Numerical methods for the Ginzburg-Landau problem

CNA Seminar, April 7, 2011

Nico Schlömer Wim Vanroose

Universiteit Antwerpen

Table of contents

Superconductivity and Ginzburg-Landau
Gauge invariance
GI discretizations
Phase conditions
Solving the Jacobian system
Properties of the Jacobian operator
Preconditioning
Numerical experiments
Symmetry-breaking bifurcations
Conclusion and outlook

The phenomenon of superconductivity

Superconductivity occurs in certain materials (usually) very low temperatures.
Characteristics:

- Zero (0) electrical resistance,

Figure: Extract from Kamerlingh Onnes’ historical paper (1911).

The Meißner effect

- expulsion of the surrounding magnetic field (Meißner-effect).

(a) $T>T_{C}$.
(b) $T<T_{c}$.

The Meißner effect (cont.)

- expulsion of the surrounding magnetic field (Meißner-effect).

Figure: The Meißner effect "live".

The intermediate state

There are three distinct material states:

- normal conductivity
- mixed state
- superconductivity

Figure: The states of a type-II superconductor in an H-T diagram.

Superconductor timeline

The intermediate state

Characterized by an incomplete Meißner effect, formation of vortices.

Figure: Left: [Triangular (Abrikosov) pattern]. Right: Symmetric sample.

Mathematical description

A superconductor state is characterized by

- the supercurrent density $\rho(\mathbf{x}, t) \in \mathcal{C}\left(\Omega_{1}\right)$,

$$
\rho=|\psi|^{2}
$$

- the magnetic (vector) field $\mathbf{B}(\mathbf{x}, t) \in\left(C\left(\mathbb{R}^{n}\right)\right)^{n}$

$$
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
$$

Ginzburg-Landau: free energy

$$
\begin{aligned}
G(\psi, \mathbf{A})-G(0, \mathbf{A})=\int_{\mathbb{R}^{3}} & {\left[\frac{1}{2}|-i \boldsymbol{\nabla} \psi-\mathbf{A} \psi|^{2}+\frac{1}{4}\left(1-|\psi|^{2}\right)^{2}\right.} \\
& \left.+\kappa^{2}(\boldsymbol{\nabla} \times \mathbf{A})^{2}-2 \kappa^{2}(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{H}_{0}\right] \mathrm{d} \mathbf{x},
\end{aligned}
$$

$\psi: \Omega \rightarrow \mathbb{C} \ldots$ order parameter
$\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \ldots$ magnetic vector potential

The Ginzburg-Landau equations

Euler-Lagrange \Longrightarrow

$$
\left\{\begin{array}{l}
(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A})^{2} \psi=\psi\left(1-|\psi|^{2}\right) \quad \text { on } \Omega_{1} \\
-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\frac{1}{\kappa^{2}}\left(\frac{1}{2 \mathrm{i}}(\bar{\psi} \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \bar{\psi})-|\psi|^{2} \mathbf{A}\right) \quad \text { on } \mathbb{R}^{n} \\
\left.\mathbf{n}(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A}) \psi\right|_{\Gamma}=0, \quad \text { on } \Gamma \\
\lim _{\mathbf{x} \rightarrow \infty} \boldsymbol{\nabla} \times \mathbf{A}=\mathbf{H}_{0} .
\end{array}\right.
$$

Extreme type-II superconductors

...simplification

$$
\begin{gathered}
\kappa \gg 1 . \\
\left\{\begin{array}{l}
(-i \boldsymbol{\nabla}-\mathbf{A})^{2} \psi=\psi\left(1-|\psi|^{2}\right) \quad \text { on } \Omega_{1} \\
-\nabla \times(\boldsymbol{\nabla} \times \mathbf{A})=0 \quad \text { on } \mathbb{R}^{3} \\
\left.\mathbf{n}(-i \boldsymbol{\nabla}-\mathbf{A}) \psi\right|_{\Gamma}=0, \quad \text { on } \Gamma \\
\lim _{\mathbf{x} \rightarrow \infty} \boldsymbol{\nabla} \times \mathbf{A}=\mathrm{H}_{0} .
\end{array}\right.
\end{gathered}
$$

