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1 PROBLEM DEFINITION

This classic problem in complexity theory is concerned with efficiently finding a satisfying assign-
ment to a propositional formula. The input is a formula with n Boolean variables which is expressed
as an AND of ORs with 3 variables in each OR clause (a 3-CNF formula). The goal is to (1) find
an assignment of variables to TRUE and FALSE so that the formula has value TRUE, or (2) prove
that no such assignment exists. Historically, recognizing satisfiable 3-CNF formulas was the first
“natural” example of an NP-complete problem, and, because it is NP-complete, no polynomial-time
algorithm can succeed on all 3-CNF formulas unless P = NP [14, 31]. Because of the numerous
practical applications of 3-SAT, and also due to its position as the canonical NP-complete problem,
many heuristic algorithms have been developed for solving 3-SAT, and some of these algorithms
have been analyzed rigorously on random instances.

Notation A 3-CNF formula over variables x1, x2, . . . , xn is the conjunction of m clauses C1 ∧
C2 ∧ . . .∧Cm, where each clause is the disjunction of 3 literals, Ci = `i1 ∨ `i2 ∨ `i3 , and each literal
`ij is either a variable or the negation of a variable (the negation of the variable x is denoted by x).
A 3-CNF formula is satisfiable if and only if there is an assignment of variables to truth values so
that every clause contains at least one true literal. Here, all asymptotic analysis is in terms of n,
the number of variables in the 3-CNF formula, and a sequence of events {En} is said to hold with
high probability (abbreviated whp) if limn→∞ Pr[En] = 1.

Distributions There are many distributions over 3-CNF formulas which are interesting to con-
sider, but research to date has focused primarily on (1) sparse satisfiable instances, (2) dense
satisfiable instances, and (3) dense unsatisfiable instances.

This attention can be attributed to the behavior of an instance with n variables, consisting of
m random clauses selected independently and uniformly from all triples of literals (this distribution
of instances will be denoted In,m). The probability of satisfiability for instances drawn from this
distribution has an interesting and mysterious relationship with the ratio of clauses to variables (the
clause density). When the ratio is low, the instances are quite likely to be satisfiable (an example
of (1), the sparse satisfiable case), while when the ratio is high, the instances are unsatisfiable with
overwhelming probability (an example of (3), the dense unsatisfiable case). This phenomenon is
treated in detail in Chapter ?? of this volume.

A very similar distribution which sometime leads to more convenient computation is the n
variable instances where each triple of literals appears as a clause independently with probability
p. This distribution will be denoted here by In,p.

Dense satisfiable instances can be formed by conditioning on the event {In,m is satisfiable}, but
this conditional distribution is difficult to sample from and to analyze. This has led to research
in “planted” random instances of 3-SAT, which are formed by first choosing a truth assignment φ
uniformly at random, and then selecting each clause independently from the triples of literals where
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at least one literal is set to TRUE by the assignment φ. The clauses can be included with equal
probabilities in analogy to the In,p or In,m distributions above [29, 30], or different probabilities can
be assigned to the clauses with one, two, or three literals set to TRUE by φ, in an effort to better
hide the satisfying assignment [3, 21].

A particularly appealing modification of the planted random distribution is to the semirandom
instance, where a planted random instance is perturbed by an adversary who is constrained to add
only clauses which are consistent with the planted satisfying assignment and not to delete anything
[20].

Problem 1 (3-SAT).
Input: 3-CNF Boolean formula F = C1 ∧ C2 ∧ · · · ∧ Cm, where each clause Ci is of the form
Ci = `i1 ∨ `i2 ∨ `i3, and each literal `ij is either a variable or the negation of a variable.
Output: A truth assignment of variables to Boolean values which makes at least one literal in
each clause TRUE, or a certificate that no such assignment exists.

2 KEY RESULTS

It is convenient to consider three categories of heuristics for 3-SAT, based on the type of input
distribution for which the heuristic is likely to be successful.

