1 Basic definitions

Definition 1.1: A ring \(R \) is a set endowed with structure by the prescription of

(i) the structure of a commutative group, called the **additive structure** of \(R \) and described with additive notation and terminology,

(ii) the structure of a monoid, called the **multiplicative structure** of \(R \) and described with multiplicative notation and terminology and with unity \(u \),

provided that the following **distributive laws** are satisfied

\[
\begin{align*}
(a + b)c &= ac + bc \\
c(a + b) &= ca + cb
\end{align*}
\]

for all \(a, b, c \in R \). \hspace{1cm} (1.1)

Proposition 1.1. \(R = \{0\} \) with \(u = 0 \) is a (trivial) ring. For all other rings we have \(0 \neq u \).

Proposition 1.2. The following rules hold for all \(a, b, c \in R \)

\[
\begin{align*}
(a - b)c &= ac - bc, \\
c(a - b) &= ca - cb
\end{align*}
\] \hspace{1cm} (1.2)

\[
a0 = 0a = 0. \hspace{1cm} (1.3)
\]

\[
(-a)b = a(-b) = -(ab), \hspace{1cm} (-a)(-b) = ab \hspace{1cm} (1.4)
\]

Definition 1.2: Let a ring \(R \) be given and put \(R^\times := R \{0\} \). We say that \(R \) is **commutative** if the multiplicative monoid \(R \) is commutative. We say that \(R \) is **integral** if \(R^\times \) is a multiplicative submonoid of \(R \). We say that \(R \) is a **division-ring** if it is integral and the multiplicative submonoid \(R^\times \) is groupable. We say that \(R \) is a **field** if it is a commutative division ring.
Proposition 1.3. If R is an integral ring, then the multiplicative monoid R^\times is cancellative.

Definition 1.3: A subset a ring R is called a subring if it is both a subgroup of the additive group R and a submonoid of the multiplicative monoid R. We say that a subset I of R is an ideal if I is a subgroup of the additive group R and if

$$RI \subset I \text{ and } IR \subset I.$$ \hspace{1cm} (1.5)

Proposition 1.4. A subset I of a ring R is an ideal if it is stable under addition, contains zero, and satisfies (1.5).

If a ring is commutative or integral, so is every subring of it. A subring of a field is called a subfield if its natural ring-structure is that of a field.

Let S be a subset of a given ring R. We denote the group-span of S relative to the additive group R by $\text{Asp}_R S$ and the monoid span of S relative to the multiplicative monoid R by $\text{Msp}_R S$.

Proposition 1.5. The collection of all subrings and the collection of all ideals of a given ring R are intersection-stable.

Proposition 1.6. Let a ring R and $S \in \text{Sub}_R$ be given. Then there is exactly one smallest subring of R that includes S; it is called the ring-span of S and is denoted by $Rsp S$. Also, there is exactly one smallest ideal in R that includes S; it is called the ideal-span of S and is denoted by $Isp S$.

An ideal is called a principal ideal if it is the ideal-span of a singleton. If R is a commutative ring then every principal ideal in R is of the form

$$\text{Isp}\{a\} = Ra \text{ for some } a \in R.$$ \hspace{1cm} (1.6)

Let a ring R be given. Then $\{0\}$ and R are ideals in R. The only ideal in R that contains the unity is R itself.

Proposition 1.7. A commutative ring R is a field if and only if $\{0\}$ and R are the only ideals in R.

2
2 Homomorphisms, Quotient rings

We assume that rings R and R', with zeros 0 and $0'$ and unities u and u', respectively, are given.

Definition 2.1: We say that a mapping $\varphi : R \rightarrow R'$ is a ring-homomorphism if it is both a homomorphism for the additive group structures of R and R' and a homomorphism for the multiplicative monoid structures of R and R'.