Extreme type-II superconductors

$$
\left\{\begin{array}{c}
-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=0 \\
\lim _{x \rightarrow \infty} \boldsymbol{\nabla} \times \mathbf{A}=\mathrm{H}_{0} .
\end{array}\right\} \quad \Longrightarrow \mathbf{A}\left(\mathrm{H}_{0}\right)
$$

Extreme type-II Ginzburg-Landau equations

$$
\left\{\begin{array}{l}
\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right)^{2} \psi=\psi\left(1-|\psi|^{2}\right) \quad \text { on } \Omega_{1} \\
\left.\mathbf{n}\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right) \psi\right|_{\Gamma}=0, \quad \text { on } \Gamma
\end{array}\right.
$$

Example solutions

Extreme type-II Ginzburg-Landau equations

$$
\left\{\begin{array}{l}
\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right)^{2} \psi-\psi\left(1-|\psi|^{2}\right)=0 \quad \text { on } \Omega_{1} \tag{GL}\\
\left.\mathbf{n}\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right) \psi\right|_{\Gamma}=0 \text { on } \Gamma
\end{array}\right.
$$

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

Selected references

围 Qiang Du，Max D．Gunzburger，and Janet S．Peterson． Analysis and approximation of the Ginzburg－Landau model of superconductivity．
SIAM Rev．，34：54－81，March 1992.
國 H．G．Kaper and M．K．Kwong．
Vortex configurations in type－II superconducting films． Journal of Computational Physics，119（1）：120－131，June 1995.

罡 J．Müller
Superconducting rings show hints of half－quantum vortices．
Physics Today，64（3），March 2011.

Funny properties I

Gauge invariance!
Extreme type-II Ginzburg-Landau equations

$$
\left\{\begin{array}{l}
\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right)^{2} \psi-\psi\left(1-|\psi|^{2}\right)=0 \quad \text { on } \Omega_{1} \\
\left.\mathbf{n}\left(-i \boldsymbol{\nabla}-\mathbf{A}\left(H_{0}\right)\right) \psi\right|_{\Gamma}=0 \quad \text { on } \Gamma
\end{array}\right.
$$

$(\mathcal{G L})$

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

More solutions

Figure: Solution of $(\mathcal{G L})$, square-shaped domain, $H_{0}=0.4$.

Gauge invariance

The equations ($\mathcal{G L}$) have the property that

$$
F(\chi, \mathbf{A})=\alpha F\left(\psi_{2}, \mathbf{A}_{2}\right)
$$

with

$$
\begin{aligned}
& \psi_{2}=\psi \exp (\mathrm{i} \chi) \\
& \mathbf{A}_{2}=\mathbf{A}+\boldsymbol{\nabla} \chi
\end{aligned}
$$

for any $\chi \in C_{\mathbb{R}}^{1}\left(\Omega_{2}\right)$, i.e., gauging doesn't play a role.

Gauge invariant discretizations

Problem

When plain discretizing $(\mathcal{G L})$ with standard finite differences, this gauge invariance is not preserved.

How to deal with this? Answer: Variable transformation.

$$
\begin{aligned}
& U_{x}(x):=\exp \left\{-\dot{i} \int_{\mu_{0}}^{\mu} A_{\mu}(\xi) d \xi\right\}, \\
& U_{y}, U_{z} \text { analogously, }
\end{aligned}
$$

(for Cartesian grids).

Gauge invariant discretizations (cont.)

