Almost universal graphs

Alan Frieze and Michael Krivelevich
G is universal for a class of graphs \mathcal{H} if for every $H \in \mathcal{H}$, there is a subgraph of G which is isomorphic to H.
G is universal for a class of graphs \mathcal{H} if for every $H \in \mathcal{H}$, there is a subgraph of G which is isomorphic to H.

If $\mathcal{H} = \mathcal{H}(c, n)$ is the class of graphs with vertex set $[n]$ and maximum degree c, then any \mathcal{H}-universal graph must contain $\Omega(n^{2-2/c})$ edges.

Alon, Capalbo, Kohayakawa, Rödl, Ruciński, Szemerédi
$\mathcal{H}^*(c, n)$ is the set of labeled graphs with vertex set $[n]$ and average at most c.

\(\mathcal{H}^*(c, n) \) is the set of labeled graphs with vertex set \([n]\) and average at most \(c\).

An \(\mathcal{H}^*(c, n) \)-universal graph requires \(\Omega(n^{2-o(1)}) \) edges. It must contain all graphs with \((1 - \varepsilon)n\) isolated vertices and a \([c/\varepsilon]\)-regular graph on the remaining \(\varepsilon n\) vertices.
\(\mathcal{H}^*(c, n) \) is the set of labeled graphs with vertex set \([n]\) and average at most \(c\).

An \(\mathcal{H}^*(c, n) \)-universal graph requires \(\Omega(n^{2-o(1)}) \) edges. It must contain all graphs with \((1 - \varepsilon)n\) isolated vertices and a \([c/\varepsilon]\)-regular graph on the remaining \(\varepsilon n\) vertices.

We relax the notion of universal to almost universal.
G is almost universal for \mathcal{H} if it contains a subgraph isomorphic to all but $o(|\mathcal{H}|)$ graphs in \mathcal{H}.
G is almost universal for \mathcal{H} if it contains a subgraph isomorphic to all but $o(|\mathcal{H}|)$ graphs in \mathcal{H}.

In particular we consider $\mathcal{H} = \mathcal{H}^* (c, n)$. We estimate

$$\Pr(G_{n,m} \text{ is almost universal for } \mathcal{H}^*(c, n)).$$
\(G \) is almost universal for \(\mathcal{H} \) if it contains a subgraph isomorphic to all but \(o(|\mathcal{H}|) \) graphs in \(\mathcal{H} \).

In particular we consider \(\mathcal{H} = \mathcal{H}^*(c, n) \). We estimate

\[
\Pr(G_{n,m} \text{ is almost universal for } \mathcal{H}^*(c, n)) \]

which we reduce to

\[
\Pi(c, m) = \Pr(G_{n,m} \supseteq G_{n,cn/2})
\]

where \(\supseteq \) denotes “contains a subgraph isomorphic to”. The two graphs \(G_{n,m}, G_{n,cn/2} \) are drawn independently.
Theorem
(a) Suppose that $c < 1$ is constant. Then if A is constant,

$$
\Pi(c, m) \begin{cases}
\leq 1 - (1 - e^{-c^3/6})e^{-A^3/6} + o(1), & m = An \\
= 1 - o(1), & m \geq \frac{C_0 \log \log n}{\log \log \log n} n
\end{cases}
$$

for some sufficiently large C_0.
Theorem

(a) Suppose that $c < 1$ is constant. Then if A is constant,

$$\Pi(c, m) \begin{cases}
\leq 1 - (1 - e^{-c^3/6})e^{-A^3/6} + o(1), & m = An \\
= 1 - o(1), & m \geq \frac{C_0 \log \log n}{\log \log \log n} n
\end{cases}$$

for some sufficiently large C_0.

(b) Suppose that $c > 1$ is constant. Then for constants C_1, C_2,

$$\Pi(c, m) = \begin{cases}
o(1), & m \leq C_1 n^{2-2/(c+x_c)} \\
1 - o(1), & m \geq C_2 n^{2-1/(c-y_c)}
\end{cases}$$

where $x_c, y_c \to 0$ as $c \to \infty$.
In work on random graphs, it is usually more convenient to work in the independent model $G_{n,p}$ rather than in $G_{n,m}$. We therefore estimate

$$\Pi^\#(p_1, p_2) = \Pr(G_{n,p_2} \supseteq G_{n,p_1})$$

where G_{n,p_1} and G_{n,p_2} are generated independently and $p_2 = c/n$.
\(c < 1, m = An, (p_2 = 2m/n).\)

\[\Pr(G_{n,p_1 - \frac{\log n}{n^{3/2}}} \text{ contains a triangle and } G_{n,p_2 + \frac{\log n}{n^{3/2}}} \text{ is triangle free}) = (1 - e^{-c^3/6})e^{-A^3/6} + o(1).\]
\(c < 1, \quad m = \omega n, \quad \omega = 21 \log \log n / \log \log \log n, \)

\[G_i = G_{n,p_i}, \quad i = 1, 2, \quad (p_2 = 2m/n). \]

