≥ max
x′∈x−B1

|A(x′)|+ v2.

Similarly

S ′(x) =
⋃

x′+x′′=x

(A′(x′) + B′(x′′)) =
⋃

x′∈x−B1

[0, |A(x′)|+ v2 − 1],

and so
|S ′(x)| = max

x′∈x−B1

|A(x′)|+ v2.

¤
Now we continue the proof of the theorem. Decompose A′ into layers according to

the value of the second component; write

A′ =
k⋃

i=0

Li × {i},

where k = max |A(x)|, Li ⊂ G1. Write |Li| = mi. We have L0 ⊃ L1 ⊃ · · · ⊃ Lk,
consequently m0 ≥ m1 ≥ · · · ≥ mk.

The set S ′ is the union of the sets (Li +B1)×{i+ j}, 0 ≤ i ≤ k, 0 ≤ j ≤ v2. By the
above inclusion it is sufficient to consider the Li with the smallest possible i, that is,

S ′ = (L0 + B1)× {0, 1, . . . , v2} ∪
k⋃

i=1

(Li + B1)× {i + v2}.

We obtain that

(10.7) |S ′| = v2|L0 + B1|+
k∑

i=0

|Li + B1|.

To estimate the summands we use the d− 1 -dimensional impact of B1. Recall that
by definition this means

|X + B1| ≥
(
|X| 1

d−1 + v
1

d−1

1

)d−1

for any set X. We apply this to the sets Li to obtain

|Li + B1| ≥
(

m
1

d−1

i + v
1

d−1

1

)d−1

≥ mi

m0

(
m

1
d−1

0 + v
1

d−1

1

)d−1

;

the second inequality follows from mi ≤ m0. By substituting this into (10.7) and
recalling that

∑
mi = m we obtain

(10.8) |S| ≥
(

v2 +
m

m0

)(
m

1
d−1

0 + v
1

d−1

1

)d−1

.
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Consider the right side as a function of the real variable m0. By differentiating we find
that it assumes its minimum at

m0 = v
1/d
1 (m/v2)

1−1/d.

(This minimum typically is not attained; this m0 may be < 1 or > m, and it is generally
not integer). Substituting this value of m0 into (10.8) we obtain the desired bound

|S| ≥ (
m1/d + (v1v2)

1/d
)d

.

¤
Problem 10.9. Does equality always hold in Theorem 10.7?

I expect a negative answer.

Problem 10.10. Can Theorem 10.7 be extended to an inequality of the form

ivd1+d2(B1 ×B2) ≥ ivd1(B1)ivd2(B2)?

Proof of Theorem 10.5. To prove ≥ we use induction on d. The case d = 1 is
obvious, and Theorem 10.7 provides the inductive step.

This means that with the cube B defined in (10.4) we have

|A + B| ≥ (|A|1/d + v1/d
)d

.

Equality can occur for infinitely many values of |A|, namely it holds whenever A is also
a cube of the form

A = {(x1, . . . , xd) ∈ Zd : 0 ≤ xi ≤ kni − 1}
with some integer k; we have |A| = kdv, |A + B| = (k + 1)dv. It may be difficult to
describe ξB(m) for values of m which are not of the form kdv. Possibly an argument
like Gardner and Gronchi’s for the simplex may work.

Observe that these special sets A are not homothetic to B; in particular, A = B
may not yield a case of equality. ¤

As Theorem 10.3 shows, the impact volume can be d! times smaller than car-
dinality. The example we have of this phenomenon, the long simplex, is, however,
“barely” d-dimensional, and I expect that a better estimates hold for a “substantially”
d-dimensional set.

Definition 10.11. The thickness ϑ(B) of a set B ⊂ Rd is the smallest integer k
with the property that there is a hyperplane P of Rd and x1, . . . , xk ∈ Rd such that
B ⊂ ⋃k

i=1 P + xj.

Conjecture 10.12. For every ε > 0 and d there is a k such that for every B ⊂ Rd

with ϑ(B) > k we have ivd(B) > (1− ε)|B|.
This conjecture would yield a discrete Brunn-Minkowski inequality of the form

|A + B|1/d ≥ |A|1/d + (1− ε)|B|1/d

assuming a bound on the thickness of B. Such an inequality is true at least in the
special case A = B. This can be deduced from a result of Freiman ([10], Lemma 2.12;
see also Bilu [2]), which sounds as follows. If A ⊂ Rd and |2A| < (2d− ε)|A|, then there
is a hyperplane P such that |P ∩ A| > δ|A|, with δ = δ(d, ε) > 0.
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11. Hovanskii’s theorem

We saw examples that cardinalities of sumsets can behave wildly. We show that,
in a rather general setting, if we keep on adding the same set persistently, then these
irregularities fade.

Theorem 11.1. Let A be a finite set in a commutative semigroup G. There is a
polynomial f and an integer n0 such that for n > n0 we have

|nA| = f(n).

This theorem is due to Hovanskii [24, 25]. A generalization to the effect that
|n1A1 + · · ·+ nkAk| becomes a polynomial if all the ni are large is given by Nathanson
[34]. Another proof of this theorem was given by Nathanson and Ruzsa [35]. Below we
give this proof for the case of one variable only.

Unfortunately there is no way to tell this polynomial (except the leading term, see
. . . ) and the threshold n0.

Proof. We assume that G has a zero element. If it does not, extend it by a new
element (this is only a notational convenience).

Let A = {a1, . . . , am}. The elements of nA are all sums of the form

b =
∑

xiai,
∑

xi = n,

where the coefficients xi are nonnegative integers and 0ai is the zero of G. We shall
consider these coefficients together in the form of a vector x = (x1, . . . , xm) with non-
negative integer coordinates.

Several vectors may induce the same b. From the possible representations we shall
select the lexicographically first. We write x ≺ y and say that x precedes y if there is an
i, 1 ≤ i ≤ m such that x1 = y1, . . . , xi−1 = yi−1, xi < yi. By the rank r(x) of a vector
we mean the sum of its coordinates.

We say that a vector x is useless, if there is a y ≺ x of the same rank such that∑
xiai =

∑
yiai, and we call it useful, if no such y exists. With this terminology, |nA|

is the number of useful vectors of rank n.
Write x ≤ y if xi ≤ yi for each coordinate, and x < y if x ≤ y and x 6= y. If x is

useless and x ≤ x′, then x′ is also useless. Indeed, take a y of the same rank as x, such
that

∑
xiai =

∑
yiai and y ≺ x. Then by adding

∑
(x′i − xi)ai to both sides of this

equation we find a vector, namely y′ = y + x′ − x that precedes x′, has the same rank
and induces the same product.

We say that z is primitive useless, if it is useless and there is no useless x satisfying
x < z. Clearly a vector x is useless if and only if there is a primitive useless z such that
z ≤ x.

By definition, the primitive useless vectors are all incomparable with respect to the
relation <. It is a well known (and easy) fact that any collection of incomparable vectors
(with nonnegative integer coordinates) must be finite.

Exercise 66. Prove this finiteness claim.

Hence there are only finitely many primitive useless vectors, say z1, . . . , zk.
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By the sieve formula we have

|nA| =
k∑

j=0

(−1)j
∑

i1,...,ij

B(n; i1, . . . , ij)

where
B(n; i1, . . . , ij) = #{x : r(x) = n,x ≥ zi1 , . . . ,x ≥ zij}.

The system of inequalities x ≥ zit is equivalent to a single inequality x ≥ z, where each
coordinate of z is the maximum of the corresponding coordinates of the vectors zit . The
number of vectors x satisfying x ≥ z and r(x) = n is 0 if r(z) > n, and it is equal to
the number of vectors of rank n− r(z) otherwise. This latter is equal to(

n− r(z) + k − 1

k − 1

)
,

a polynomial in n. Hence all the summands B(n; . . . ) are polynomials for large n, thus
so is |nA|. ¤

Remark. A corresponding result will not hold without the assumption of commu-
tativity; indeed, if the elements of A generate a free semigroup, then we have |nA| = kn.
In a noncommutative semigroup, |nA| need not be monotonically increasing. However,
we cannot decide the following.

Problem 11.2. Let S be a noncommutative group. Suppose that there are positive
constants c, C such that |nA| ≤ Cnc. Does it follow that |nA| is a polynomial for large
n?

This theorem enables us to define dimension and volume in semigroups in a way
that is compatible with our notions in Zd.

Definition 11.3. Let B be a finite set in a commutative semigroup, and let vkd

be the leading term of the polynomial which coincides with |kB| for large k. By the
dimension of B we mean the degree d of this polynomial, and by the hull volume we
mean the leading coefficient v.





