
Qualitative behaviour of numerical methods for SDEs
and application to homogenization

K. C. Zygalakis

Oxford Centre For Collaborative Applied Mathematics,
University of Oxford.

Center for Nonlinear Analysis,
Carnegie Mellon University,

20/10/2011

K. C. Zygalakis (University of Oxford) Modified Equations for SDEs 1 / 45



Outline

1 Modified Equations

ODE theory.
Main idea for SDEs.
Different numerical methods and Associated Modified Equations.
Numerical examples.

2 Application to Homogenization

Long time behaviour and homogenization.
Numerical algorithms/results.
From homogenization to averaging in cellular flows.

3 Higher order numerical methods based on modified equations.

Key idea.
One simple example.
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Introduction

Motivating example
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Introduction

Interesting Question

The two numerical methods have the same order of convergence but
completely different qualitative behaviour.

Is there a way to distinguish between these two methods?

A very powerful tool for addressing this question is backward error
analysis (modified equations).

K. C. Zygalakis (University of Oxford) Modified Equations for SDEs 4 / 45



Introduction Ordinary Differential Equations

Modified equations for ODEs

dx

dt
= f (x),

and let xn be a numerical approximation of x of order p:

|x(nh)− xn| = O(hp).

Can I find X (t) satisfying another ODE (modified equation) such that:

|X (nh)− xn| = O(hp+q).
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Introduction Ordinary Differential Equations

Euler method-one dimension

xn+1 = xn + hf (xn).

Modified equation:

dX

dt
= f (X )− h

2
f ′(X )f (X ),

since
|X (nh)− xn| = O(h2).
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Introduction Ordinary Differential Equations

Sketch proof

dX

dt
= f (X ) + hg(X ).

X (h) = X (0) +

∫ h

0

(f (X (s)) + hg(X (s))) ds

= X (0) + hf (X (0)) + h2g(X (0)) +
h2

2
f (X (0))f ′(X (0)) +O(h3).

Assume x0 = X (0) then

X (h)− x1 = h2

(
g(X (0)) +

1

2
f (X (0))f ′(X (0))

)
+O(h3),

and thus

g(x) = −1

2
f (x)f ′(x).
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Introduction Stochastic Differential Equations

Stochastic Differential Equations and Numerical Methods

dx = u(x)dt + σ(x)dWt ,

Euler method:
xn+1 = xn + hu(xn) +

√
hσ(xn)ξn,

θ-Milstein method:

xn+1 = xn +θhu(xn+1)+(1−θ)hu(xn)+
√

hσ(xn)ξn +
h

2
σ(xn)σ(1)(xn)(ξ2

n−1),

where ξn ∼ N (0, 1).
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Introduction Stochastic Differential Equations

Weak and Strong Convergence

Weak convergence: We look at |E(φ(x(nh)))− E(φ(xn))|.
Strong convergence: We look at E|x(nh)− xn|.
In general the weak and strong order of convergence of a numerical
method NEEDS NOT to be the same!!!
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Introduction Stochastic Differential Equations

Statement of the Problem

Let x(t) satisfy the following SDE:

dx = u1(x)dt + σ1(x)dWt ,

and xn be its numerical approximation at T = nh by a weak p-order
method i.e

|E(φ(x(T )))− E(φ(xn))| = O(hp), ∀φ ∈ C∞.

We want to develop a procedure that allows us to evaluate the properties
of our weak numerical scheme.
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Introduction Stochastic Differential Equations

First Modified Equation

We want to find a modified SDE of the form (i.e., find v2 and σ2)

dx̃ = [u1(x̃) + hu2(x̃)] + [σ1(x̃) + hσ2(x̃)] dWt ,

for which

|E(φ(x̃(T )))− E(φ(xn))| = O(hp+1), ∀φ ∈ C∞.

For the rest of the talk we concentrate in the case where p = 1.
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Main Idea

Generators for ODEs and SDEs

ODE:

dx = h(x)dt,

Lu := h(x) · ∇xu.

SDE:

dx = h(x)dt + σ(x)dWt ,

Lu := h(x) · ∇xu +
1

2
σ(x)σT (x) : ∇x∇xu.
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Main Idea

Backward Kolmogorov Equation

∂u

∂t
= Lu,

u(x , 0) = φ(x).

Then
u(x , t) = E(φ(x(t))|x(0) = x).
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Main Idea

Stochastic B-series

By integrating over time the backward Kolmogorov Equation and taking a
Taylor expansion of u(x , s) around s = 0, we obtain, (assuming
appropriate smoothness of the drift and diffusion term)

u(x , h)− φ(x) =
∞∑
k=0

hk+1

(k + 1)!
Lk+1φ(x).