Algorithms for sparse satisfiable instances In the analysis of heuristics, it is often difficult
to cope with the conditioning introduced by backtracking algorithms. However, there are some
simple heuristics which make no use of backtracking that are likely to succeed on sparse random
instances, that is, instances of 3-SAT where the ratio of clauses to variables is sufficiently small.

The Pure Literals Heuristic (PL) is one approach which has no backtracking. It functions as
follows: Repeat the following: if the formula contains a literal and not the negation of that literal,
set this literal to TRUE and remove all clauses containing the literal. Otherwise set a randomly
chosen literal to TRUE, remove all the clauses it satisfies, and remove its negation from all the
clauses in which it appears. If a clause become empty, halt and declare failure. Otherwise, when
no clauses are left, return the satisfying assignment generated. The PL heuristic has been analyzed
by many researchers, and the following result appears in [32] and is proved rigorously in [28, 33]:

Theorem 1. There exists a constant cPL ≈ 1.637, such that for any constant c < cPL, whp the
PL heuristic succeeds on In,cn, while for any constant c > cPL, whp the PL heuristic fails on In,cn.

The Generalized Unit Clause Heuristic (GUC) is an alternative approach which does not employ
backtracking, and works in the following manner: Repeat the following: choose a clause C uniformly
at random from all clauses of shortest length, and choose a literal ` uniformly at random from C.
Set the variable corresponding to ` so that C is satisfied, remove all clauses in the instance in which
` appears, and remove ` from all the clauses in which it appears. If a clause become empty, halt and
declare failure. Otherwise, when no clauses are left, return the satisfying assignment generated.
The GUC heuristic has been analyzed by many researchers, eventually leading to the following
result from [24]:

Theorem 2. There exists a constant cGUC ≈ 3.003 such for any c < c3, the GUC heuristic succeeds
on In,cn with asymptotically positive probability, while for any c ≥ c3, the GUC heuristic fails whp.

Myopic algorithms are a class of heuristics which are defined formally in [1]. They generalize this
backtracking-free approach. These algorithms and their close relatives in [26, 27] provide a popular
approach to rigorously proving lower bounds on the satisfiability threshold (which is currently
known to be at least 3.52). They are treated in detail in Chapter ?? of this volume.
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Random Walk SAT (RWalkSAT): Unlike the previous algorithms, RWalkSAT is a local search
heuristic which does not commit to any of its decisions on how to set a variable. The algorithm
begins with an arbitrary truth assignment, and, while the assignment does not satisfy all clauses, the
algorithm chooses an unsatisfied clause uniformly at random, then chooses a variable in that clause
uniformly at random, and then flips the value of the variable in the truth assignment. Local search
heuristics are usually difficult to analyze on random instances, and RWalkSAT is no exception. The
following theorem, from [2], works by relating RWalkSAT to the Pure Literal Heuristic:

Theorem 3. For any constant c < cPL ≈ 1.637, whp heuristic RWalkSAT succeeds on In,cn.

Experimental results indicate that RWalkSAT also succeeds for larger values of c, up to c ≈
2.65 [34]. Experimental success has also been reported in combining RWalkSAT with the hill
climbing algorithm GSAT, which starts with a random assignment and repeatedly flips the value
of the variable which results in the greatest increase in the number of clauses satisfied [35] (The
combination of RWalkSAT and GSAT is called WalkSAT in the literature, and a careful combination
has shown experimental success for values of c to just below 4.2).

Survey Propagation is a very exciting new approach for random instances of 3-SAT. Algorithms
which use survey propagation have not been proven to succeed on random instances drawn from
In,cn, but experimental results suggest that some will succeed for values of c very close to the
conjectured satisfiability threshold [7]. The survey-propagation-based algorithm Survey Inspired
Decimation is described in the EXPERIMENTAL RESULTS section below.

