Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
CNA Seminar/Colloquium/Joint Pitt-CNA Colloquium
Ignacio Tomas University of Maryland Title: PDE models for Ferrofluids and their Numerical Analysis Abstract: A ferrofluid is a liquid which becomes strongly magnetized in the presence of applied magnetic fields. In this talk we will survey some models for ferrofluids: their physical origins, PDE models, and related numerics. There are two generally accepted ferrofluid models which we will call by the name of their developers: the Rosensweig and Shliomis model. We will start by developing a numerical scheme for the Rosensweig model and carefully track the requirements to devise of an energy-stable scheme. Both the Rosensweig and Shliomis models deal with one-phase flows, which is the case of many technological applications. However, many applications arise naturally in the form of a two-phase flow: one of the phases has magnetic properties and the other one does not (e.g. magnetic manipulation of microchannel flows, microvalves, magnetically guided transport, etc). We have also developed a matching-density two-phase ferrofluid model starting from the simplified framework of the Shliomis model and the Cahn-Hilliard equation. This model satisfies an energy law, and with the lessons learned from the Rosensweig model, we were able to devise an energy-stable scheme. In addition, with some simplifications of the two-phase model, it is possible to prove convergence of the scheme, and as a by product, existence of solutions of the simplified PDE system. Finally, I will illustrate the capabilities of the numerical schemes with some numerical simulations.Date: Tuesday, October 14, 2014Time: 1:30 pmLocation: Wean Hall 7218Submitted by: David Kinderlehrer |