Ginzburg-Landau eqns.

$$
\begin{aligned}
& 0=\sum_{\mu \in\{x, y, z\}} \bar{U}_{\mu} \frac{\partial^{2}}{\partial^{2} \mu}\left(U_{\mu} \psi\right)-\psi\left(1-|\psi|^{2}\right) \quad \text { on } \Omega \\
& 0=-i \bar{U}_{\mu} \frac{\partial}{\partial \mu}\left(U_{\mu} \psi\right) \quad \forall \mu \in\{x, y, z\} \quad \text { on } \partial \Omega
\end{aligned}
$$

for Cartesian grids.

Finite volumes

$$
0=\int_{\Omega_{t}} \mathrm{~F}(\psi)=\int_{\Omega_{t}}(-i \boldsymbol{\nabla}-\mathbf{A})^{2} \psi-\int_{\Omega_{t}} \psi(1-\psi \bar{\psi})
$$

$$
0=\int_{\Omega_{r}} F(\psi)=\underbrace{\int_{\Omega_{r}}(-i \nabla-\mathbf{A})^{2} \psi}_{\text {similar to Laplacian }}-\underbrace{\left|\Omega_{r}\right| \psi_{k}\left(1-\psi_{k} \bar{\psi}_{k}\right)}_{\text {mass lumping }}
$$

GI: numerical consequences

From gauge invariance follows:

Problem

For each solution $\left(\psi_{0}, \mathbf{A}_{0}\right)$, there is a space S such that

$$
\mathrm{J}_{\left(\psi_{0}, \mathbf{A}_{0}\right)}(\psi, \mathbf{A})=0
$$

for each $(\psi, \mathbf{A}) \in \mathrm{S}$.
Consequence: In each solution, J is rank-deficient by $\operatorname{dim} \mathrm{S}$!

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

Newton iteration for original problem

Figure: Typical behavior of the Newton residual (here: with LU solves for the linear equation system).

General approach: phase conditions

R Alan R. Champneys, Björn Sandstede Numerical computation of coherent structures, 2007.

- $F(x)$ equivariant under the action of a finite-dimensional Lie-group G on \mathcal{X} so that

$$
g F(u)=F(g u) \quad \forall g \in G, u \in \mathcal{X} .
$$

General approach: phase conditions

Alan R. Champneys, Björn Sandstede Numerical computation of coherent structures, 2007.

- $F(x)$ equivariant under the action of a finite-dimensional Lie-group G on \mathcal{X} so that

$$
g F(u)=F(g u) \quad \forall g \in G, u \in \mathcal{X}
$$

- If $F_{u^{*}}^{\prime}$ has eigenvalue 0 with algebraic and geometric multiplicity m, choose phase condition of the form

$$
\Phi: \mathcal{X} \rightarrow \mathbb{R}^{m}
$$

where

$$
\operatorname{alg} G \rightarrow \mathbb{R}^{m}, \quad \xi \mapsto \Phi \xi u^{*}
$$

is invertible.

Pinning down χ

For $(\psi, \mathbf{A})_{k+1}$, one could for example demand that

$$
\chi=\underset{\chi}{\operatorname{argmin}}\left\|\psi_{n+1}-\psi_{n}\right\|_{2}^{2} .
$$

Necessary condition:

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} \chi_{n}}\left\|\psi_{n+1}-\psi_{n}\right\|_{2}^{2} \\
& =\ldots \\
& =2 \Re\left\{-i\left\langle\psi_{n+1}, \psi_{n}\right\rangle\right\},
\end{aligned}
$$

Bordering: Algebraic framework

Theorem (Keller)
Let $A \in \mathbb{K}^{n \times n}$ with $\operatorname{dim} \mathcal{N}(A)=1$. Then $\widetilde{A}=\left(\begin{array}{ll}A & c \\ b^{\top} & d\end{array}\right)$ is nonsingular if

- $c \notin \mathcal{R}(A)=\mathcal{N}\left(A^{\top}\right)^{\perp}$, and
- $b \notin \mathcal{R}\left(A^{\top}\right)=\mathcal{N}(A)^{\perp}$.
...extension (S., Vanroose)
Let $L: X \rightarrow Y$ linear with $\operatorname{dim} \mathcal{N}(L)=k$. Then $\tilde{L} \widetilde{x}:=\binom{L x+b \xi}{f(x)+d \xi}$ has $\operatorname{dim} \mathcal{N}(\widetilde{L})<\operatorname{dim} \mathcal{N}(L)$ iff
- $b \notin \mathcal{R}(L)$, and
- $\exists v \in \operatorname{ker} L$ with $f(v) \neq 0$.