CHAPTER 4

Density

1. Asymptotic and Schnirelmann density

A finite set is naturally measured by its cardinality. A set of reals is naturally
measured by its Lebesgue measure (nonmeasurable sets do exist, just we never meet
them). There is no similarly universal way to measure and compare infinite sets of
integers. The most naturally defined one is the asymptotic density.

For a set A of integers we shall use the same letter to denote its

A(x) = |A ∩ [1, x]| .
We allow A to contain 0 or negative numbers, but they are not taken into account in
the counting function.

Definition 1.1. The asymptotic density of a set A of integers is defined by

d(A) = lim
x→∞

A(x)/x,

if this limit exists. The lower and upper (asymptotic) densities are the corresponding
lower and upper limits, respectively:

d(A) = lim inf
x→∞

A(x)/x, d(A) = lim sup
x→∞

A(x)/x.

Exercise 67. If d(A) > 0, is there always an A′ ⊂ A with d(A′) > 0?

Exercise 68. If d(A)+d(B) > 1, then A+B contains all but finitely many positive
integers.

Exercise 69. Let α, β, γ be positive real numbers such that α + β ≤ γ ≤ 1.
Construct sets of positive integers such that d(A) = α, d(B) = β, d(A + B) = γ.

As we mentioned in the introduction, combinatorial additive theory grew out of the
classical, by Schnirelmann’s approach to the Goldbach problem. Goldbach’s conjecture
asserts that any integer > 3 can be expressed as a sum of 2 or 3 primes, depending on
parity. Schnirelmann proved the weaker result that there is a bound k so that every
large enough integer is a sum of at most k primes.

The best universe to work with will be the set N0 of nonnegative integers.

Definition 1.2. A set A ⊂ N0 is an additive basis of order h, if hA = N0, that is,
every positive integer can be expressed as a sum of h integers from A.

A set A ⊂ N0 is an asymptotic basis of order h, if every sufficiently large integer can
be expressed as a sum of h integers from A, that is, N0 \ hA is finite.

The smallest such integer h is called the exact order or exact asymptotic order of A,
respectively.

69
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So the proper wording is that the set P of primes forms an asymptotic basis. To be
a basis a set must contain 0 and 1.

To this end Schnirelmann established that integers that can be written as a sum of
two primes have positive density; and every set having positive density is a basis. An
exact form of the first claim is simply

(1.1) d(2P ) > 0,

a result which is (in hindsight) not too difficult to prove by sieve methods. Today
we know that almost all even integers can be written as a sum of two primes, hence
d(2P ) = 1/2.

To formulate the second claim exactly Schnirelmann introduced a different notion
of density.

Definition 1.3. The Schnirelmann density of a set A of integers is the number

σ(A) = inf
n∈N

A(n)/n.

This is a less natural concept than asymptotic density. Asymptotic density is trans-
lation invariant and it is invariant under the exclusion or inclusion of finitely many
elements; Schnirelmann density does not have either property, in fact, σ(A) = 0 if
1 /∈ A.

Exercise 70. σ(A) > 0 if and only if 1 ∈ A and d(A) > 0.

Exercise 71. Let σ(A) = α. Show the existence of an A′ ⊂ A such that σ(A′) = α,
but by omitting any single element the density of the remaining set will be < α.

Exercise 72. Let B ⊂ N0 = N ∪ {0} and a number α ∈ (0, 1) be given, and define
β as

β = inf{σ(A + B) : σ(A) ≥ α}.
Show the existence of a set A satisfying σ(A) = α, σ(A + B) = β.

Exercise 73. Show that we have always

d(A) = sup σ(A− n).

Show that we cannot replace the supremum by maximum.

Prexercise. If σ(A) + σ(B) > 1 and 0 ∈ A, then A + B ⊃ N. (See Theorem 2.2
below.)

In these terms Schnirelmann’s result sounds as follows.

Theorem 1.4. If 0 ∈ A and σ(A) > 0, then A is a basis.

This theorem will be proved and an estimate for the order of this basis in terms of
σ(A) will be given in the next sections.

Exercise 74. How does it follow from (1.1) and the theorem above that P is an
asymptotic basis?
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2. Schirelmann’s inequality

Schnirelmann deduced his Theorem 1.4 from the following inequality.

Theorem 2.1. Let A and B be sets of nonnegative integers with positive Schnirel-
mann densities σ(A) = α and σ(B) = β, respectively. If 0 ∈ A ∪B, then

(2.1) σ(A + B) ≥ α + β − αβ.

Proof. Without restricting generality we can assume 0 ∈ A. Put C = A + B; we
are going to estimate C(n) for an arbitrary positive integer n. Let

1 = b1 < · · · < bk ≤ n

be the elements of B in [1, n]. We have k = B(n) ≥ βn. Since 0 ∈ A, these numbers
are also in C. Further elements of C are given by

b1 + (A ∩ [1, b2 − b1 − 1]), b2 + (A ∩ [1, b3 − b2 − 1]), . . . ,

. . . , bk−1 + (A ∩ [1, bk − bk−1 − 1]), bk + (A ∩ [1, n− bk]).

(The last block may be empty if bk = n.) We estimate the number of elements in a
typical block by

|A ∩ [1,m]| = A(m) ≥ αm.

(This is also true for m = 0, which may be the case for the last block.) Adding these
estimates for the blocks above we obtain

α
(
(b2 − b1 − 1) + (b3 − b2 − 1) + · · ·+ (bk − bk−1 − 1) + (n− bk) = α(n− k).

Consequently

C(n) ≥ k + α(n− k) = αn + (1− α)k ≥ αn + (1− α)βn = (α + β − αβ)n.

¤

Clearly this inequality also holds in the degenerate case when α = 0, provided 0 ∈ A.

Prexercise. Construct sets A,B satisfying 0 ∈ A, 0 < σ(A), σ(B) < 1 and

σ(A + B) = σ(A) + σ(B)− σ(A)σ(B).

Prexercise. Show that for every pair of sets satisfying the previous exercise the
values of σ(A) and σ(B) are always rational.

We can write (2.1) in the symmetric form

1− σ(A + B) ≤ (
1− σ(A)

)(
1− σ(B)

)
.

An iterated application then gives

(2.2) 1− σ(hA) ≤ (
1− σ(A)

)h
,

which will become small but not quite 0. We complement this inequality with the
following result.

Theorem 2.2. Let A and B be sets of nonnegative integers with positive Schnirel-
mann densities σ(A) = α and σ(B) = β, respectively. If α+β ≥ 1 and 0 ∈ A∪B, then
A + B ⊃ N.
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Proof. Assume 0 ∈ A and take a positive integer n. We want to prove n ∈ A + B.
If n ∈ B, we are done, so assume now n /∈ B. This implies

B(n− 1) = B(n) ≥ βn.

Consider the pairs (i, n− i) with 1 ≤ i ≤ n− 1. In A(n− 1) cases we have i ∈ A, and
in B(n− 1) cases we have n− i ∈ B. Since

A(n− 1) + B(n− 1) ≥ α(n− 1) + βn > n− 1,

at least once both happen. ¤

We can now prove Schnirelmann’s theorem on bases.

Proof of Theorem 1.4. Assume σ(A) = α > 0. Take an integer h such that
(1−α)h < 1/2. Then σ(hA) > 1/2 according to (2.2), and so 2hA ⊃ N by the previous
theorem. ¤

The above argument estimates the order of this basis by (log 4)/α. We will see that
the optimal estimate is 1/α.

Exercise 75. Given an integer h, construct a set A such that 0 ∈ A, σ(A) = 1/h
and the exact order of A is h.

3. Mann’s theorem

In Schnirelmann’s theorem the role of the sets A, B is asymmetric: one of them
contains 0 and the other need not. We now show how this inequality can be improved
under the symmetric condition 0 ∈ A ∩ B, which is also better suited for the repeated
addition of the same set.

Theorem 3.1 (Mann). If 0 ∈ A ∩B, then

σ(A + B) ≥ min
(
1, σ(A) + σ(B)

)
.

By iteration, if 0 ∈ A, then σ(kA) ≥ min
(
1, kσ(A)

)
and thus, next corollary follows.

Corollary 3.2. If 0 ∈ A and σA = α > 0, then A is a basis of order ≤ 1/α.

Exercise 76. Let α, β, γ be positive real numbers such that α + β ≤ γ ≤ 1.
Construct sets of positive integers such that σ(A) = α, σ(B) = α, σ(A + B) = γ.
(Lepson [29].)

This theorem is similar to the Cauchy-Davenport inequality: superadditivity save
an obstruction, which in our case consists in densities being bounded by 1. The proof
will also be based on a transfusion method. However, while a transfusion preserves the
sum of cardinalities it does typically change the sum of densities. It does not change
the value of A(n) + B(n) for any n, and this suggests the following approach.

