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m Qis a 3 x 3 symmetric, traceless matrix - a Q-tensor
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m isotropicis Q =0
m uniaxial if it has two equal eigenvalues
m biaxial otherwise
m Ericksen’s theory (1991) for uniaxial Q-tensors which can be
written as

Q(x) = s(x) (n(x) ®n(x) - %Id), seR,nes?
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Liquid crystal
modeling

The big picture

Increasing complexity of equations

Full system-weak solutions (work in progress) with G.
Schimperna (Pavia) and E. Fereisl (Prague)

m Coupled Navier-Stokes Q-tensor system(weak
solutions and regularity in 2D) (submitted) with M.
Paicu (Bordeaux)

m Dynamics for the Q-tensor system only-statistical
dynamics (work in progress) with Ph.D. student M.
Wilkinson (Oxford) and E. Kirr (Urbana-Champaign)

m Stationary elliptic system

W singular perturbation problem(published) with A.
Majumdar(Oxford) and refinement (submitted) with L.
Nguyen (Princeton)

B existence and energetic stability(work in progress)
index 1E—defects (with V. Slastikov (Bristol) and J.
Robbins (Bristol)

B existence and energetic stability(work in progress)
radial hegehog (with R. Ignat (Paris), L. Nguyen and
V. Slastikov)

® Q-harmonic maps: topological issues (submitted and
in progress) with M. Atiyah, J. Ball (Oxford)
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Topological aspects: line fields (constrained

Nonlinear Q_tenso rs)
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G-tensor theory Use functions Q : Q — {s, (n ®n- %Id)} with s, = s, (e, T,b, )
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Zarnescu and ne Sz.

The constrained
de Gennes’
theory (with JM
Ball)

Theorem

(JM Ball-AZ) In a simply connected domain a line field in W' is
orientable if p > 2. For p < 2 there exist line fields that are not
orientable.

Arghir Dani Zarnescu Q-tensor theory



A complex topology

Q-tensor theory

Arghir Dani
Zarnescu

The constrained
de Gennes’
theory (with JM
Ball)

Theorem (JM Ball, AZ) Let G be a domain with holes in the plane. A
line field in W'P for p > 2 is orientable if and only if its restriction to

the boundary is orientable.
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) @

For M large enough the

PO ST

perspective has lower energy
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Qmin = {8+ (n(x) ® n(x) — %Id) ,nes?)

so that ;3(Q) = 0 © Q € Qmin.

Analogy with m Boundary conditions:

Ginzburg-Landau Qb(x) =8, (nb(X) ® nb(X) — l ) nb(X) c Coo(aQ’ SZ)
m Recall: ’:_LG f voE fB(O dx

Q) - QO in wh 2 ona subsequence asL — 0.

= Q(® a global energy minimizer of [, 79"

W'2(Q, Qmin)
m QO =5, (n®en® - 1Id)and [, WO gy — 252 IS i
with n(®) a global minimizer of For[n] = fQ IVn[? dx in
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a(T-T) 5 b 3 c 2\2
fB(Q) = TU’(Q )— gtr(Q )+ Z (trQ )
m The energy inequality:
: 1 (VAR f3(Q) 1 f IVQR  f(Q)
The uniform _ < —
v r fs 2 "L YRy 2 TL ¥
Majumdar)
forr<R

m Bochner-type inequality:

-Aeg. < ef

where e = [, wot | k(@)

m Combine the two |nto a standard rescaling and blow-up
argument. Troubles near the boundary.

m_Remark that uniform W'> bounds cannot hold in the whole Q
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|
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(@) = " (@?) - (@) + § (wc?)

convergence
(with A.
Majumdar)

The uniform [a(T -T)Q;-b (Q,'/Q/j - 5,7tr(Q)2) + CQijtr(Qz)] X
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1 ..
LAQ; = -a2Qj-b? [ Qp Q) — 5trc32<s,-,-)+c2 (r@?) @j.i.j=1.2.3

m Multiply by Q; sum over repeated indices and obtain:

LA(Q;Q)) - 2LQ;,Q; = LAQ;Q; > Lg(IQl)

The uniform
convergence
(with A.
Majumdar) def

g(Q) L

QR + c?lal*
6

_32|Q|2 _
NG
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Apriori L* bounds

1 ..
LAQ; = -a2Qj-b? [ Qp Q) — 5trc32<s,-,-)+c2 (r@?) @j.i.j=1.2.3

m Multiply by Q; sum over repeated indices and obtain:
LA(Q;Q)) - 2LQ;,Q; = LAQ;Q; > Lg(IQl)
b2

QR + c?lal*
NG

def

g(lQl) E -a?QP -

= On the other hand g(1QI) > 0 for [QI > +[2s.

