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2-phase Stefan equation w Gibbs-Thomson law
(e.g. Visintin 1998)

Given an initial set of ice D(0) C R9 and initial temperature distribution
u(0,-): RY — R, find {D(t)}s>0 and {u(t,-): RY — R};~0 such that

Oru(t,z) = %Azu(t,z), z € RNID(t), t >0,

u(t,z) = vHi(z), z € dD(t),

—Vi(z) = %Vzu(t, z)-nf(z)+ %Vzu(t, z) - n; (z), z € 0D(t),
where H; is mean curvature of interface dD(t), V; is the “velocity” of interface,

nf and n; are the unit normals along dD(t) pointing outside and inside of D(t).

@ Applications of Stefan-type equations: melting/solidification, crystal
growth, aging of alloys, interaction of nonmixing fluids, dynamics of
neurons’ membrane potentials, tumor growth, cholesterol plug growth, etc.

@ Well-posedness: Luckhaus (1990) shows existence of a weak (variational)
solution, but shows non-uniqueness. N.-Shkolnikov (2021) show existence
of a (stronger) probabilistic solution under radial symmetry. Local results
exist.
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PDE formulation

2-phase Stefan equation w Gibbs-Thomson law,
under radial symmetry in R3

Given an initial ball (centered at 0) of ice By, C R® and (radially symmetric)
initial temperature distribution u(0,-): R® — R, find {A;}+>0 and
{u(t,-): R® — R}~ such that

1
Oru(t,z) = EAzu(t, z), z€R*IBy, t>0,

u(t,z) = —v/Nt, z € 9By,
. 1 1
—N\y = EVzu(t,z) “nf(z) + Evzu(t, z)-n; (2), z € OBy,,
where n and n; are the unit normals along 9B, pointing outside and inside of
B,
@ Goal: establish existence and uniqueness (of an appropriate notion) of
solution to the above.
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Transformation of the equation

@ Using the fact that +/|z| solves heat equation, we consider
v(t,z) ;= u(t,z) +v/|z| and solve
1
Ov(t,z) = §sz(t’ z), z€R*\0By(0), t >0, (1)
v(t,z) =0, =z € dBy,(0), (2)
. 1 1
—A: = Evzv(t,z) “nf(z) + Evzv(t, z) - n; (z), z € 9Bx(0). (3)

@ Integrating (3) and using (1)—(2), we obtain
1

3(/\8 —A}) = 04/3 vo(z) dz 704/3 v(t,z)dz,
R R
where a1 is the area of S2.

@ Standard solution approach. Show a contraction-type property (after
normalization) of the mapping: from the cubed bdry A® to the
temperature energy 3o [, v(t, z) dz, where v solves (1)—(2).
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Challenges

Orv(t,z) = %sz(t,z)7 z € R3\9By,(0), t >0,

v(t,z) =0, z € 9By,(0), (4)

1
7(/\8 _A‘;’) = a/ Vo(Z) dz — a/ v(t,z) dz.
3 R3 B3

If vp is sufficiently large, t — A; cannot be smooth (and may jump).

Then, the bdry condition (4) cannot be satisfied at all ¢t > 0.
If As = A, for s € [0, t), then, for small § > 0, one may have

/1@3 v(s,z)dz — /R3 V(s,z) dz

If vo < 1, the comparison principle yields desired contraction.

3o sup A3 — A2

set,t+9]

sup
OB, sE[t,t+9]

~v(t,)

But, if not, the contraction does not hold.
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Probabilistic solution

Assume vp > 0 and [p; vo(z) dz < oo.

I1t6’s formula yields: v(t,-) is the density of BM started from v, and
killed at hitting (As)scpo,q-

Probabilistic growth condition:

1(/\8_—/\?):0{/ z—(y/ z—(y/ P(7*(A\) < t) w(z) dz
3 R3 R3

TZ(N) :==inf{t > 0: (|z+ W] — At) (Jz] — No—) < 0}

Jump condition. The potential jumps of A introduce ambiguity. We define
the notion of a “physical” solution by assuming that the jumps are the
smallest possible:

A~ — Ny = inf {y € (0,A;—] : Leb (B/\t, \ BAt,—y)

> / v(t—,z) dz}
At —y<|z|<Ae—
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Probabilistic formulation

Existence and unqueness

1

(A, v) is a probabilistic solution if A is right-cont., v(t, z) is a function of |z

and:

v(t,-) — density of BM started from vo and killed at hitting (As)seo,g,
1
g(/\g_ —A}) = a/ P(7%(N) < t) w(z) dz,

JR3

and the minimal jump condition is satisfied.

® N.-Shkolnikov (2021) shows existence of probabilistic solution (by Euler-type
approximation).

@ Theorem (Guo-N.-Shkolnikov 2023). Assume that vy > 0 is bounded and
decays sufficiently fast at infinity. Assume that v, is piecewise monotone.
Then, the probabilistic solution is unique.
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Proof of uniqueness: preliminaries

@ Argue by contradiction: assume there exist two non-increasing solutions A, A
and to > 0 s.t. As = A for s < to, and supsey, 11c] [As — As| > 0 for all
small enough ¢ > 0. W.l.o.g. to = 0.