Algorithms for dense unsatisfiable instances A simple calculation shows that whp In,cn is
unsatisfiable for c > 1/ log2(8/7) ≈ 5.191 (and better bounds are known, see Chapter ?? of this
volume). However, no algorithm is known which will certify the unsatisfiability of such instances
in polynomial time for any c � √

n. The hypothesis that no such algorithm exists (or a related,
weaker hypothesis) forms the basis for worst-case hardness-of-approximation results in [16].

One approach to refuting unsatisfiable instances of 3-SAT is resolution, which carefully simplifies
the instance by combining clauses according to the rule (x ∨ C1) ∧ (x̄ ∨ C2) =⇒ (C1 ∨ C2). This
is not an entire specification of an algorithm, and there is a lot of flexibility in how to choose the
clauses to combine. However, no polynomial-time algorithm will be successful whp, because whp

the shortest resolution proof has length exponential in the number of variables [4–6, 10].

Theorem 4. For any 0 ≤ ε ≤ 1/2, there exists a constant Cε such that for any c = c(n) ≥ 1, any
resolution proof that In,cn is unsatisfiable has size at least exp

{

Cεn/c2−ε
}

.

When the clause density is tending to ∞ sufficiently rapidly, two approaches have been shown
to succeed whp.

The first is the Davis-Putnam-Logemann-Loveland procedure (DPLL), which is closely related
to the resolution proof system above, and performs a recursive search for a satisfying assignment by
considering separately the effects of setting a variable to TRUE and to FALSE. When the recursive
application of the search results in a clause with all literals set to FALSE, the branch terminates. In
the version of DPLL analyzed in [4], (called ordered DLL there), the next variable to set is selected
uniformly from the variables in unit clauses if such a clause exists, and according to a fixed order
on all variables otherwise. In [4], it is proved that

Theorem 5. Ordered DLL certifies the unsatisfiability of In,cn in time 2O(n/c)nO(1) whp. Thus
ordered DLL runs in polynomial time whp for c = Ω(n/ log n).

Spectral refutation algorithms provide an alternative approach which have been proven to work
whp for lower clause density. These algorithms work by constructing certain graphs based on the
3-CNF formulas and then calculating the eigenvalues of these graphs, which must satisfy certain
inequalities if the formula is satisfiable. The approach which currently is proven to work for the
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widest range of instances is from [19], which works for instances In,cn3/2 whenever c exceeds a
sufficiently large constant. For simplicity, however, the algorithm which follows is a simpler spectral
refutation approach from [22].

Construct a graph G = (V, E) from the instance as follows. The vertex set V consists of ordered
pairs of variables, V = {(xi, xj) : i, j ∈ [n]}. The edge set E consists of all edges {(a1, b1), (a2, b2)}
such that there exists a variable z so that a1 ∨ a2 ∨ z is a clause in I and b1 ∨ b2 ∨ z is also a clause
in I. Similarly construct a graph H = (V, F ) from the instance, with the same vertex set, but with
edge set F consisting of all edges {(a1, b1), (a2, b2)} such that there exists a variable z so that that
a1 ∨ a2 ∨ z is a clause in I and b1 ∨ b2 ∨ z is also a clause in I. Then construct the matrix MG

defined by MG(i, j) = 1 if {i, j} 6∈ E and MG(i, j) = −1−p
p otherwise. Construct the matrix MH

similarly. Calculate the largest eigenvalue of MG and MH , and if both values are less than n2/4,
this constitutes a certificate that the instance is not satisfiable (see [23] or the subsequent work in
[12, 19, 25] for additional details).

Theorem 6. For 0 < γ < 1/2, for In,p with p = n−(1+γ), whp λ1(MG) and λ1(MH) ≤ n2/4, and
hence a spectral refutation heuristic certifies that In,p is unsatisfiable whp.

Whp random instances In,m with m > cn7/5 contain a polynomial length certificate of un-
satisfiability, however it is currently not known how to find such a certificate in time less than
2O(n0.2 log n) [17].

