1. Prove or find a counterexample: If \(f: (0, 1) \to (-\infty, \infty) \) is continuous and \(\lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{1} f \, dm \) exists and is finite, then \(f \) is Lebesgue integrable on \((0, 1) \).

2. Suppose \(f_n: X \to [0, \infty) \) is measurable for each \(n \in \mathbb{N} \) and \(\mu(X) < \infty \). Show that the sequence \(\{f_n\} \) converges to 0 in measure if and only if \(\int_X f_n \, d\mu \to 0 \) as \(n \to \infty \).

3. Suppose that for each \(n \in \mathbb{N} \), \(f_n = 1_{E_n} \) for some Lebesgue measurable set \(E_n \subset [0, 1]^d \), and \(\mu(A) \overset{\text{def}}{=} \lim_{n \to \infty} \int_A f_n \, dm \) exists and is finite for each Borel set \(A \subset [0, 1]^d \). Show that \(\mu \) is a Borel measure, and \(\mu \) is absolutely continuous with respect to Lebesgue measure \(m \) on \([0, 1]^d \), with Radon-Nikodym derivative \(d\mu/dm \) taking values in \([0, 1]\) a.e.

4. Suppose \(f \) and \(g \) are positive and measurable on \(X = [0, 1] \), and satisfy

\[
f(x)g(x) \geq 1 \quad \text{for all} \quad x \in [0, 1].
\]

(i) Show that \(\left(\int_X f \, dm \right) \left(\int_X g \, dm \right) \geq 1 \).

(ii) For which choices of \(p, q \in (0, \infty) \) does the assumption (1) imply

\[
\left(\int_X f^p \, dm \right)^{1/p} \left(\int_X g^q \, dm \right)^{1/q} \geq 1. \]

5. Let \(u: \mathbb{R} \to (0, \infty) \) be Lebesgue measurable and 1-periodic. Let \(X = [0, 1] \) and suppose \(\int_X u \, dm = 1 \). For each \(\varepsilon > 0 \), define \(u_\varepsilon(x) = u(x/\varepsilon) \), and define a measure \(\mu_\varepsilon \) on \(\mathcal{B}(X) \) by

\[
\mu_\varepsilon(A) \overset{\text{def}}{=} \int_A u_\varepsilon \, dm.
\]

(i) Prove that \(\mu_\varepsilon(A) \to m(A) \) as \(\varepsilon \to 0^+ \) for every \(A \in \mathcal{B}(X) \).

(ii) Let \(\nu_\varepsilon \overset{\text{def}}{=} |\mu_\varepsilon - m| \) denote the total variation of the signed measure \(\mu_\varepsilon - m \) on \(X \).

Show that if \(\nu_\varepsilon(X) \to 0 \) as \(\varepsilon \to 0^+ \), then \(u(x) = 1 \) a.e.