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

Newton with bordered Jacobian

Figure: Newton iteration history, with bordering (here: with LU solves for the linear equation system).

How to solve bordered systems?

$$
\left[\begin{array}{cc}
J & A \\
B^{T} & C
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

- Rearrange:

$$
\left[\begin{array}{cc}
C & B^{T} \\
A & J
\end{array}\right]\left[\begin{array}{l}
Y \\
X
\end{array}\right]=\left[\begin{array}{l}
G \\
F
\end{array}\right]
$$

- $Q R$ of the first block row $\left[C, B^{\top}\right]=\left[R^{\top}, 0\right] Q^{\top}$ yields

$$
\left.\left[\begin{array}{cc}
R^{T} & 0 \\
{[A} & J
\end{array}\right] Q\right]\left[\begin{array}{l}
Z_{Y} \\
Z_{X}
\end{array}\right]=\left[\begin{array}{l}
G \\
F
\end{array}\right] .
$$

How to solve bordered systems? (cont.)

$$
\begin{gathered}
{\left[\begin{array}{cc}
R^{T} & 0 \\
{\left[\begin{array}{ll}
A & J
\end{array}\right] Q}
\end{array}\right]\left[\begin{array}{l}
Z_{Y} \\
Z_{X}
\end{array}\right]=\left[\begin{array}{l}
G \\
F
\end{array}\right] .} \\
Z_{Y}
\end{gathered}=R^{-T} G, ~\left[\begin{array}{ll}
A & J
\end{array}\right] Q\left[\begin{array}{c}
0 \\
Z_{X}
\end{array}\right]=F-\left[\begin{array}{ll}
A & J
\end{array}\right] Q\left[\begin{array}{c}
Z_{Y} \\
0
\end{array}\right] \Leftrightarrow P Z_{X}=\widetilde{F} .
$$

where

$$
P=J+U V^{\top} .
$$

Newton's method

```
x}\leftarrowx
res}\leftarrowf(x
while |r|>\tau do
        solve system Jx }\mp@subsup{x}{\mathrm{ update }}{}=-re
        x}\leftarrowx+\mp@subsup{x}{\mathrm{ update}}{
        res }\leftarrowf(x
end
```

Algorithm 1: Newton's method

The Jacobian

$$
J_{\psi} \varphi=(\underbrace{(-i \boldsymbol{\nabla}-\mathbf{A})^{2}}_{K} \underbrace{-1+2|\psi|^{2}}_{D_{1}}) \varphi+\underbrace{\psi^{2}}_{D_{2}} \bar{\varphi}
$$

Properties of the Jacobian operator

The Jacobian

$$
J_{\psi} \varphi=\left(K+D_{1}\right) \varphi+D_{2} \bar{\varphi}
$$

- J_{ψ} is linear over $H^{2}(\Omega)$ as \mathbb{R}-vector space;
- J_{ψ} is self-adjoint ("symmetric") w.r.t.

$$
\langle[\cdot],[\cdot]\rangle=\Re\langle\cdot, \cdot\rangle_{H^{2}(\Omega)} ;
$$

- J_{ψ} is not generally definite.