Note that in the case where φ(x) = x , σ(x) = 0, this expansion
correspond to the B-series expansion of the ODE

dx = v1(x)dt.
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Main Idea

Local Error/Global Error

A weak first order numerical method has the following expansion

unum(x , h)− φ(x) = hLφ(x) + h2Leφ(x) +O(h3),

and so

u(x , h)− unum(x , h) = h2

(
1

2
L2φ(x)− Leφ(x)

)
, Local Error

which implies that

u(x ,T )− unum(x ,T ) = O(h). Global Error
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Main Idea

Generator of the Modified Equation

Remember that the 1-st modified equation is of the form

dx̃ = [u1(x̃) + hu2(x̃)] + [σ1(x̃) + hσ2(x̃)] dWt .

Its generator L can be written as

L = L0 + hL1 + h2L2,

where L0 is the generator of the original SDE and

L1φ := u2(x)
dφ

dx
+ σ1(x)σ2(x)

d2φ

dx2
.
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Main Idea

Main Equation

If we now subtract the Taylor expansion of the numerical method from the
stochastic B-series of the modified equation we see that in order for the
local error to be O(∆t3) we need

L1φ = Leφ−
1

2
L2

0φ, ∀φ ∈ C∞.
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Different Numerical Methods

Euler-Maryama Method

In the case of Euler-Maryama method in the case of multiplicative noise it
turns out that a modified equation does not exist since

L1φ 6= · · ·+
σ3

1(x)

2
σ

(1)
1 (x)φ(3)(x).

as L1 is a second order partial differential operator!!!
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Different Numerical Methods

θ-Milstein Method

u2(x) =

(
θ − 1

2

)(
v1(x)v

(1)
1 (x) +

σ2
1(x)

2
v

(2)
1 (x)

)
,

σ2(x) =

(
θ − 1

2

)
σ1(x)v

(1)
1 (x)− 1

2
v1(x)σ

(1)
1 (x)− σ2

1(x)

4
σ

(2)
1 (x).
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Numerical examples SDEs Driven by Multiplicative Noise

Geometric Brownian motion

dx = µxdt + σxdWt ,

dX̃ =

[(
µ− h

2
µ2

)
X̃

]
dt + σX̃ (1− hµ) dWt .
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Numerical examples ∞ Modified equations

Linear SDEs with additive noise

dx = Axdt + ΣdWt ,

Numerical Approximation:

x(h) = A(h)x + f (h, ω).

Example (Euler-Maryama):

A(h) = (I + hA),

f (h, ω) = Σ
√

hξ.
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Numerical examples ∞ Modified equations

∞ Modified Equation and its coefficients

dx = Ãxdt + Σ̃dWt ,

Ã =
log(A(h))

h
,

eÃhΣ̃Σ̃T eÃ
Th − Σ̃Σ̃T = ÃJ + JÃT ,

where
J = E(ff T ).

K. C. Zygalakis (University of Oxford) Modified Equations for SDEs 22 / 45



Numerical examples ∞ Modified equations

Orstein Uhlenbeck Process

dx = −γxdt + σdWt .

Forward Euler:

Ã =
log(1− γh)

h
,

Σ̃ = σ

√
2 log(1− γh)

(1− γh)2 − 1
.

Backward Euler:

Ã = − log(1 + γh)

h
,

Σ̃ = σ

√
2 log(1 + γh)

1− (1 + γh)−2
.
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Numerical examples ∞ Modified equations

Invariant Measure

lim
t→∞

E(x2(t)) =
σ2

2γ − γ2h
, Forward Euler

lim
t→∞

E(x2(t)) =
σ2(1 + γh)

2γ + γ2h
, Backward Euler.
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An application to homogenization Long Time Behaviour and Homogenization

Passive Tracers, Effective Diffusivity

dx = v(x)dt + σdWt ,

where v(x) is a periodic function. It is possible to show using
homogenization that

lim
t→∞

E(x(t)⊗ x(t))

2t
= K.

We will refer to K as the effective diffusivity matrix
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An application to homogenization Long Time Behaviour and Homogenization

Velocity Field of Interest

Example

We are interested in the following 2-dimensional incompressible velocity
field

v(x) = ∇⊥Ψ(x), where Ψ(x) = sin x1 sin x2

Result

In this case it is known that K = DI2, where D ∈ R depending on σ for
passive tracers and that the following result is true for passive tracers

D(σ) ∼ σ, σ � 1
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An application to homogenization Long Time Behaviour and Homogenization

Key Property of the Velocity Field

Our velocity field v(x) can be written as

v(x) =

(
−1/2
+1/2

)
sin(x1 + x2) +

(
−1/2
−1/2

)
sin(x1 − x2),

=
2∑

j=1

djvj
(
〈ej , x〉

)
,

where ej , dj ∈ R2 with the property

〈ej , dj〉 = 0.

