Quasiconvexity at the boundary and weak lower semicontinuity of integral functionals

Martin Kružík

Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic. http://staff.utia.cas.cz/kruzik email: kruzik@utia.cas.cz

It is well-known that Morrey's quasiconvexity is closely related to gradient Young measures, i.e., Young measures generated by sequences of gradients in $L^p(\Omega; IR^{m \times n})$. Concentration effects, however, cannot be treated by Young measures. One way how to describe both oscillation and concentration effects in a fair generality are the so-called DiPerna-Majda measures.

DiPerna and Majda showed that having a sequence $\{y_k\}$ bounded in $L^p(\Omega; IR^{m \times n}), 1 \leq p < +\infty$, and a complete separable subring \mathcal{R} of continuous bounded functions on $IR^{m \times n}$ then there exists a subsequence of $\{y_k\}$ (not relabeled), a positive Radon measure σ on $\overline{\Omega}$, and a family of probability measures on $\beta_{\mathcal{R}} IR^{m \times n}$ (the metrizable compactification of $IR^{m \times n}$ corresponding to \mathcal{R}), $\{\hat{\nu}_x\}_{x\in\overline{\Omega}}$, such that for all $g \in C(\overline{\Omega})$ and all $v_0 \in \mathcal{R}$

$$\lim_{k \to \infty} \int_{\Omega} g(x) v(y_k(x)) dx = \int_{\bar{\Omega}} \int_{\beta_{\mathcal{R}} IR^{m \times n}} g(x) v_0(s) \hat{\nu}_x(ds) \sigma(dx) ,$$

where $v(s) = v_0(s)(1 + |s|^p)$. Our talk will address the question: What conditions must $(\sigma, \hat{\nu})$ satisfy, so that $y_k = \nabla u_k$ for $\{u_k\} \subset W^{1,p}(\Omega; IR^m)$ We are going to state necessary and sufficient conditions. The notion of quasiconvexity at the boundary due to Ball and Marsden plays a crucial role in this characterization.

Based on this result, we then find sufficient and necessary conditions ensuring sequential weak lower semicontinuity of $I: W^{1,p}(\Omega; IR^m) \to IR$,

$$I(u) = \int_{\Omega} v(\nabla u(x)) \, \mathrm{d}x \; ,$$

where $v: IR^{m \times n} \to IR$ satisfies $|v| \leq C(1 + |\cdot|^p), C > 0.$