Iterative solvers for J_{ψ}

J_{ψ} self-adjoint? CG/MINRES!

$$
r_{0} \leftarrow b-A x_{0}, p_{0} \leftarrow r_{0}, k \leftarrow 0
$$

while $\left\|r_{k}\right\|>\tau$ do
$\alpha_{\mathrm{k}} \leftarrow\left\|r_{\mathrm{k}}\right\|^{2} /\left\langle p_{\mathrm{k}}, A p_{\mathrm{k}}\right\rangle$
$x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}$
$r_{k+1} \leftarrow r_{k}-\alpha_{k} A p_{k}$
$\beta_{k} \leftarrow\left\|r_{k+1}\right\|^{2} /\left\|r_{k}\right\|^{2}$
$p_{k+1} \leftarrow r_{k+1}+\beta_{k} p_{k}$
end
Algorithm 2: Conjugate gradients.

Iterative solvers for J_{ψ}

J_{ψ} self-adjoint? CG/MINRES!

$$
r_{0} \leftarrow b-A x_{0}, p_{0} \leftarrow r_{0}, k \leftarrow 0
$$

while $\left\|r_{k}\right\|>\tau$ do
$\alpha_{k} \leftarrow\left\|r_{k}\right\|^{2} / \Re\left\langle p_{k}, A p_{k}\right\rangle$
$\mathrm{x}_{\mathrm{k}+1} \leftarrow \mathrm{x}_{\mathrm{k}}+\alpha_{\mathrm{k}} p_{\mathrm{k}}$
$r_{k+1} \leftarrow r_{k}-\alpha_{k} A p_{k}$
$\beta_{k} \leftarrow\left\|r_{k+1}\right\|^{2} /\left\|r_{k}\right\|^{2}$
$p_{k+1} \leftarrow r_{k+1}+\beta_{k} p_{k}$
end
Algorithm 3: Conjugate gradients.

Iterative solvers for J_{ψ} (cont.)

Figure: CG convergence for J.

Preconditioning the Jacobian

The GL Jacobian

$$
J_{\psi}^{(h)} \varphi=\left(K+D_{1}\right) \varphi+D_{2} \bar{\varphi} .
$$

Possible ideas for preconditioning:

- diagonal

$$
\begin{aligned}
P_{\mathrm{d}} \varphi= & \left(\operatorname{diag}(K)+D_{1}\right) \varphi+D_{2} \bar{\varphi} . \\
\alpha \varphi_{\mathrm{k}}+\beta \bar{\varphi}_{\mathrm{k}}=\gamma \quad & \Rightarrow \quad \varphi_{\mathrm{k}}=(\bar{\alpha} \gamma-\beta \bar{\gamma}) /\left(|\alpha|^{2}-|\beta|^{2}\right)
\end{aligned}
$$

- kinetic energy operator $K=(-i \boldsymbol{\nabla}-\mathbf{A})^{2}$

$$
P_{\mathrm{K}} \varphi=K \varphi .
$$

Preconditioners compared

Figure: Convergence of $\mathrm{CG} . \mathrm{RHS}=0$, initial guess random, ψ random, $\mu=0.01$.

K^{-1} generally good?

Figure: Performance of the K^{-1}-preconditioner for different number of unknowns.

K^{-1} generally good? (cont.)

J_{ψ} depends on ψ, K does not. Problem?

K^{-1} generally good? (cont.)

Figure: Number of K^{-1}-preconditioned CG iterations throughout a numerical continuation run in μ (different states ψ).

Moving over to solving K

Message

Moved the problem of solving a system with

$$
J_{\psi} \varphi=\left((-i \boldsymbol{\nabla}-\mathbf{A})^{2}-1+2|\psi|^{2}\right) \varphi+\psi^{2} \bar{\varphi}
$$

to solving a system with

$$
K \varphi=(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A})^{2} \varphi
$$

Much nicer, because K is

- structurally similar to ∇^{2},
- representable by a matrix,
- self-adjoint,
- positive (semi-)definite

How to solve K^{-1} ?