Definition 3.3. The joint (Schnirelmann) density of the sets A1, . . . , Ak is defined
by

σ(A1, . . . , Ak) = inf
A1(n) + · · ·+ Ak(n)

n
.

Now Theorem 3.1 will follow from the version below.
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Theorem 3.4. If 0 ∈ A ∩B, then

σ(A + B) ≥ min
(
1, σ(A,B)

)
.

Formally Schnirelmann density is a limit, a thing related to infinity, but it gives
information for every A(n); it is perhaps not surprising that the above theorem will be
proved in a finite setting.

Theorem 3.5. Let 0 ≤ γ ≤ 1, let n be a positive integer and let A, B be sets such
that 0 ∈ A ∩B. Put C = A + B. If

(3.1) A(k) + B(k) ≥ γk for 1 ≤ k ≤ n,

then

(3.2) C(k) ≥ γk for 1 ≤ k ≤ n.

Exercise 77. Deduce Theorem 3.5 from Theorem 3.4.

We present another slight (but useful) generalization.

Theorem 3.6. Let 0 ≤ γ ≤ 1, 0 ≤ δ ≤ 1 − γ, let n be a positive integer and let
A,B be sets such that 0 ∈ A ∩B. Put C = A + B. If

(3.3) A(k) + B(k) ≥ γk − δ for 1 ≤ k ≤ n,

then

(3.4) C(k) ≥ γk − δ for 1 ≤ k ≤ n.

The other interesting case is δ = 1− γ, which can be reformulated as follows.

Theorem 3.7 (Van der Corput). Let 0 ≤ γ ≤ 1, let n be a positive integer and let
A,B be sets such that 0 ∈ A ∩B. Put C = A + B. If

(3.5) 1 + A(k) + B(k) ≥ γ(k + 1) for 1 ≤ k ≤ n,

then

(3.6) 1 + C(k) ≥ γ(k + 1) for 1 ≤ k ≤ n.

Proof. Suppose the above statement is false; then among the counterexamples
there is one with the smallest value of n, and with n fixed, with the minimal value of
B(n). We consider this example now. We may assume that

A, B ⊂ [0, n],

since omitting the element outside this range does not change the assumptions or the
conclusion.

If n = 1, then either 1 ∈ A∪B and then C(1) = 1 ≥ γ− δ, or 1 /∈ A∪B and γ = 0,
so C(1) = 0 ≥ −δ. So assume n ≥ 2.

If B = {0}, then the statement is obviously true. Assume B has also positive
elements.

We try to make a translation-transfusion in the following form: we try to replace
A,B by

A′ = A ∪ (B + t), B′ = B ∩ (A− t)

with suitable t. Any such pair of sets satisfies A′ + B′ ⊂ A + B. Hence this will also
be a counterexample, provided it satisfies conditions 0 ∈ A ∩ B and (3.3). The first is
equivalent to t ∈ A; we will return to the second.
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This pair of sets will contradict the minimality assumption if B′ 6= B, that is,

B′ 6⊂ A− t.

Such values of t do exist, for instance, the maximal element of A has this property.
From such values of t we choose the minimal one. The minimality of t means that

(3.7) a ∈ A, a < t =⇒ B ⊂ A− a =⇒ B + a ⊂ A.

A consequence of (3.7) (with a = 0) is

B ⊂ A.

Another one is
A(x) = C(x) ≥ γx− δ for x < t.

Indeed, (3.7) means that any sum of the form b + a, b ∈ B, a ∈ A with a < t is in A,
and this includes all cases when a + b < t. Furthermore, restricting the inclusion (3.7)
for a fixed b ∈ B and a ≤ x < t we see that

b +
(
A ∩ [0, x]) ⊂ A ∩ [b, b + x].

Comparing the cardinalities we obtain

(3.8) A(b + x)− A(b− 1) ≥ A(x) + 1 = C(x) + 1 ≥ γx− δ + 1

for x < t.
Our aim is to show that

(3.9) A′(k) + B′(k) ≥ γk − δ for 1 ≤ k ≤ n.

From the definition of A′, B′ we immediately see that

A′(k) + B′(k) ≥ A(k) + B(k − t),

hence this holds if B(k − t) = B(k), in particular, if t = 0. So we may assume that
t > 0 and B(k − t) < B(k). This means that there are elements of B in the interval
(k − t, k]; let b′ be the smallest of them. Write k = b′ + x, 0 ≤ x < t.

We have

A′(k) + B′(k) ≥ A(k) + B(k − t) = A(k) + B(b′ − 1)

=
(
A(b′ − 1) + B(b′ − 1)

)
+

(
A(k)− A(b′ − 1).

)

We estimate the first term by the induction hypothesis, the second one by (3.8):

A′(k) + B′(k) ≥ (
γ(b′ − 1) + δ

)
+

(
γ(k − b′) + 1− δ.

)
= γk + 1− γ − 2δ ≥ γk − δ;

in the last step we need the assumption γ + δ ≤ 1. ¤

4. Schnirelmann’s theorem revisited

In Schnirelmann’s theorem 1.4 equality can hold for certain values of α and β (Ex-
ercise 2). Lepson [29] showed that in Mann’s Theorem 3.1 equality can hold for any α
and β (Exercise 76 above).

By writing

S(α, β) = inf{σ(A + B) : σ(A) = α, σ(B) = β, 0 ∈ A}
and

M(α, β) = inf{σ(A + B) : σ(A) = α, σ(B) = β, 0 ∈ A ∩B},
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we can restate Schnirelmann’s, Mann’s and Lepson’s results as

(4.1) α + β − αβ ≤ S(α, β) ≤ M(α, β) = min(α + β, 1).

If α + β > 1, then we have S(α, β) = M(α, β) = 1, (Schnirelmann’s Theorem 2.2),
thus in both inequalities of (4.1) equality can actually occur.

In this section we give a formula for S(α, β) and describe the cases of equality in
inequalities (4.1). These results are from Hegedűs-Piroska-Ruzsa [21].

Theorem 4.1. For all α, β we have

(4.2) S(α, β) = inf
n≥0

dαne+ dβ(n + 1)e
n + 1

.

Definition 4.2. Let α, β be positive real numbers satisfying α + β ≤ 1. We call
(α, β) a Schnirelmann pair if S(α, β) = α+β−αβ, and a Mann pair if S(α, β) = α+β.

Theorem 4.3. The numbers (α, β) form a Schnirelmann pair if and only if they
can be expressed as

α =
k

n
, β =

1

n + 1
with certain integers n ≥ 2 and 1 ≤ k ≤ n− 1.

Proof of Theorem 4.1. Denote the right side of (4.2) by γ. First we show that
S(α, β) ≥ γ. Since σ(B) > 0, we have 1 ∈ B. Write B′ = B − 1; thus 0 ∈ B′. We will
apply the above lemma to the sets A, B′; the requirement that both contain 0 is hence
fulfilled.

Next we show that the sets A,B′ satisfy (3.5). Indeed, by the definition of the
Schnirelmann density we have A(k) ≥ αk, and since it must be an integer, we have

A(k) ≥ dαke .

We have

B′(k) = |B′ ∩ [1, k]| = |B ∩ [2, k + 1]| = B(k + 1)− 1 ≥ β(k + 1)− 1,

and again this is an integer, thus

B′(k) ≥ dβ(k + 1)e − 1.

On adding these inequalities we find

1 + A(k) + B′(k) ≥ dαke+ dβ(k + 1)e ≥ γ(k + 1)

by the definition of γ.
An application of Theorem 3.7 to the sets A,B′ yields that their sum C ′ = A + B′

satisfies
1 + C ′(n) ≥ γ(n + 1)

for all n.
Since C = A + B is connected to C ′ via C = C ′ + 1, we conclude that

C(n) = |C ∩ [1, n]| = |C ′ ∩ [0, n− 1]| = 1 + C ′(n− 1) ≥ γn

for all n, which is equivalent to saying σ(C) ≥ γ.
To show that S(α, β) ≤ γ, suppose first that the infimum in the definition (1.4) is a

minimum, and let n be any integer satisfying

γ =
dαne+ dβ(n + 1)e

n + 1
.



76 4. DENSITY

Consider the sets
A0 = {0, 1, . . . , dαne} ∪ {n + 1, n + 2, . . . }

and
B0 = {1, . . . , dβ(n + 1)e} ∪ {n + 2, n + 3, . . . }.

These sets satisfy

σ(A0) =
dαne

n
≥ α

and

σ(B0) =
dβ(n + 1)e

n + 1
≥ β.

