CMU Campus
Department of         Mathematical Sciences
Events People Colloquia and Seminars Conferences Centers Positions Areas of Research About the Department Alumni
Math Colloquium
Matthias Maier
University of Minnesota
Title: Adaptive Finite-Element Simulation of Surface Plasmon Polaritons on 2D Materials

Abstract: In the terahertz frequency range, the effective (complex-valued) surface conductivity of atomically thick 2D materials such as graphene has a positive imaginary part that is considerably larger than the real part. This feature allows for the propagation of slowly decaying electromagnetic waves, called surface plasmon-polaritons (SPPs), that are confined near the material interface with wavelengths much shorter than the wavelength of the free-space radiation. SPPs are promising ingredients in the design of novel optical applications promising "subwavelength optics" beyond the diffraction limit. There is a compelling need for controllable numerical schemes which, placed on firm mathematical grounds, can reliably describe SPPs in a variety of geometries.

In this talk we present an adaptive, higher-order finite element approach for the simulation of SPPs on 2D materials and layered structures. Aspects of the numerical treatment such as absorbing perfectly matched layers, local refinement and a-posteriori error control are discussed. We will present a number of applications of the framework to optical device simulations. Corresponding analytical results elucidate the solution structure. We conclude by introducing a homogenization theory of layered heterostructures to design novel devices.

Date: Wednesday, November 29, 2017
Time: 4:30 pm
Location: Wean Hall 7218
Submitted by:  Bohman
Note: Refreshments at 4:00 pm, Wean Hall 6220.