The kinetic energy operator

Kinetic energy operator

$$
\mathrm{K} \varphi=(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A})^{2} \varphi .
$$

- complex-valued,
- self-adjoint (Hermitian),
- positive semi-definite,
- has eigenvalue 0 iff $\mathbf{A}=0$,
- simple structure (FVM discretization):

$$
K \varphi=\sum_{\text {"neighbors" } k}-i|P| \frac{\widetilde{U}_{h} \varphi_{k}-\varphi}{\left\|\mathbf{x}_{k}-\mathbf{x}\right\|}, \quad \widetilde{U}_{h}=\exp \left\{-i \int_{\text {edge } \mathbf{e}} \mathbf{A} \cdot \mathbf{e}\right\}
$$

Multigrid

...for

$$
\mathrm{K} \varphi=(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A})^{2} \varphi .
$$

Scott P. MacLachlan, Cornelis W. Oosterlee. Algebraic multigrid solvers for complex-valued matrices. SIAM Journal on Scientific Computing, 30:1548-1571, 2008.
PyAMG (sequential)
Smoothed aggregation, Block-Gauß-Seidel smoother, Hermitian
symmetry, standard aggregation

ML/Trilinos (parallel)

Smoothed aggregation, Chebyshev smoother, uncoupled aggregation

Multigrid

CG convergence for K

K^{-1} multigrid for production problems

More involved test cases

Figure: Typical solutions $|\psi|^{2}$ of the Ginzburg-Landau equations (2M, 200K DOF).

Preconditioning: conclusions

Solve $\mathcal{G} \mathcal{L}(\psi)$ with Newton
Solve J_{ψ} with MINRES
Precondition with kinetic energy operator K^{-1}, solved by MG-preconditioned CG

Message

Preconditioning J_{ψ} for all $\mathbf{A} \neq 0$ delivers an algorithm which is

- independent of the size equation system
- computationally scalable (comfirmed on 4000+ cores)

This makes

- 2D calculations feasible (e.g., numerical continuation)
- 3D calculations possible.

Technicalities

- Continuation: Arc-length, adaptive step sizes
- Nonlinear solves: Newton
- Linear solves: MINRES $+\mathrm{K}^{-1}+\mathrm{AMG}$

Software in use:

- Trilinos: LOCA, NOX

Andy Salinger, Eric Phipps (Sandia National Labs)

Calculation

Calculation

Calculation

Calculation

Calculation

Calculation

Branch point at $H_{0} \approx 1.64$

Two eigenvalues going unstable.
\Longrightarrow Branching!

Branch point at $H_{0} \approx 1.64$ (cont.)

Application of the equivariant branching lemma.
Main questions:

- Which representation has the model "chosen"?
- What are the axial subgroups in this representation?
- $\langle\sigma\rangle$ (conjugated flip)
- $\langle\rho \sigma\rangle$ (conjugated flip along diagonal)

Then guaranteed:
There are unique solution branches with symmetry $\langle\sigma\rangle,\langle\rho \sigma\rangle$.

Branch 1

51/54

Branch 1

Branch 1

Branch 1

Branch 2

Branch 2

Branch 2

One-vortex solution

One-vortex solution

One-vortex solution

One-vortex solution

Outlook

The full GL problem:

$$
\left\{\begin{array}{l}
(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A})^{2} \psi=\psi\left(1-|\psi|^{2}\right) \quad \text { on } \Omega_{1} \\
-\nabla \times(\boldsymbol{\nabla} \times \mathbf{A})=\frac{1}{k^{2}}\left(\frac{1}{2 \mathrm{i}}(\bar{\psi} \boldsymbol{\nabla} \psi-\psi \nabla \bar{\psi})-|\psi|^{2} \mathbf{A}\right) \quad \text { on } \mathbb{R}^{n} \\
\left.\mathbf{n}(-\mathrm{i} \boldsymbol{\nabla}-\mathbf{A}) \psi\right|_{\Gamma}=0, \quad \text { on } \Gamma \\
\lim _{\mathbf{x} \rightarrow \infty} \boldsymbol{\nabla} \times \mathbf{A}=\mathrm{H}_{0} .
\end{array}\right.
$$

- Preconditioning the full equations?