We can select subsets A ⊂ A0 and B ⊂ B0 such that σ(A) = α, σ(B) = β and 0 ∈ A.
These sets satisfy

A + B ⊂ A0 + B0 = {1, 2, . . . , dαne+ dβ(n + 1)e} ∪ {n + 2, . . . },
consequently (by evaluating the counting function at n + 1) we find that

σ(A + B) ≤ σ(A0 + B0) ≤ dαne+ dβ(n + 1)e
n + 1

= γ

as wanted.
Suppose next that the infimum is not attained. In this case we have

s = inf
n≥0

dαne+ dβ(n + 1)e
n + 1

= lim
n→∞

dαne+ dβ(n + 1)e
n + 1

= α + β,

hence the example of equality in Mann’s theorem serves also as an example for S(α, β) ≤
γ. ¤

Prof of Theorem 4.3. By Theorem 4.1, α and β form a Schnirelmann pair if
and only if

(4.3) inf
n≥0

dαne+ dβ(n + 1)e
n + 1

= α + β − αβ.

Since the limit of the left side of (4.3) is α + β, in this case there must be an n such
that

dαne+ dβ(n + 1)e
n + 1

= α + β − αβ.

Observe that the value of the left side for n = 0 is 1, so we must have n ≥ 1. Write

dαne = k, dβ(n + 1)e = l.

We have αn ≤ k and β(n + 1) ≤ l, hence k 6= 0, l 6= 0 and

(4.4) α ≤ k/n, β ≤ l/(n + 1).

By the monotonicity of the function α + β − αβ in both variables (in our domain), we
have

α + β − αβ ≤ k

n
+

l

n + 1
− k

n

l

n + 1
=

k + l

n + 1
− k(l − 1)

n(n + 1)
.

Since l ≥ 1, the last expression is always ≤ (k + l)/(n + 1), and equality can hold only
if l = 1 and both inequalities in (4.4) hold with equality. This means that α = k/n and
β = l/(n + 1) = 1/(n + 1) as claimed. ¤

We mention without proof some results on Mann pairs.
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Theorem 4.4. If α and β form a Mann pair, then they are either both rational or
both irrational. A pair of rational numbers, say α = p/q, β = r/s is a Mann pair if and
only if they satisfy

(4.5) {α(1− n)}+ {−βn} ≥ α

for every integer 1 ≤ n ≤ lcm[q, s]. A pair of irrational numbers is a Mann pair if and
only if there are integers k, l,m such that

(4.6) αk + βl = m, 0 < k < 1/α, 0 ≤ k − l < 1/α.

The description of rational Mann pairs is less satisfactory than that of irrational
ones, though it provides a finite algorithm for each pair of rational numbers. The
following can be observed.

Statement 4.5. Let α, β be rational numbers, and write α/β = a/b with (a, b) = 1.
If there are integers satisfying (4.6) , then (α, β) is a Mann pair. In particular, if
α ≤ 1/(a + b), then it is a Mann pair.

The difficulty is that the set P will be a lattice in the rational case, and there seems
no easy way to decide when a lattice intersects a triangle.

We note that condition (4.6) is not necessary in the rational case. This is seen by
the examples α = 4/11, β = 5/11 or α = 8/65, β = 2/13.

5. Kneser’s theorem, density form

In the previous sections we discussed addition theorems based on Schnirelmann
density. An analogous result was found for the more natural concept of asymptotic
density by Kneser [26]. This is more complicated than the privous ones and its proof
is difficult. We state it without proof; a proof can be found in Halberstam and Roth’s
monograph [20].

Theorem 5.1 (Kneser). Let A and B be sets of positive integers. Either

d(A + B) ≥ d(A) + d(B),

or there exists positive integers q, k, l such that q ≥ k + l − 1 and
(a) A is contained in k residue classes modulo q,
(b) B is contained in l residue classes modulo q,
(c) A + B is equal to k + l − 1 residue classes modulo q except a finite set.

A density cannot exceed 1; in the above formulation the case when d(A)+ d(B) > 1
is included as the extremal case q = k = l = 1.

A typical example of the second case case is A = {1, . . . , k mod q}, the first k
residue classes modulo q and B = {1, . . . , l mod q}, the first l classes modulo q.

Exercise 78. Suppose d(A) + d(B) = 1. Show that A + B has an asymptotic
density, and find its possible values.

6. Adding a basis: Erdős’ theorem

The previous results gave estimates for the density of a sumset using the density of
summands. Sometimes a density increment occurs also when we add a set of density 0.
The first example of this phenomenon was given by Hinchin in 1933. He proved that
for the set Q of nonnegative squares we have σ(A+Q) > σ(A) whenever 0 < σ(A) < 1.
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A few years later Erdős proved that every basis has this property. In this section we
give an account of this result.

Theorem 6.1. Let B ⊂ Z be a basis of order k and let A ⊂ Z. Then

σ(A + B) ≥ σ(A) +
σ(A) (1− σ(A))

2k
.

Proof. Write α = σ(A) and let C = A + B. We are going to estimate C(n).
We will try to find a b ∈ B with a large proportion of (A + b) outside A; this will

make A ∪ A + b large. For that purpose define

f(t) = |((A + t) \ A) ∩ [1, n]| .
This function has a subadditivity property. Indeed, we have

(A + x + y) \ A ⊂ (
(A + x + y) \ (A + x)

) ∪ (
(A + x) \ A

)

=
(
(A + y) \ A

)
+ x ∪ (

(A + x) \ A
)
,

and by comparing the cardinalities we easily find

f(x + y) ≤ f(x) + f(y).

Observe that we have f(0) = 0. We are going to calculate the average of f . We
have

n−1∑
t=1

f(t) = |{(a, t) : 1 ≤ a < a + t ≤ n, a ∈ A, a + t /∈ A}|

= |{(a, x) : 1 ≤ a < x ≤ n, a ∈ A, x /∈ A}|
by introducing x = a + t.

Since

{(a, x), 1 ≤ a < x ≤ n, a ∈ A, x /∈ A} ∪ {(a, x), 1 ≤ a < x ≤ n, a ∈ A, x ∈ A} =

= {(a, x), 1 ≤ a < x ≤ n, a ∈ A},
and the cardinality of this last set can be expressed by counting {(a, x), 1 ≤ a < x ≤
n, a ∈ A} over x as

∑
A(x− 1), we find

n−1∑
t=1

f(t) =
n∑

x=1

A(x− 1)− |{(a, x), a ∈ A, x ∈ A, 1 ≤ a < x ≤ n}| .

Using the definition of the Schnirelmann’s density we can conclude that A(x− 1) ≥
α(x− 1). As the second part is equal to A(n)(A(n)− 1)/2, we can bound

∑
f(t) by

n−1∑
t=1

f(t) ≥ α
n(n− 1)

2
− A(n)(A(n)− 1)

2
.

This inequality implies that there exist a t0 for which this f(t0) is large:

f(t0) ≥ 1

n− 1

(
αn(n− 1)

2
− A(n)(A(n)− 1)

2

)
.
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Since B is a basis of order k, we can write t0 = b1 + . . . + bk, for some bj ∈ B. From
the subadditivity property we conclude f(t0) ≤

∑
f(bi), consequently there is a b = bi

for which

f(b) ≥ 1

k

1

n− 1

(
αn(n− 1)

2
− A(n)(A(n)− 1)

2

)
.

In particular, as C(n) ≥ A(n) + f(b) for any single b, we get

C(n) ≥ A(n) +
1

k

1

n− 1

(
αn(n− 1)

2
− A(n) (A(n)− 1)

2

)
.

Since the right hand side, as a function of A(n), is increasing up to A(n) ≤ k(n−1)+1/2,
we get a lower estimate by replacing each occurrence of A(n) by its lower bound αn,
and we obtain

C(n) ≥ αn +
1

k(n− 1)

(
αn(n− 1)

2
− αn(αn− 1)

2

)
≥ αn +

α (1− α) n

2k
.

As this fact is true for all n, the estimate for the Schnirelmann’s density follows. ¤

With a minimal modification of the proof a similar result can be obtained for as-
ymptotic lower density.

Theorem 6.2. Let B ⊂ Z be an asymptotic basis of order k and let A ⊂ Z. Then

d(A + B) ≥ d(A) +
d(A) (1− d(A))

2k
.

7. Adding a basis: Plünnecke’s theorem, density form

If we add a basis of order k to a set of density α > 0, Erdős’ theorem in the previous
section estimates the density of the sumset essentially by α(1+1/(2k)) for small values
of α. Plünnecke [39] gave a much stronger estimate, one which goes to infinity after
division by α as α →∞.

Theorem 7.1. If A,B ⊂ N0, 0 ∈ B, then

(7.1) σ(A + B) ≥ σ(A)1− 1
k σ(kB)

1
k .

In particular, if kB = N0, then σ(A + B) ≥ σ(A)1− 1
k .