@ Desired contraction-type property:
IT(A%) = T(A*)| < F (||/\3 — N}, F(x) < x for x >0,
F(A3) =N — 3a/ P(7%(A) < t) vo(z) dz.
R3

@ Challenge. Recall that, for small § > 0, one may have

IF(A%) = F(A%)]|

= 3a sup / P(r*(A) <s)v(07,z)dz — / P(r*(A) < s)v(07, z) dz
s€[0,6] [/R3 R3
~v(07,) - sup |[A2—A3|,and v(0,") may be large.

9By, s€[0,9] 9Bn,_
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Proof of main theorem

Proof of uniqueness: resolution of initial jump

@ Proposition (difficult). If v(z) is piecewise monotone as a function of
|z|, then so are v(t,-) and v(t—,-) for all t > 0.

@ The above prop. and minimal jump condition imply that Ag = Ao,
v(0,z) = ¥(0, z), yielding:

sup |A2— A3
s€[0,d]
= 3a sup / P(7%(A) < s)v(0,z) dz —/ P(r%(A) < s5) v(0, z) dz| .
s€[0,d] [/IR3 R3
where v(0, -) <1
9By,

=1
9Bn,

< 1 is easy, we focus on v(0,-)
9Bp,

@ Since the case v(0, )

@ The minimal jump condition yields, for small enough Ag — |z| > 0:

v0.2)=1— (Ao —Iz). w1, W(0%)=0.
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Proof of main theorem

Proof of uniqueness: steps 1 and 2

v0.2) =1— (Ao — |2}, W 1, (0)=0.

Consider t s.t. A3 — A3 = supg<; A2 — A3| and deduce

. /R3 P(7%(A) < s)v(0,z) dz — « /}R3 P(r(A) < s) v(0, z) dz

<« / P(72(A) < t, 72(A) > t) v(0, z) dz
J Bn,

+a / P(r%(A) < t, 72(A) > t) v(0, z) dz.
. R3\B’\O

Goal: obtain a contradiction to the above, for small enough t > 0.
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Proof of main theorem
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Goal: obtain a contradiction to the above, for small enough t > 0.

L a fog,, P(r#(A) < t, 72(A) > t) v(0,2) dz < C; Emaxocs<¢(Bs + As — No)
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Proof of main theorem

Proof of uniqueness: steps 1 and 2

v(0,z) =1—(Aho—|2|), ¥ 1, 9(07)=0.
Consider t s.t. A3 — A3 = supg<; A2 — A3| and deduce
1, 5 , .
g(/\§ —N\) = a/ P(m*(A) < s)v(0,z) dz — a/ P(m*(A) < s)v(0,z) dz
R3 R3
<« / P(72(A) < t, 72(A) > t) v(0, z) dz
JBp,
+a / P(r%(A) < t, 72(A) > t) v(0, z) dz.
B R3\B’\O
Goal: obtain a contradiction to the above, for small enough t > 0.

L a fog,, P(r#(A) < t, 72(A) > t) v(0,2) dz < C; Emaxocs<¢(Bs + As — No)

2. « fB/\O P(m2(A) < t, 72(A) > t) v(0, z) dz <
%(/\? — /\?) —GEvy (maxogsgt(Bs —Ns + /\0))
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Proof of main theorem

Proof of uniqueness: step 3

To obtain the desired contradiction, it suffices to show that, for any C > 0,

E (Org?gt(Bs —Ns + /\0)> > CEOrgsagt(Bs + As — N\o), for small enough t > 0.
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Proof of main theorem

Proof of uniqueness: step 3

To obtain the desired contradiction, it suffices to show that, for any C > 0,
E ( max (Bs — As + /\0)> > CE max (B; + As — Ao), for small enough t > 0.
0<s<t 0<s<t
@ Lemma 3 (easy). There exists a solution A to 1- phase Stefan problem with
the same ¢ (up to multiplicative constant) and with Ao = Mo, s.t.

A > AV A. Hence, it suffices to show

E ( max (B; — A, +/\0)) > CE max (Bs + A — Ao),
0<s<t 0<s<t
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Proof of main theorem

Proof of uniqueness: step 3

To obtain the desired contradiction, it suffices to show that, for any C > 0,

E ( max (Bs — As + /\0)> > CE max (B; + As — Ao), for small enough t > 0.
0<s<t 0<s<t

@ Lemma 3 (easy). There exists a solution A to 1- phase Stefan problem with
the same ¢ (up to multiplicative constant) and with Ao = Mo, s.t.

A > AV A. Hence, it suffices to show

E ( max (B; — A, +/\0)) > CE max (Bs + A — Ao),
0<s<t 0<s<t

@ Using growth condition for A, obtain:

Eab(sup(Bs — As + No)) > CEW(sup(Bs — As + Ag))
s<t

s<t

= CEsup(Bs — Ar_s + Ay), X)—/¢
s<t
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Proof of main theorem

Proof of uniqueness: step 3

Goal: show that

—A —s A > s As*/\
Eige(& Nes +Nt) _]Eorgsaét(B +A 0)

@ The above follows from “semi-convexity” of A:
/A\t_]\\tfsS/\O_/A\ﬁ s € [Oa t]7

@ which in turn follows from the scaling property:
Lemma 4 (easy) For any g € (0, 1]:

/A\qt—/\OZ \/a(/A\t—/\o) Zq(/A\r—/\o)
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