This is a key property for the construction of our method which is a stochastic
extension of a splitting method proposed by Quispel 2003.
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An application to homogenization Numerical algorithm/results

Description of the Method:

The method in the case of passive tracers involves these 3 steps:

Step 1: Solve ẋ1 = d1v1

(
〈e1, x1〉

)
,

Step 2: Solve ẋ2 = d2v2

(
〈e2, x2〉

)
,

Step 3: Solve ẋ3 = σβ̇1.
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An application to homogenization Numerical algorithm/results

The Deterministic Case

Splitting method for σ = 0. Euler method for σ = 0.
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An application to homogenization Numerical algorithm/results

The Case σ � 1

Splitting method for σ = 10−2. Euler method for σ = 10−2.
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An application to homogenization Numerical algorithm/results

Calculating Effective Diffusivities
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An application to homogenization Numerical algorithm/results

Mean Hamiltonian

We apply Itô ’s formula to H = Ψ we obtain

dΨ

dt
= −σ2Ψ + M.T

which implies that the mean Hamiltonian decays like e−σ
2t
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An application to homogenization Numerical algorithm/results

Numerical calculation of the mean Hamiltonian with the
two methods
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Figure: Mean value of the Hamiltonian as a function of time, for
∆t = 10−1, σ = 10−2.
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An application to homogenization Numerical algorithm/results

Modified Equations for the Euler Method

dx =

(
v(x)− ∆t

2
(∇v(x))v(x)− σ2∆t

4
∆v(x)

)
dt

+ σ

(
1− ∆t

2
∇vT (x)

)
dWt .

dΨ

dt
= −∆t

2
(cos2 x1 + cos2 x2)Ψ− σ2Ψ(1 + ∆t cos x1 cos x2)

+
σ2∆2t

4
(cos2 x1 cos2 x2Ψ−Ψ3) + M∆t .
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An application to homogenization From Homogenization to averaging in cellular flows.

Statement of the problem

u(x) = ∇⊥Ψ(x), Ψ(x) =
1

π
sinπx1 sinπx2.

Xt satisfies the following SDE

dXt = −Au(Xt)dt +
√

2dWt .

Exit time problem

−∆τ + Au · ∇τ = 1 in D,

τ = 0 on ∂D,

where D = [−L/2, L/2]× [−L/2, L/2].
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An application to homogenization From Homogenization to averaging in cellular flows.

Known results and open questions

1 A fixed, L→∞, homogenization (τ →∞).

2 L fixed, A→∞, averaging (τ → 0).

3 If D = BL a disk of radius L, then τ(x) ∼ L2 − |x |2.
4 A = Lα and L→∞

α < 4, homogenization (τ ∼ L2−α/2).
α > 4, averaging (τ ∼ L2−α/2).

Question

How about α = 4?
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An application to homogenization From Homogenization to averaging in cellular flows.

Numerical investigations I

Define Yt = XAt , then dYt = u(Yt)dt +
√

2
AdWt and τ(y) = Aτ(x)

Asymptotic behaviour of exit time (α = 1) Exit problem from a disk (L = 40)
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An application to homogenization From Homogenization to averaging in cellular flows.

Numerical investigations II, Case α = 4

Asymptotic behaviour of exit time (α = 4) Comparison of c.d.f
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Higher order methods

Key idea

i) Choose a numerical method for the original SDE.

ii) Write down a suitably chosen SDE different than the original one
(this SDE depends on the choice of the method from step i).

iii) Apply the numerical method from step i to the SDE from step ii.

Example

dXt = u1(Xt)dt + σ1(Xt)

i) xn+1 = xn+θhu1(xn+1)+(1−θ)hu1(xn)+
√
hσ1(xn)ξn+ h

2
σ1(xn)σ

(1)
1 (xn)(ξ2

n−1)

ii) dXt = ũ(Xt)dt + σ̃(Xt), ũ = u1 − hu2, σ̃ = σ1 − hσ2

iii) xn+1 = xn + θhũ(xn+1) + (1− θ)hũ(xn) +
√
hσ̃(xn)ξn + h

2
σ1(xn)σ

(1)
1 (xn)(ξ2

n − 1)
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Higher order methods

Application to an economy model for asset prices

dX1 = β1X1X2dW1,

dX2 = −(X2 − X3)dt + β2X2dW2,

dX3 = α(X2 − X3)dt,

N. Hofmann, E. Platen, M. Schweizer. Option pricing under incompletness and
stochastic volatility. Mathematical Finance, 2(3):153–187, (1992).
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Higher order methods

Numerical Investigations

Error for E(X 2
1 ). Nonstiff case α = 1. Error for E(X 2

1 ). Very stiff case α = 100.

Error for E(X 2
1 ). Stiff case α = 25. Error for E(X 2

2 ). Stiff case α = 25.
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Summary

Conclusions

1 It is not always possible to write down a modified Itô SDE for a given
numerical method.

2 In the case of linear SDEs with additive noise it is possible to write
down an ∞-modified equation that the numerical method satisfy
exactly in the weak sense.

3 It is possible to generalize ideas from the backward error analysis of
ODEs to SDEs.

4 Modified equations can be used as a tool for constructing higher order
methods.
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Summary

Future work

1 Find modified equations for numerical methods with respect to strong
convergence.

2 Give a rigorous explanation for failing to find a modified SDE for the
Euler method in case of multiplicative noise.

3 Use modified equations to characterize the invariant measure
approximated by different numerical schemes.

4 Compare exit times from a square for different starting points, with
the ones of the effective Brownian motion.

5 Study exit times in case where the inertia is important (inertial
particles).
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