We assume that \(G_1 \) consists of isolated trees \(T_1, T_2, \ldots, T_s \) and unicyclic components \(K_1, K_2, \ldots, K_t \) of which \(> n(1 - e^{-1}) \) are isolated vertices.
We first try to embed the trees of G_1 one by one in a greedy fashion into G_2.
We first try to embed the trees of G_1 one by one in a greedy fashion into G_2.

We can continue the embedding if y_2 has enough neighbours. Otherwise, we pick a new y_1 and start again.
We first try to embed the trees of G_1 one by one in a greedy fashion into G_2.

We can continue the embedding if y_2 has enough neighbours. Otherwise, we pick a new y_1 and start again.

We keep embedding trees until either (i) we are done, or (ii) we have used $n(1 - e^{-1})$ vertices.
A vertex of G_1 is \textbf{large} if its degree is $\geq \omega/20$. For a tree T of G_1, let

$$\sigma(T) = \prod_{i=1}^{a(T)} (d_i - 1)!$$

where $d_1, d_2, \ldots, d_{a(T)}$ are degrees of large vertices of T.

\[\text{Lemma}\] The expected number of isolated trees T in G_1 with k vertices and $a(T) = a$ and $d_1 + d_2 + \ldots + d_{a(T)} = D$ is bounded by $A_1 a^2 D$. \[\text{p.10}\]
A vertex of G_1 is large if its degree is $\geq \omega/20$. For a tree T of G_1, let

$$\sigma(T) = \prod_{i=1}^{a(T)} (d_i - 1)!$$

where $d_1, d_2, \ldots, d_{a(T)}$ are degrees of large vertices of T.

Lemma

The expected number of isolated trees T in G_1 with k vertices and $\sigma(T) = \sigma$ and $a(T) = a$ and $d_1 + d_2 + \cdots + d_a = D$ is bounded by

$$An(ce^{1-c})^k(k e^{-1})^a 2^D \sigma^{-1}.$$
The expected number of vertices examined in trying to embed a tree T with k vertices and $d_1 + \cdots + d_a = D$ is at most

$$k(1 - e^{-\omega/10}) - k e^{2\omega a} 2^{D-a} \sigma(T) \omega^{-D+a}.$$
The expected number of vertices examined in trying to embed a tree T with k vertices and $d_1 + \cdots + d_a = D$ is at most

$$k(1 - e^{-\omega/10}) - k e^{2\omega a} 2^{D-a} \sigma(T) \omega^{-D+a}.$$

So the expected number of vertices used to embed all trees with at least one large vertex is bounded by

$$A \sum_{\sigma,k,a,D} n (ce^{1-c})^k (ke^{-1})^a 2^D \sigma^{-1} k(1-e^{-\omega/10}) - k e^{2\omega a} 2^{D-a} \sigma \omega^{-D+a}$$

$$< An \sum_{\sigma,k,a,D} ((1 + o(1)) k(ce^{1-c}))^k (k\omega e^{2\omega - 1}/2)^a 2^{2D} \omega^{-D}$$

$$\leq n/(\log n)^{1/2}$$
A similar approach is used to embed the trees without large vertices and the unicyclic components.
$c > 1$, $m \leq C_1 n^{2-2/(c+x_c)}$

where $x = x_c$ be the unique solution in $(0, 1)$ to $xe^{-x} = ce^{-c}$.
\(c > 1, \ m \leq C_1 n^{2-2/(c+x_c)} \)
where \(x = x_c \) be the unique solution in \((0, 1)\) to \(xe^{-x} = ce^{-c} \).

\[\alpha = 1 - \frac{x}{c} \quad \text{and} \quad \beta = \frac{c}{2} \left(1 - \frac{x^2}{c^2} \right). \]