Exercise 79. Prove that

α1−1/k > α +
α(1− α)

k

for all α ∈ (0, 1), hence Plünnecke’s inequality is stronger than that of Erdős for all
possible values of σ(A).

Plünnecke’s theorem gives us the correct order of magnitude.

Exercise 80. Construct a basis B of order k, such that, for all α, exist a set A,
with σ(A) ≥ α, such that σ(A + B) < Cα1− 1

k , for some C ≥ 0.

Proof. Before starting the proof we remark that a result which is weaker by a
constant factor can be easily deduced from the finite Plünnecke inequality given in
Chapter 1. Indeed, the case j = 1 of Corollary 2.4, or the case l = 0 of Theorem 1.1 of
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Chapter 1 gives us the following. If A, B are finite sets and |A| = m, |A+B| = αm, then
|kB| ≤ αkm. By substituting α = |A + B| / |A| and rearranging this can be written as

(7.2) |A + B| ≥ |A|1−1/k |B|1/k .

This is analogous to (7.1), just we have cardinality here and density there.
Let now A,B be infinite sets such that A and kB have positive Schnirelmann density.

Let C = A + B; we want to estimate C(n). To this end we apply (7.2) for the sets

A′ = A ∩ [1, dn/2e], B′ = B ∩ [0, [n/2]].

We have |A′| ≥ σ(A)n/2. Since the set kB′ contains every element of kB up to n/2
(and contains 0), we have |kB′| ≥ σ(kB)n/2. Now an application of (7.2) gives

C(n) ≥ |A′ + B′| ≥ σ(A)1− 1
k σ(kB)

1
k n/2.

Since this holds for every n, we have a lower estimate for σ(A + B), which is half of the
one claimed in (7.1).

To remove this factor we apply an induction argument like for Mann’s theorem, and
use Plünnecke’s method for a trimmed additive graph.

We write α = σ(A), β = σ(kB), C = A + B and γ = α1− 1
k β

1
k . We want to show

that C(n) ≥ γn for all n.
We reformulate this in the following finite form.
Let n ∈ N. If A(m) ≥ αm for all m ≤ n, 0 ∈ B and Bk(m) = |kB ∩ [1, m]| ≥ βm

for all m ∈ N, then C(m) ≥ γm for all m ≤ n.
We will proceed by induction on n. Since the case n = 1 is clear, suppose that n > 1

and that the claim above has been proved for all n′ < n. Let

A1 = A ∩ [1, n′]

A2 = A ∩ [n′ + 1, n]− n′ ⊂ [1, n− n′].
Observe that A1(m) ≥ αm is satisfied for all m ≤ n′. If, for some n′ < n, it also happens
that A2(m) ≥ αm for all m ≤ n − n′, then we apply the induction hypothesis for the
set pairs A1, B and A2, B. Since

C ⊃ (A1 + B) ∪ (A2 + n′ + B),

we get the desired conclusion for C.
Now consider the case when this does not happen. This means that for all n′ < n

there is some m ≤ n− n′ such that

|A ∩ [n′ + 1, n′ + m]| < αm.

We claim that the above inequality is satisfied for m = n− n′, i.e.,

(7.3) |A ∩ [n′ + 1, n]| < α(n− n′).

Put n1 = n′. We find m1 such that

|A ∩ [n1 + 1, n1 + m1]| < αm1.

If m1 = n− n′ we are done. If not, we take n2 = n′ + m1 and obtain m2 such that

|A ∩ [n2 + 1, n2 + m2]| < αm2.

We iterate this process and when it stops, we add all the inequalities to get (7.3).
Now we build a restricted addition graph (like described in Section 2 of Chapter

1) as follows. It consists of the layers V0 = A ∩ [1, n], V1 = (A + B) ∩ [1, n], . . . , Vh =
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(A + hB) ∩ [1, n], with edges going from each x ∈ Vi−1 to x + b ∈ Vi as usual. One can
easily to check that it is commutative, which allows us to apply Plünnecke’s inequality
(Theorem 2.1 of Chapter 1). We use µj to denote the magnification ratios of this graph.
This inequality tells us µk ≤ µk

1. For µ1 we use the obvious estimate µ1 ≤ C(n)/A(n)
to deduce

(7.4) µk ≤
(

C(n)

A(n)

)k

.

Now we find a lower bound for µk. Let X ⊂ A be such that |im(X,Vk)| = µk |X|,
and let n′ + 1 be its first element, so that X ⊂ [n′ + 1, n]. From (7.3) we infer

|X| ≤ α(n− n′)

if n′ > 0, while for n′ = 0 we have |X| ≤ A(n).
We also know,

|(X + kB) ∩ [1, n]| ≥ |(n′ + 1 + kB) ∩ [n′ + 1, n]| ≥ β(n− n′).

Combining the two inequalities we get

µk ≥ min

{
β

α
,

βn

A(n)

}
.

Now (7.4) completes the proof. ¤

We can easily deduce a similar asymmetric combining lower asymptotic density and
Schnirelmann density.

Theorem 7.2. Let A,B ⊂ Z and let k be a positive integer. We have

d(A + B) ≥ d(A)1− 1
k σ(kB)

1
k

This can be deduced from the previous theorem using the connection between lower
and Schnirelmann density as expressed in Exercise 73.

Let ε > 0. To prove this result we find a t such that σ(A− t) ≥ (A− ε). This implies
that

d(A + B) ≥ σ(A + B − t) ≥ (d(A)− ε)1− 1
k σ(kB)

1
k .

The result follows by letting ε go to 0.
The theorem is also true with the lower density everywhere but the proof is more

involved.

8. Adding the set of squares or primes

Let Q be the set of squares: Q = {n2, n ∈ N0}. They form a basis of order 4, that
is, 4Q = N0. We also know that 3Q contains almost number except those of the form
4a(8b − 1), for some a and b. This easily implies that the Schnirelmann density of the
set of three-fold sums of squares is positive: σ(3Q) > 0.

Exercise 81. Calculate d(3Q) and σ(3Q).

If we have A ⊂ Z with σ(A) = α, then using Plünnecke’s density theorems from the

previous section we see that σ(A + Q) ≥ α
3
4 , and for small α we can improve this to

σ(A + Q) > cα
2
3 . This is still not the best possible; the real exponent is 1

2
.
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Theorem 8.1 (Plünnecke [37]). Let A a subset of the integers with σ(A) = α, and
Q the set of squares. We have

σ(A + Q) ≥ cα
1
2

for some absolute constant c > 0.

To see that this exponent is sharp, set A = {1, q +1, q +2, . . .}, with a large q. This
set has Schnirelmann density σ(A) = 1

q
. Since up to q the only elements of A + Q are

the integers of form k2 + 1, we easily find that

σ(A + Q) =
1 + [

√
q]

q
∼ 1√

q
=

√
σ(A).

For asymptotic density the increase is larger, a similar result holds with arbitrarily
small exponent.

Theorem 8.2 ([45]). For every ε > 0 there exists a constant cε depending on ε such
that if d(A) = α then

d(A + Q) ≥ cεα
ε.

A good configuration that gives approximately the correct order of magnitude is a
residue class modulo some q. Put A = qZ, so that d(A) = 1

q
. The sumset A+Q contains

the quadratic residues modulo q. If the prime factorization of q is q = p1 . . . pk, then
the number of quadratic residues is(

p1 + 1

2

)
. . .

(
pk + 1

2

)
≈ q

2k
.

To minimize it we take the product of the first primes. By the prime number theorem
this will be essentially the primes pi < log q, and their number is ∼ (log q)/(log log q).
So the density of A + Q is approximately

d(A + Q) ≈ 1

q

q

2
log q

log log q

= q−
logq 2 log q

log log q .

The exponent goes that can go to zero as q grows.
Let P be the prime numbers, and let P ′ = P − 2. It is known that there exists

a k such that kP ′ = N0 for some k (k = 7?). It is also known that d(2P ) = 1/2,
d(3P ) = 1 and that every large number can be written as a sum of four primes. These
give estimates for the density of A + P by the Plünnecke inequalities; similarly to the
case of squares, this is far from the reality.

Theorem 8.3. [45, 46] Let A be a subset of integers. There is a positive constant
c with the following properties (valid for q sufficiently large).
(a) If σ(A) = 1

q
then σ(A + P ′) ≥ c

log q

(b) If d(A) = 1
q

then d(A + P ) ≥ c
log log q

The examples to show that this is the correct order of magnitude are similar to the
case of squares. For Schnirelmann density use the same set A = {1, q + 1, q + 2, . . .}.
This set has Schnirelmann density σ(A) = 1

q
. Since up to q the only elements of A + P ′

are neigbours of primes, we find that

σ(A + Q) =
π(q + 1)

q
∼ 1

log q
.
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For asymptotic density again we use the multiples of q. The numbers in A + P are
sets coprime to q with finitely many exceptions. Then

d(A + P ) =
ϕ(q)

q
=

(
1− 1

p1

)
. . .