Proposition 2.1. $\varphi : R \rightarrow R'$ is a ring-homomorphism if and only if it preserves addition, multiplication, and unities, i.e., if and only if

$$
\begin{align*}
\varphi(a + b) &= \varphi(a) + \varphi(b) \\
\varphi(ab) &= \varphi(a)\varphi(b)
\end{align*}
$$

for all $a, b \in R$ (2.1)

and

$$
\varphi(u) = u'.
$$

(2.2)

Note: If $u' \in \text{Rng}\varphi$, then (2.2) is automatically valid. If the context makes it clear what is meant, a ring-homomorphism is often just called a homomorphism.

Proposition 2.2. Images and pre-images under homomorphism of subrings are again subrings.

Proposition 2.3. Let $\varphi : R \rightarrow R'$ be a homomorphism. Pre-images of ideals in R' are ideals in R; in particular $\ker\varphi := \varphi^{-1}(\{0'\})$ is an ideal in R. If φ is surjective, then images of ideals in R are ideals in R'.

Theorem 2.1. Let a ring R and an ideal K in R be given and consider the additive quotient group

$$
R/K := \{a + K \mid a \in R\}.
$$

(2.3)

(a) For every $P, Q \in R/K$ there is exactly one piece of the partition R/K of R that includes the memberwise product PQ: we denote this piece by $P \cdot Q$, so that $PQ \subset P \cdot Q$ and $P \cdot Q = PQ + K$.

3
(b) If we prescribe, in \(R/K \), a multiplication by
\[
((P,Q) \mapsto P \cdot Q) : R/K \times R/K \to R/K
\]
and a unity \(U \) by
\[
U := u + K,
\]
then \(R/K \) acquires the structure of a ring. We call the ring obtained in this way the quotient-ring of \(R \) over \(K \).

Proposition 2.4. Let \(K \) be an ideal in a given ring \(R \). Then the mapping
\[
\omega_K : R \to R/K
\]
defined by
\[
\omega_K(x) = x + K \quad \text{for all} \quad x \notin R
\]
is a ring-homomorphism and we have \(\text{Ker}\omega_K = K \).

Proposition 2.5. Let \(\varphi : R \to R' \) be a ring-homomorphism and put \(K := \text{Ker}\varphi \). Then there is exactly one injective ring-homomorphism
\[
\sigma : R/K \to R'
\]
such that
\[
\varphi = \sigma \circ \omega_K,
\]
where \(\omega_K \) is the homomorphism described in Prop. 4. Moreover, if \(I' \) is a given ideal in \(R' \), then \(I := \varphi^{-1}(I') \) is an ideal in \(R \) such that
\[
K \subset I \quad \text{and} \quad I/K = \sigma^{-1}(I').
\]

Remark: Props. 2.4 and 2.5 above are analogous of Props. 2.8 and 2.9 in “Groups”.

Example: For the ring \(\mathbb{Z} \) of integers, the ideals in \(\mathbb{Z} \) are the sets of the form \(m\mathbb{Z} \) with \(m \in \mathbb{Z} \). By the Theorem, \(\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z} \) has the natural structure of a ring; \(\mathbb{Z}_m \) is often called the “ring of integers modulo \(m \)”. \(\mathbb{Z}_m \) is actually a field if and only if \(m \) is a prime number.
3 Polynomial rings

We assume that a commutative ring R with unity u is given.

Definition 3.1: We say a ring P is a polynomial ring over R if

(i) P is commutative and includes R as a subring.

(ii) P is endowed with additional structure by the prescription of an element $x \in P$, called the indeterminate of P, such that the mapping

$$\rho : R^{(\mathbb{N})} \rightarrow P$$

defined by

$$\rho(c) := \sum_{n \in \mathbb{N}} c_n x^n \text{ for all } c \in R^{(\mathbb{N})}$$

is invertible.

We now assume that a polynomial ring P over R, with indeterminate x, is given. We denote the inverse of the mapping (3.1) defined by (3.2) by

$$\gamma : P \rightarrow R^{(\mathbb{N})},$$

so that

$$p = \sum_{n \in \mathbb{N}} \gamma(p)_n x^n \text{ for all } p \in P.$$

Given $p \in P$, the sequence $\gamma(p)$ is called the sequence of coefficients of p.

Proposition 3.1. The mappings ρ and γ defined by (3.1) – (3.4) are additive group-isomorphisms.