Algorithms for dense satisfiable instances Dense satisfiable instances can be formed by
conditioning on the event {In,m is satisfiable}, and results for this distribution are reported in
[9] and in the conclusion of [13]. Besides these works, the conditionally satisfiable distribution
has resisted analysis. This has led to research in “planted” random instances of 3-SAT, which
are formed by first choosing a truth assignment φ uniformly at random, and then selecting each
clause independently from the triples of literals where at least one literal is set to TRUE by the
assignment φ. When random instances are generated with a planted satisfying assignment, the
planted assignment together with the instance constitutes a candidate for a one-way function. This
potential application to cryptography, as well as the basic interest in identifying hard problems, has
motivated the development of algorithms for 3-SAT which are known to work on planted random
instances.

Majority Vote Heuristic: If every clause consistent with the planted assignment is included
with the same probability, then there is a bias towards including the literal satisfied by the planted
assignment more frequently than its negation. This is the motivation behind the Majority Vote
Heuristic, which assigns each variable to the truth value which will satisfy the majority of the
clauses in which it appears. Despite its simplicity, this heuristic has been proven successful whp

for sufficiently dense planted instances [29].

Theorem 7. When c is a sufficiently large constant and I ∼ I
φ
n,cn log n, whp the majority vote

heuristic finds the planted assignment φ.

When the density of the planted random instance is lower than c log n, then the majority vote
heuristic will fail, and if the relative probability of the clauses satisfied by one, two, and three
literals are adjusted appropriately then it will fail miserably. But there are alternative approaches.

For planted instances where the density is a sufficiently large constant, the majority vote heuris-
tic provides a good starting assignment, and then the k-OPT heuristic can finish the job. The
k-OPT heuristic of [20] is defined as follows: Initialize the assignment by majority vote. Initialize k
to 1. While there exists a set of k variables for which flipping the values of the assignment will (1)
make false clauses true and (2) will not make true clauses false, flip the values of the assignment
on these variables. If this reaches a local optimum that is not a satisfying assignment, increase k
and continue.
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Theorem 8. When c is a sufficiently large constant and I ∼ Iφ
n,cn the k-OPT heuristic finds a

satisfying assignment in polynomial time whp. The same is true even in the semirandom case,
where an adversary is allowed to add clauses to I that have all three literals set to TRUE by φ
before giving the instance to the k-OPT heuristic.

A related algorithm has been shown to run in expected polynomial time in [30], and a rigorous
analysis of Warning Propagation (WP), a message passing algorithm related to Survey Propaga-
tion, has shown that WP is successful whp on planted satisfying assignments, provided that the
clause density exceeds a sufficiently large constant [18]. When the relative probabilities of clauses
containing one, two, and three literals are adjusted carefully, it is possible to make the majority vote
assignment very different from the planted assignment. A way of setting these relative probabilities
that is predicted to be difficult is discussed in [3]. If the density of these instances is high enough
(and the relative probabilities are anything besides the case of “Gaussian elimination with noise”),
then a spectral heuristic provides a starting assignment close to the planted assignment and local
reassignment operations are sufficient to recover a satisfying assignment [21].

3 APPLICATIONS

Some applications of algorithms for random 3-SAT have already been mentioned, including proving
lower bounds on the satisfiability threshold (a major open problem in probabilistic combinatorics,
treated in Chapter ?? of this volume), understanding the security of using planted instances as one-
way functions, and developing further conditional hardness-of-approximation results in worst-case
complexity theory.

Another intriguing application is based on the experimental observation that, for a fixed number
of variables, DPLL algorithms take the most time to solve instances for which the clause density
appears to be equal to the satisfiability threshold [8, 15, 36]. This has led to speculation that there
is a connection between phase transitions and computational difficulty. However, evidence of this
relationship is inconclusive (see, for example, [11]).

Additionally, 3-SAT is a universal problem, and due to its simplicity, it has potential applications
in many other areas, including proof theory and program checking, planning, cryptanalysis, machine
learning, and modeling biological networks.

