CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
CNA Seminar/Colloquium/Joint Pitt-CNA Colloquium

Jacob Bedrossian
University of Maryland
Title: Mixing and enhanced dissipation in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow

Abstract: In this work we study the long time, inviscid limit of the 2D Navier-Stokes equations near the periodic Couette flow, and in particular, we confirm at the nonlinear level the qualitative behavior predicted by Kelvin's 1887 linear analysis. At high Reynolds number Re, we prove that the solution behaves qualitatively like 2D Euler for times t << Re^(1/3), and in particular exhibits "inviscid damping" (e.g. the vorticity mixes and weakly approaches a shear flow). For times t >> Re^(1/3), which is sooner than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise dependence of the vorticity is rapidly eliminated by a mixing-enhanced dissipation effect. Afterwards, the remaining shear flow decays on very long time scales t >> Re back to the Couette flow. The class of initial data we study is the sum of a sufficiently smooth function and a small (with respect to Re^(-1)) L2 function. Joint with Nader Masmoudi and Vlad Vicol.

Date: Thursday, November 6, 2014
Time: 1:30 pm
Location: Wean Hall 7218
Submitted by:  David Kinderlehrer