(
1− 1

pk

)
∼ c

log log q

if again we take the product of the first primes.

9. Essential components

We say that B is an essential component if B is such that σ(A + B) > σ(A) for
every 0 < σ(A) < 1.

In the previous sections we met examples of essential components: first sets of
positive density (theorems of Schnirelmann and Mann), then bases (theorems of Erdős
and Plünnecke). The first example of an essential component that is not a basis was
given by Linnik; this set was too thin to be a basis. Clearly if B is a basis of order k,
it must satisfy B(x) > x1/k, hence a set such that B(x) = O(xε) for every positive ε
cannot be a basis.

The following theorem tells exactly how thin an essential component can be.

Theorem 9.1. [44]
(a) for every ε > 0 exist an essential component with B(n) < c(log n)1+ε.
(b) There is no essential component B with B(n) < c(log n)1+o(1).





CHAPTER 5

Measure and topology

1. Introduction

In this chapter we mention some loosely connected things. The common feature
is that we now leave the safe familiar world of finite sets. Our excursions are in two
different directions.

The first is to measures. Measure is a close analog of cardinality; the same questions
we asked for finite sets can be formulated for measures of sets of reals, or in Rd, or in a
more general setting. We already mentioned a classical example, the Brunn-Minkowski
inequality: for measurable sets in Rd we have

(1.1) µ(A + B)1/d ≥ µ(A)1/d + µ(B)1/d.

This illustrates some basic differences. While measure is a more sophisticated concept
than cardinality of a finite sets, the results are often simpler and sometimes also easier
to prove.

The second excursion is to topology. We think of the integers as a discrete set;
however, other topologies on them do exist, and some have a relevance to our subject.
We will mainly discuss the connection of the Bohr topology to additive properties.

2. Raikov’s theorem and generalizations

A natural analog of adding integers modulo q is the addition of reals modulo 1. The
analog of the Cauchy-Davenport inequality is the following theorem, due to Raikov [40]
from 1939.

In the sequel we consider subsets of [0, 1), addition is meant modulo 1. Problems of
mesurability are not in the focus of our interest, so assume that every set mentioned is
compact or open. Lebesgue measure is denoted by µ.

Theorem 2.1. For A,B ⊂ [0, 1) we have

(2.1) µ(A + B) ≥ min
(
1, µ(A) + µ(B)

)
.

Prexercise. Deduce Raikov’s theorem from the Cauchy-Davenport inequality.
a) Approximate a general set by a union of intervals.
b) Taking a prime p and compare µ(A) to the cardinalites of the sets

(2.2) A(x, p) = {j ∈ Zp : x + j/p ∈ A}.
(Naturally j/p and x + j/p are interpreted modulo 1.)

Of the two approaches suggested above, a) is more natural but also has more cum-
bersome details. We describe method b).

Proof. Write A + B = S. Take a prime p and construct sets of residues from the
sets A,B, S as described in (2.2). For every x, y we have

S(x, p) ⊃ A(x− y, p) + B(y, p).

85
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An application of the Cauchy-Davenport inequality to these sets now gives

|S(x, p)| ≥ min
(|A(x− y, p)|+ |B(y, p)| − 1, p

)
.

We can reformulate this as follows. Either S(x, p) = Zp, or

(2.3) |S(x, p)| ≥ |A(x− y, p)|+ |B(y, p)| − 1

for each y.
The average of such a cardinality is connected to the measure of the set in an

immediate way: ∫ 1

0

|A(x, p)dx = pµ(A).

(Why?) By integrating both sides of (2.3) with respect to y we obtain

|S(x, p)| ≥ p(µ(A) + µ(B))− 1.

This holds unless S(x, p) = Zp; hence the following inequality always holds:

|S(x, p)| ≥ min
(
p(µ(A) + µ(B))− 1, p

)
.

Now integrating this inequality with respect to x and dividing by p we get

µ(A + B) ≥ min
(
1, µ(A) + µ(B)

)− 1/p.

As this holds for every prime p, (2.1) follows. ¤

Raikov’s theorem was generalized by Macbeath [31] for the n-dimensional torus, by
Shields [58] for connected commutative compact second countable groups, by Kneser
[27] for commutative locally compact groups, and by Kemperman [23] for noncompact
groups. We state below his result in less than complete generality to avoid discussing
certain aspects of noncommutative groups and measurability.

Let G be a locally compact topological group. If G is compact, or commutative, and
in some other cases too, it has an invariant measure µ, called Haar measure. Invariance
means that we have

µ(A + x) = µ(x + A) = µ(A)

for every measurable set and every x ∈ G. Without any condition we can only claim
that there is a right-invariant µr satisfying µr(A + x) = µr(A) and a left-invariant µl

satisfying µl(x+A) = µl(A). If these coincide, that is, an invariant Haar measure exists,
the group is called unimodular. We shall state the unimodular case. Also we restrict
our attention to measurable sets.

Theorem 2.2. Let G be a compact, connected group, A,B ⊂ G measurable sets
such that A + B is also measurable. We have

µ(A + B) ≥ min
(
µ(A) + µ(B), µ(G)

)
.

Theorem 2.3. Let G be a locally compact, noncompact group which does not have
any proper compact-open subgroup. Let A,B ⊂ G be measurable sets such that A + B
is also measurable. We have

µ(A + B) ≥ µ(A) + µ(B).
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3. The impact function

Let G be a group with a Haar measure µ, and B ⊂ G a measurable set. We define
the impact function of B analogously to the finite situation by the f text

ξA(x) = inf{µ(A + B) : B ⊂ G,µ(B) = x}.
Exercise 82. Let G be the interval [0, 1) with addition modulo 1. Prove the con-

cavity of the impact function: for 0 < y < x < 1 and x + y ≤ 1 we have

ξ(x− y) + ξ(x + y) ≤ 2ξ(x).

Exercise 83. Use the previous exercise to give another proof of Raikov’s theorem.

This method also can be extended to every locally compact group.

Theorem 3.1. If G does not have any proper compact-open subgroup, then ξ is a
continuous concave function on its whole domain.

See [51]; there this result is also applied to deduce Kemperman’s theorems from the
previous section.

Another curious property of the impact function is its symmetry. To avoid an
exception we redefine the impact function at 0 by continuity:

ξ(0) = lim
x→0+

ξ(x).

Theorem 3.2. Assume that G is compact, commutative and connected. The small-
est value of x for which ξ(x) = µ(G) is x = µ(G) − ξ(0). The graph of ξ(x) on the
interval [0, µ(G)− ξ(0)] is symmetric to the line x + y = µ(G).

4. Meditation on convexity and dimension

Let A,B be Borel sets in Rd. The Brunn-Minkowski inequality (1.1) estimates
µ(A + B) in a natural way, with equality if A and B are homothetic convex sets.

This can be exptessed in terms of the impact function as

ξB(a) ≥ (
a1/d + µ(B)1/d

)d
,

and this is the best possible estimate in terms of µ(B) only.
To measure the degree of nonconvexity one can try to use the measure of the convex

hull beside the measure of the set. This is analogous to the hull volume, and it is
sufficient to describe the asymptotic behaviour of ξ.

Theorem 4.1 ([57], Theorem 1.). For every bounded Borel set B ⊂ Rd of positive
measure we have

lim
a→∞

ξB(a)1/d − a1/d = µ(conv B)1/d.

This is the continuous analogue of Theorem 9.3 of Chapter 3, and there is an ana-
logue to the effective version Theorem 9.5 as well.

Note that by considering sets homothetic to conv B we immediately obtain

ξB(a)1/d ≤ a1/d + µ(conv B)1/d,

thus we need only to give a lower estimate. This is as follows.
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Theorem 4.2 ([57], Theorem 2.). Let µ(B) = b, µ(conv B) = v. We have

ξB(a)1/d ≥ a1/d + v1/d
(
1− c(v/b)1/2(v/a)1/(2d)

)

ξB(a) ≥ a + dv1/da1−1/d
(
1− c(v/b)1/2(v/a)1/(2d)

)

with a suitable positive constant c depending on d.

If v > b, we get a nontrivial improvement over the Brunn-Minkowski inequality for
a > a0(b, v). It would be desirable to find an improvement also for small values of a, or,
even more, to find the best estimate in terms of µ(B) and µ(conv B).

The exact bound and the structure of the extremal set may be complicated. This is
already so in the case d = 1, which was solved in [49]. Observe that in one dimension
µ(conv B) is is the diameter of B.

