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It is well-known that Morrey’s quasiconvexity is closely related to gradient
Young measures, i.e., Young measures generated by sequences of gradients in
Lp(Ω; IRm×n). Concentration effects, however, cannot be treated by Young
measures. One way how to describe both oscillation and concentration effects
in a fair generality are the so-called DiPerna-Majda measures.

DiPerna and Majda showed that having a sequence {yk} bounded in
Lp(Ω; IRm×n), 1 ≤ p < +∞, and a complete separable subring R of continu-
ous bounded functions on IRm×n then there exists a subsequence of {yk} (not
relabeled), a positive Radon measure σ on Ω̄, and a family of probability mea-
sures on βRIRm×n (the metrizable compactification of IRm×n corresponding
to R), {ν̂x}x∈Ω̄, such that for all g ∈ C(Ω̄) and all v0 ∈ R

lim
k→∞

∫

Ω
g(x)v(yk(x))dx =

∫

Ω̄

∫

βRIRm×n
g(x)v0(s)ν̂x(ds)σ(dx) ,

where v(s) = v0(s)(1 + |s|p). Our talk will address the question: What
conditions must (σ, ν̂) satisfy, so that yk = ∇uk for {uk} ⊂ W 1,p(Ω; IRm)
We are going to state necessary and sufficient conditions. The notion of
quasiconvexity at the boundary due to Ball and Marsden plays a crucial role
in this characterization.

Based on this result, we then find sufficient and necessary conditions
ensuring sequential weak lower semicontinuity of I : W 1,p(Ω; IRm) → IR,

I(u) =
∫

Ω
v(∇u(x)) dx ,

where v : IRm×n → IR satisfies |v| ≤ C(1 + | · |p), C > 0.
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