Proposition 3.2. For all $p, q \in P$, we have

$$pq = \sum_{n \in \mathbb{N}} \left(\sum_{k \in (n+1)^{\dagger}} \gamma(p)_k \gamma(q)_{n-k} \right) x^n,$$

so that

$$\gamma(pq)_n = \sum_{k \in (n+1)^{\dagger}} \gamma(p)_n \gamma(q)_{n-k} \text{ for all } n \in \mathbb{N}.$$
Theorem 3.1. Let $\eta : R \rightarrow R'$ be a homomorphism from R to a commutative ring R'. For every $a \in R'$ there is exactly one homomorphism $\eta_a : P \rightarrow R'$ such that

$$\eta_a|_R = \eta \quad \text{and} \quad \eta_a(x) = a.$$ \hspace{1cm} (3.7)

Corollary 3.1. For every $a \in R$, there is exactly one homomorphism $\varepsilon_a : P \rightarrow R$ such that $\varepsilon_a|_R = \eta$ and $\varepsilon_a(x) = a$. We have

$$\varepsilon_a(p) = \sum_{k \in \mathbb{N}} \gamma(p)_{k} a^{k} \quad \text{for all} \quad p \in P.$$ \hspace{1cm} (3.8)

We will use the notation

$$p'(a) := \varepsilon_a(p) \quad \text{for all} \quad p \in P, \ a \in R$$ \hspace{1cm} (3.9)

and call $p'(a)$ the value of p at a. Given $p \in P$, the mapping $p' \in \text{Map}(R, R)$ defined by (3.9) is called the polynomial function associated with p. The set of all polynomial functions is denoted by

$$\text{Pol} \ R := \{ p' \in \text{Map}(R, R) \mid p \in P \}.$$ \hspace{1cm} (3.10)

We note that if S is any set, then $\text{Map}(S, R)$ acquires the structure of a commutative ring if we define the zero and unity in $\text{Map}(S, R)$ to be the constants with value 0 and u and if we define addition, opposition, and multiplication in $\text{Map}(S, R)$ by value-wise application of these operations.

Proposition 3.3. $\text{Pol} \ R$ is a subring of $\text{Map}(R, R)$ and

$$p \mapsto p' : P \rightarrow \text{Pol} \ R$$

is a surjective ring-homomorphism. It is invertible if and only if $p' = 0 \implies p = 0$ for all $p \in P$.

Definition 2: For every $p \in P^\times$ the degree of p is defined by

$$\deg p := \max Supt \gamma(p)$$ \hspace{1cm} (3.11)

and the leading coefficient of p is defined by

$$\text{lc}(p) := \gamma(p)_{\deg p}.$$ \hspace{1cm} (3.12)

We say that $p \in P^\times$ is a monic polynomial if $\text{lc}(p) = u$.

6
Proposition 3.4. Let $p,q \in P^\times$ be given such that $p+q \in P^\times$. Then

$$\deg(p+q) \leq \max\{\deg(p), \deg(q)\}, \quad (3.13)$$

in which the inequality is strict if and only if $\deg(p) = \deg(q)$ and $\lc(p) = -\lc(q)$. If $\deg(p) \neq \deg(q)$ or $\lc(p) \neq -\lc(q)$, then,

$$\lc(p+q) = \gamma(p)_{\deg(p+q)} + \gamma(q)_{\deg(p+q)}. \quad (3.14)$$

Proposition 3.5. Let $p,q \in P^\times$ be given such that $pq \in P^\times$. Then

$$\deg(pq) \leq \deg(p) + \deg(q), \quad (3.15)$$

in which the inequality is strict if and only if $\lc(p) \lc(q) = 0$. If $\lc(p) \lc(q) \neq 0$, we have

$$\lc(pq) = \lc(p) \lc(q). \quad (3.16)$$

Corollary 3.2. If $p,q \in P^\times$ are monic polynomials, so is pq and we have

$$\deg(pq) = \deg(p) + \deg(q). \quad (3.17)$$

Corollary 3.3. If R is an integral ring, so is P and (3.17) holds for all $p,q \in P^\times$.