Theorem 4.3 ([49], Theorem 2). Let B ⊂ R, and write µ(B) = b, µ(conv B) = v.
If

(4.1) a ≥ v(v − b)

2b
+

b{v/b}(1− {v/b})
2

,

then ξB(a) = a + v. If (4.1) does not hold, then let k be the unique positive integer
satisfying

k(k − 1)

2
≤ a

b
<

k(k + 1)

2
and define δ by

a

b
=

k(k − 1)

2
+ δk.

We have
ξB(a) ≥ a + (k + δ)b,

and equality holds if B = [0, b] ∪ {v}.
A set A such that ξB(a) = µ(A + B) for the above set B is given by

A = [0, (k − 1 + δ)b] ∪ [v, v + (k − 2 + δ)b] ∪ · · · ∪ [(k − 1)v, (k − 1)v + δb].

A less exact, but simple and still quite good lower bound sounds as follows.

Corollary 4.4 ([49], Theorem 1). Let B ⊂ R, and write µ(B) = b, µ(conv B) = v.
We have

ξB(a) ≥ min
(
a + v, (

√
a +

√
b/2)2

)
.

A comparison with the 2-dimensional Brunn-Minkowski inequality gives the follow-
ing iterpretation: initially a long one-dimensional set B tries to behave as if it were a
two-dimensional set of area b/2.

It can be observed that Corollary 4.4 is weaker than the obvious inequality

(4.2) µ(A + B) ≥ µ(A) + µ(B)

for small a. For small values of a Theorem 4.3 yields the following improvement of (4.2).

Corollary 4.5 ([49], Corollary 3.1). If a ≤ b, then we have

µ(A + B) ≥ min(2a + b, a + v).

If b < a ≤ 3b, then we have

µ(A + B) ≥ min
(3

2
(a + b), a + v

)
.
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Problem 4.6. How large must µ(A+B) be if µ(A), µ(B), µ(conv A) and µ(conv B)
are given?

What are the minima of µ(A + A) and µ(A− A) for fixed µ(A) and µ(conv A)?

The results above show that for d = 1 (like in the discrete case, but for less obvious
reasons) the limit relation becomes an equality for a > a0. Again, this is no longer the
case for d = 2.

An example of a set B ⊂ R2 such that

ξB(a)1/2 < a1/2 + v1/2

will hold for certain arbitrarily large values of a is as follows.
Let 0 < c < 1 and let B consist of the square [0, c]× [0, c] and the points (0, 1), (1, 0)

and (1, 1). Hence b = c2 and v = 1.
For an integer n ≥ 1 put

An = [0, n]× [0, n] ∪
n⋃

j=0

[j, j + c]× [n, n + c] ∪
n−1⋃
j=0

[n, n + c]× [j, j + c].

Thus An consists of a square of side n and 2n + 1 small squares of side c, hence

µ(An) = n2 + (2n + 1)b.

We can easily see that An + B = An+1. Hence by considering the set A = An we see
that for a number a of the form a = n2 + (2n + 1)b we have

ξB(a) ≤ µ(An+1) = (n + 1)2 + (2n + 3)b <
(√

a + 1
)2

.

A more detailed calculation leads to

ξB(a)1/2 ≤ a1/2 + 1− ca−1

(for these special values of a).
If we tried to define an impact volume in the continuous case, we would recover the

volume, at least for compact sets. Still, the above results and questions suggest that
ordinary volume is not the best tool to understand additive properties. Perhaps one
could try to modify the definition of impact volume by requiring µ(A) ≥ µ(B). So put

iv∗(B) = inf
a≥µ(B)

(
ξB(a)1/d − a1/d

)d
.

Problem 4.7. Find a lower estimate for iv∗(B) in terms of µ(B) and µ(conv B).

5. Topologies on integers

For most of the time we are happy with the integers as a discrete set. However,
other important topologies do exist on them. An example is the p-adic topology, which
can be compactified to give us p-adic integers. The Čech-Stone compactification also
has applications in combinatorial number theory.

In the sequel we will always use commutative groups (Z and extensions); for non-
commutative groups the following definitions and claims have to be modified a litle.

Among all topologies we will be interested in those where addition behaves nice. We
consider two possible interpretations, a stronger and a weaker one.
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Definition 5.1. Let G be a group and T a topology on it. We say that (G, T ) is
a topological group, if addition and substraction are continuous in T , that is, f(x, y) =
x − y is jointly continuous in both variables. It is a semitopological group, if x − y is
continuous in each variable separately.

The weaker condition means two things: first, if U is a neighbourhood of 0, then so
is −U ; next, if U is a neighbourhood of an element x, then U + a is a neighbourhood of
x + a. The stronger condition, in addition, requires that for any neighbourhood U of 0
there is another neighbourhood U ′ such that U ′ − U ′ ⊂ U .

Exercise 84. Construct a topology on Z which makes it a semitopological group
but not a topological group.

When defining a topology on Z, we shall typically proceed as follows. We define a
basis of neigbourhood of 0. Then, to make Z at least a semitopological group, we define
neighbourhoods of other integers by translation, that is, U will be a neighbourhood of
x if U − x is a neighbourhood of 0. In most cases it will be trivial that this indeed
defines a topology, and we shall not give the easy details. If there is a hidden difficulty,
we shall point it out.

A topological group may be complete, which means that every sequence (assuming
a countability condition) or every generalized sequence (indexed by a general ordered
set, not necessarily by positive integers) which satisfies the Cauchy condition must be
convergent.

A topological group can always be completed by assigning a new element (a limit) to
every (generalized) Cauchy sequence which does not already have one. This procedure
is used to build p-adic integers.

If we are lucky, this completion is compact and then we can embed our group into
a compact group, that is, we can compactify it.

Exercise 85. Construct a group topology on Z, other than the discrete one, which
cannot be compactified.

We can sometimes compare two topologies as follows.

Definition 5.2. Let T , T ′ be two topologies on the same set. We say that T ′ is
finer than T , or T is coarser than T ′, if every set which is open in T is also open in
T ′.

The finest topology of all is the discrete one. The coarsest is the one in which only
the empty set and the whole space are open, a pretty uninteresting one.

In the sequel we will find the answer to the following questions.
Question 1. What is the coarsest topology on Z in which all characters are con-

tinuous?
Recall that a character is a homomorphism into the circle {z ∈ C : |z| = 1}. Now if

γ is a character and γ(1) = ω = e2πit, then necessarily

γ(n) = ωn = e2πitn

for all integers.
Question 2. What is the finest topology on Z which can be compactified to make

it a compact topological group?
We shall see that the answer to these questions will be the same, and we shall call

it the Bohr topology.
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We first answer the first question.
By the multiplicative property of characters continuity everywhere is equivalent to

continuity at 0. This means that the following sets must be neighbourhoods of 0 for
each character γ and ε > 0:

{n ∈ Z : |γ(n)− γ(0)| < ε}.
If we exptess γ as γ(n) = e2πitn, we see that this set is the same as

{n ∈ Z : ‖tn‖ < δ},
where ε and δ are connected by the equation

ε =
∣∣e2πiδ − 1

∣∣ = 2 sin πδ.

If such a set has to be a neighbourhood of 0, then so has any finite intersection of
such sets. We saw similar objects in Section 5 of Chapter 2, which we now repeat.

Definition 5.3. If G is a commutative group, γ1, . . . , γk are characters of G and
εj > 0, we write

B(γ1, . . . , γk; ε1, . . . , εk) = {g ∈ G : | arg γj(g)| < 2πεj for j = 1, . . . , k}
and call these sets Bohr sets. In particular, if ε1 = · · · = εk = ε, we shall speak of a
Bohr (k, ε)-set. (We take the branch of arg that lies in [−π, π).)

By view of the above, a Bohr set in Z can also be written as

B(u1, . . . , uk; ε1, . . . , εk) = {x ∈ Z : ‖ujx‖ < εj for j = 1, . . . , k},
where now the parameters uj are real numbers taken modulo 1.

Definition 5.4. The Bohr topology on a commutative group is the topology in
which a set is a neigbourhood of a point x if and only if it contains a set of the form
x + N , where B is a Bohr set.

Exercise 86. The Bohr sets are open in the Bohr topology.

Exercise 87. The Bohr topology turns Z into a topological group.

Exercise 88. This group can be compactified.

Exercise 89. A sequence is convergent in the Bohr topology only if it is constant
from a point on.

6. The finest compactification

Now we answer Question 2 of the previous section.
Let G be a compact group, and let U be a neighbourhood of 0 in G. The collection

of open sets
{U + x : x ∈ G}

covers G, hence so does a finite subcollection. Hence U has the property that there are
finitely many elements x1, . . . , xk ∈ G such that⋃

(U + xi) = G.