Whp \(G_{n,cn/2} \) contains a giant component \(H \) with \(A \) vertices and \(B \) edges, where \(|A - \alpha n|, |B - \beta n| = O(n^{1/2} \log n) \) vertices.
\[
\Pr[G_{n,m} \supseteq G_1] \leq \Pr[G_{n,m} \supseteq H] \\
\leq (n)_A \left((1 + o(1)) \frac{2m}{n^2} \right)^B \\
\leq n^{\alpha n + O(\sqrt{n} \log n)} \left(\frac{2m}{n^2} \right)^{\beta n + O(\sqrt{n} \log n)} \\
= \left[n^{(1+o(1))\alpha} \left(\frac{2m}{n^2} \right)^{(1+o(1))\beta} \right]^n.
\]
\[
\Pr[G_{n,m} \supseteq G_1] \leq \Pr[G_{n,m} \supseteq H] \\
\leq (n)_A \left((1 + o(1)) \frac{2m}{n^2} \right)^B \\
\leq n^{\alpha n + O(\sqrt{n} \log n)} \left(\frac{2m}{n^2} \right)^{\beta n + O(\sqrt{n} \log n)} \\
= \left[n^{(1 + o(1))\alpha} \left(\frac{2m}{n^2} \right)^{(1 + o(1))\beta} \right]^n.
\]

If \(m \leq c_1 n^{2-2/(c+\epsilon_c)} \) for \(c_1 > 0 \) small, the above \(\to 0 \) as \(n \) grows, and \textbf{whp} \(G_{n,m} \) doesn’t contain almost all of the \(G_{n,cn/2} \).
Now assume that $c > 1$ and $p_2 = n^{-1/(c-y_c)}$.
Now assume that $c > 1$ and $p_2 = n^{-1/(c-y_c)}$.

Whp the vertices of $G_{n,c/n}$ can be ordered as v_1, v_2, \ldots, v_n so that v_i has at most d neighbours in $\{v_1, v_2, \ldots, v_{i-1}\}$.

$$d = c - \sqrt{c \log c} + O(\log c)$$ (follows from k-core paper of Pittel, Spencer, Wormald).

Also, G_1 is $K_{2,3}$-free whp.
Theorem

Let $\delta = \max \left\{ \frac{1}{d-1}, \frac{1}{d(d-3)} \right\}$. Let $p(n) = An^{(-1+\delta)/d}$, A large.

H is a d-degenerate $K_{2,3}$-free graph on c_0n, $c_0 < 1$ vertices, of maximum degree $\Delta(H) \leq \Delta_0 = 1/(4dp)$.

Whp the random graph $G_{n,p}$ contains a copy of H.
Every d vertices have $\geq A_1 n^\delta$ common neighbours
After adding some random edges to H we can assume that if U_i is the set of neighbours of v_i in $\{u_1, u_2, \ldots, u_{i-1}\}$ then

(i) For each pair $A_1 n^\delta \leq i < j$, $U_i \setminus U_j \neq \emptyset$.

(ii) Each U_k intersects at most $2d\Delta_0$ sets $U_j, j \neq k$.
After adding some random edges to H we can assume that if U_i is the set of neighbours of v_i in $\{u_1, u_2, \ldots, u_{i-1}\}$ then

(i) For each pair $A_1 n^\delta \leq i < j$, $U_i \setminus U_j \neq \emptyset$.

(ii) Each U_k intersects at most $2d\Delta_0$ sets $U_j, j \neq k$.

Now we try to embed the rest of H in the order $v_{n_0+1}, \ldots, v_{c_0 n}$.
W_i denotes the image of U_i under the implied mapping.

The conditioning on w is that $N_2(w) \nsubseteq W_i$, $i \in J'$ for some $J' \subseteq J = \{i < j : U_i \cap U_j \neq 0\}$.
\[\Pr(N_2(w) \supseteq W_j \mid \text{history of process}) = \]
\[\Pr(N_2(w) \supseteq W_j \mid N_2(w) \not\supseteq W_i, i \in J') \]
\[\geq \Pr(N_2(w) \supseteq W_j \text{ and } x_i \not\in N_2(w), i \in J') \]
\[\geq p^d (1 - p)^{2d\Delta_0} \]
\[\geq p^d / 2. \]
\[\Pr(N_2(w) \supseteq W_j \mid \text{history of process}) = \]
\[\Pr(N_2(w) \supseteq W_j \mid N_2(w) \not\supseteq W_i, i \in J') \]
\[\geq \Pr(N_2(w) \supseteq W_j \text{ and } x_i \notin N_2(w), i \in J') \]
\[\geq p^d (1 - p)^{2d \Delta_0} \]
\[\geq p^d / 2. \]

Thus,
\[\Pr(\forall w : N_2(w) \supseteq W_j \mid \text{history of process}) \]
\[\leq (1 - p^d / 2)^{(1-c_0)n/2} \leq e^{-An^\delta/4}. \]