4 OPEN PROBLEMS

Several open problems in algorithms for random 3-SAT have already been mentioned; find bet-
ter bounds on the satisfiability threshold, determine whether refuting random instances of con-
stant density is computationally intractable, developing distributions over instances-and-satisfying-
assignments so that the instance is hard to satisfy if the assignment is kept secret, and analyzing
RWalkSAT and other backtracking algorithms for clause density closer to the satisfiability thresh-
old.

Another important direction is to develop alternative models of random distributions which
more accurately reflect the type of instances that occur in the real world.

Finally, the rigorous theoretical analysis of the survey-propagation-based heuristics presents an
important new challenge.

5 EXPERIMENTAL RESULTS

This section describes the survey-propagation-based algorithm, Survey Inspired Decimation (SID)
which is based on considerations from statistical mechanics and works in experiments for sparse
random instances with clause density close to the satisfiability threshold. In many ways, SID is
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similar to the other algorithms for sparse satisfiable instances which do not use any backtracking.
It works by selecting a variable to fix to a truth value and then reducing the formula to reflect
this decision. The decision of which variable to fix is made after finding a stable solution to a
system of nonlinear dynamics described below. In experiments, it has been helpful to use SID to
fix a certain fraction of the variables and then use the local search algorithm WalkSAT to find a
satisfying assignment for the remaining formula.

To determine which variable to fix, SID runs a iterative procedure (survey propagation) to
calculate values ηa→i for every clause a and every variable i which appears in a. For brevity, below
is an equivalent formulation of the update rule, in terms of γC→`, where C is a clause and ` is a
literal. This rearranging of terms may remove the physical intuition which motivates the algorithm.
For details on the intuition, see [7].

To determine which variable to fix, do the following: for each literal occurrence ` in each clause
C, initialize γC→` to a random value, independently and uniform in [0, 1]. Then iterate through the
literal occurrences according to a random permutation, updating the value of γC→`, for C = j∨k∨`
according to the rule

γC→` = 1 −
(

1 −
Zj

Zj + ZC
j − ZjZ

C
j

)

(

1 − Zk

Zk + ZC
k − ZkZ

C
k

)

,

where

Z` =
∏

C′:`∈C′

γC′→`, and ZC
` =

∏

C′:`∈C′,
C′ 6=C

γC′→`,

with the empty product is defined to be 1. (When dealing with a two-literal clause C = k ∨ `,

use the rule γC→` =
Zk

Zk+ZC
k +ZkZC

k

.) Repeat this until the largest change in any γC→` is less than

some threshold value ε, and then find the variable x for which the magnitude of −Zx+Zx
Zx+Zx+ZxZx

is
maximized, and set this variable to TRUE if the sign is positive and FALSE if the sign is negative.
(If the absolute value is less than ε for all variables, run WalkSAT.) Clean the formula by removing
the variable just set, and then iteratively removing any unit clauses generated, and then return
to iterating the γC→` values (the sample code available does not reseed the γC→` values for the
remaining formula).

6 DATA SETS

Sample instances of satisfiability and 3-SAT are available on the web at http://www.satlib.org/.

7 URL to CODE

Solvers and information on the annual satisfiability solving competition are available on the web
at http://www.satlive.org/.

Source code for Survey Propagation is at http://www.ictp.trieste.it/~zecchina/SP/
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[7] Braunstein, A., Mézard, M., and Zecchina, R. Survey propagation: an algorithm for
satisfiability. Random Structures Algorithms 27, 2 (2005), 201–226.

[8] Cheeseman, P., Kanefsky, B., and Taylor, W. M. Where the Really Hard Problems
Are. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
IJCAI-91, Sidney, Australia (1991), pp. 331–337.

[9] Chen, H. An algorithm for SAT above the threshold. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May
5-8, 2003 Selected Revised Papers (2003), pp. 14–24.
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