Definition 6.1. A set A in a group G is syndetic, if there are finitely many elements
x1, . . . , xk ∈ G such that ⋃

(A + xi) = G.
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So a neighbourhood of 0 must be syndetic.

Exercise 90. A set A ⊂ Z is syndetic if and only if it is unbounded both from
above and from below, and has bounded gaps, that is,

A = {. . . , a−1, a0, a1, a2, . . . }, ak+1 − ak < c

with some c.

Exercise 91. Bohr sets are syndetic.

Let U be a neighbourhood of zero in any conditionally compact topology (this ex-
pression means that it has a compactification). We can find an open set U1 such that
U1 − U1 ⊂ U . Then, there is an open set U2 such that U2 − U2 ⊂ U1, and so on. So, U
can be a neighbourhood of zero only if there is a chain of syndetic sets U1, U2, . . . such
that Ui+1 − Ui+1 ⊂ Ui ∀i.

Note that the Bohr sets have this property, because

B(α1, . . . , αk, ε/2)−B(α1, . . . , αk, ε/2) ⊂ B(α1, . . . , αk, ε).

It is possible to show directly (without any reference to characters) that this require-
ment defines a class of sets which can serve as the basis of a topology, and it is indeed
conditionally compact. Instead we shall prove that any set with this property contains
a Bohr set. Moreover, we do not need an infinite chain for this, two steps are sufficient.

Note that for a sequence U,U1, U2, . . . of sets U1, U2, . . . such that Ui+1 − Ui+1 ⊂ Ui

we have
(U2 − U2)− (U2 − U2) = 2U2 − 2U2 ⊂ U.

So the exact formulation of the above claim sounds as follows.

Theorem 6.2 (Bogolyubov). If A ⊂ Z is a syndetic set, then 2A − 2A contains a
Bohr set (in other words, it is a neighbourhood of 0 in the Bohr topology).

This will be proved in a stronger form in the next section.

7. Banach density

To put Bogolyubov’s theorem into proper perspective we define some new concepts
of density.

Definition 7.1. The lower and upper Banach densities of a set A of integers are
defined by

d∗(A) = lim
n→∞

min
x

|A ∪ [x + 1, x + n]|
n

d∗(A) = lim
n→∞

max
x

|A ∪ [x + 1, x + n]|
n

Exercise 92. These limits do exist.

Exercise 93. Show that for any set A ⊂ Z, d∗(A) ≤ d(A) ≤ d(A) ≤ d∗(A).

Exercise 94. d∗(A) > 0 if and only if A is syndetic.

Exercise 95. Let P be the set of primes. Show that d∗(P ) = 0.

The stronger form of Bogolyubov’s theorem requires only positive upper Banach
density.
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Theorem 7.2 (Bogolyubov). If d∗(A) > 0, then there exist α1, . . . , αk, and ε > 0,
with k and ε depending only on d∗(A) > 0, such that B(α1, . . . , αk, ε) ⊂ 2A− 2A

Proof. We split the proof into three steps.

Step 1, modular case: It corresponds to Lemma 5.2, which we repeat below.

Lemma 7.3. Let G be a finite commutative group, |G| = q. Let A be a
nonempty subset of G and write |A| = m = βq. The set D = 2A − 2A (the
second difference set of A) contains a Bohr (k, ε)-set with some integer k < β−2

and ε = 1/4.

Step 2, finite case:

Lemma 7.4. If A ⊂ [t, t + l], |A| ≥ βl, then there are α1, . . . , αk, ε, with
k, ε depending only on β such that 2A− 2A ⊇ B(α1, . . . , αk, ε) ∩ [−l, l].

To see this let q > 4l and let A ⊂ [t, t + l]. We denote by A′ ⊂ Zq the set of
residue classes of A modulo q, which satisfies |A′| ≥ β′l with β′ = β/5. Then,
by the modular case, there exist k(β), u1, . . . , uk and ε(β) such that

2A′ − 2A′ ⊇
{

x :
∥∥∥xui

q

∥∥∥ < ε

}
.

This means that for any n such that ‖nαi‖ < ε, where αi = ui/q, we can find
a1, a2, a3, a4 ∈ A such that n ≡ a1+a2−a3−a4modq with |a1+a2−a3−a4| < 2l.
If |n| < 2l, they only can be congruent if they are equal. So, for all n ∈
B(α1, . . . , αk, ε) ∩ [−l, l] we have n = a1 + a2 − a3 − a4, which completes the
second step of the proof.

Last step, density case: Let β satisfy d∗(A) > β > 0. Given l ∈ N, we can
find t such that |A ∪ [t, t + l]| ≥ βl. The finite case provides a finite collection
α1, . . . , αk, ε such that 2A− 2A ⊇ B(α1, . . . , αk, ε) ∩ [−l, l]. Note that k and ε
are fixed, while α1, . . . , αk, which we can assume to belong to [0, 1], depend on
l.

For each l, we define

Cl = {(α1, . . . , αk) ∈ [0, 1]k : B(α1, . . . , αk, ε) ∩ [−l, l] ⊆ 2A− 2A}
For all l, Cl is a compact set, nonempty by the previous argument, and Cl+1 ⊂
Cl. Then, ⋂

l∈N
Cl 6= ∅.

So there is at least one element (α1, . . . , αk) in the intersection. This defines
the Bohr neigbourhood in 2A− 2A we were looking for.

¤

8. The difference set topology

By Bogolyubov’s theorem, with 4 copies of A we get a Bohr neighbourhood of zero,
namely by forming A+A−A−A. With some modification 3 copies also suffice. Denote

k · A = {ka, a ∈ A}.
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Theorem 8.1 (Bergelson-Ruzsa [1]). Let A be a set of integers with d∗(A) > 0, and
let r, s, t be integers such that r + s + t = 0. The set r · A + r · A + t · A is a Bohr
neighbourhood of zero. In particular, the set 2A − 2 · A = A + A − 2 · A is a Bohr
neighbourhood of zero.

The question whether 2 copies of A is enough to have a Bohr neighbourhood inside
is difficult, and the answer may depend on the interpretation of density.

Unsolved problem: If A has positive lower Banach density (d∗(A) > 0), is A−A
a Bohr neighbourhood of 0?

Here we used the strongest assumption with lower Banach density, and in Bo-
golyubov’s theorem the weakest one with upper Banach density was sufficient. The
medium ones with asymptotic density do not give anything new, for problems about
the diffence set they behave as lower Banach density. An exact formulation is as follows.

Theorem 8.2 ([42]). Assume d∗(A) > 0. Then there is an A′ ⊂ N such that
d(A′) > 0 and A′ − A′ ⊂ A− A.

However, upper Banach density is different.

Theorem 8.3 (Kř́ıž[28]). There exist an A with d(A) > 0 such that there is no A′,
with d∗(A) > 0 and A′−A′ ⊂ A−A. Consequently, A−A is not a Bohr neighbourhood
of 0.

The following result guarantees a somewhat weaker property.

Theorem 8.4 (Følner[7, 8]). If d∗(A) > 0, then exist a B = B(α1, . . . , αk, ε) such
that d((A− A) \B) = 0.

Unsolved problem: If A has positive upper Banach density, is A−A a neighbour-
hood of something?

So we know that difference sets of sets of positive density are not necessarily neigh-
bourhoods of 0 in the Bohr topology. They are, however, neighbourhoods in some
topology: we can use them to define a new topology.

Definition 8.5. We say that V ⊂ Z is a neighbourhood of 0 in the difference set
topology if there exist a set A with d∗(A) > 0 such that A− A ⊂ V . V ′ is said to be a
neighbourhood of n ∈ Z if V = V ′ − n is a neighbourhood of 0.

Exercise 96. The difference set topology is indeed a topology (not easy!).
Easier exercise: formulate what this means using only sets and density, no topological

concept.

Exercise 97. Is the difference set topology a group topology?

Definition 8.6. The syndetic difference topology is defined similarly to the differ-
ence set topology, but not we saiy that V ⊂ Z is a neighbourhood of zero if there exist
an A with d∗(A) > 0 such that A− A ⊂ V .

With these concepts we can reformulate Kř́ıž’ theorem as the syndetic difference
topology is different from the difference set topology, and we cannot decide whether it
is the same as the Bohr topology.

Definition 8.7. The combinatorial difference topology is defined as follows. Let
A1, . . . Ak subsets of the integers such that Z =

⋃n
i=1 Ai, then

⋃
i (Ai − Ai) is a neigh-

bourhood of 0.
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Exercise 98. The syndetic difference topology and the combinatorial difference
topology are, indeed, topological spaces.

Exercise 99. If V is an open set in the syndetic difference topology so is in the
combinatorial. Hence the syndetic difference topology and the combinatorial difference
topology are identical.
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