m Hence LA (|Q|2) (x) > 0 for all interior points x € 2, where

1Q(x)| > \/ger.
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The uniform
convergence
(with A.
Majumdar)

The uniform convergence result

Proposition

(A. Majumdar, AZ) Let Q c R® be a simply-connected bounded open
set with smooth boundary. Let Q) denote a global minimizer of the
energy

FelQ] = L %Qij,k(x)oij,k(x) + f3(Q(x)) dx

with Q € W'-2 subject to boundary conditions Q, € C*(0S2), with
Qp(x) =54 (n ®n-— %Id) ,n €S2 Let Ly — 0 be a sequence such
that Q) — Q) in W'?(Q).
Let K c Q be a compact set which contains no singularity of Q(©).
Then

lim Q) (x) = QO(x), uniformly for x € K (1)

k—o0

v
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The uniform
convergence
(with A.
Majumdar)

Beyond the small L limit

m Heuristically: Q1) ~ Q) + LR() + h.o.t

m Beyond the first order term: biaxial
Q= s(n®n— %Id)+r(m®m— %Id)

. N .
’ Ay
—‘ Y b ' . ® ‘—
— \\’_/ | J -~

Arghir Dani Zarnescu

Figure 1. Schematic representation of the biaxial core of
a hedgehog. We show the section with a plane through
the symmetry axis of the core. The ellipses suggest the
molecular orientation on this section: the points where they
degenerate in a disc are traversed by the uniaxial ring with
negative scalar order parameter. which comes out of the page;
accordingly, the broken circles show the trace of the torus
with a maximum degree of biaxiality. Both the symmetry
axis and the far director field are uniaxial with positive scalar
order parameter.
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Beyond the small L limit

m Heuristically: Q1) ~ Q) + LR() + h.o.t
m Beyond the first order term: biaxial
Q= s(n®n— %Id)+r(m®m— %Id)

3 2
mBQ)=1- %-biaxiality parameter

m S. Kralj, E.G. Virga, J. Phys. A (2001)
My,

‘ ° b ' . ° ‘ Figure 1. Schematic representation of the biaxial core of

a hedgehog. We show the section with a plane through

P .’ NS W ~ the .\ymmelr}( axi:s of the Fnre. ‘TllE ellips‘es suggest the
molecular orientation on this section: the points where they

' . \ degenerate in a disc are traversed by the uniaxial ring with

negative scalar order parameter. which comes out of the page;

/ accordingly, the broken circles show the trace of the torus
/ \ with a maximum degree of biaxiality. Both the symmetry

, . \ axis and the far director field are uniaxial with positive scalar

order parameter.
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A possible interpretation of defects in Landau-de

Gennes theory

Q-tensor theory ® A matrix depending smoothly on a parameter can have discontinuous eigenvectors
= Example: A real analytic matrix
Arghir Dani

Zarnescu 1 y 0 Lx 0 0
Q(L)(x,y,z): y 1 0 +| 0 —-Lx 0
0 0 -2 0 0 0
defg(0) def; p(1)
The uniform
convergence
(with A.
Majumdar) @
2 S
g g g e e e
g o o e e e
Q 4 0 o o = =8
0 o0 o < =@ s
B s ss
VeSS S

FIG. 1. Core of an s=1/2 disclination. The center is uni-
axial with negative Maier-Saupe order parameter (planar uni-
axial). It transforms via a biaxial ring into a uniaxial form
with a positive S.
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The uniform
convergence
(with A.
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® A matrix depending smoothly on a parameter can have discontinuous eigenvectors

A possible interpretation of defects in Landau-de

Gennes theory

= Example: A real analytic matrix

1y o x 0 0
axyz)=| v 1 o |+ 0 -x o
o o -2 ) 0

defa(0) def| p(1)

1 0 0 1
m Ony=0andL # 0 we have eigenvectors [ 0 ] [ 1 ] [ 0 ] On x = 0 and L # 0 we have eigenvectors [ -1 ]
0 0

1 0 1 1 0
1 ][ 0 ] If L = 0 we have that[ -1 ][ 1 }( 0 ]are eigenvectors everywhere.

0 1 0 0 1

Consistent with the interpretation of PG De Gennes (Comptes Rendus Hebdomadaires des Seances de I'Academie des
sciences, Serie B, 275(9) 1972)

m A Sonnet, A. Killian and S. Hess Phys. Rev. E 52 (1995)

<2
g§223%%2
Qggnocgee
g 0 o < =@ s 5
B Vs soass
%%i%%

FIG. 1. Core of an s=1/2 disclination. The center is uni-
axial with negative Maier-Saupe order parameter (planar uni-
axial). It transforms via a biaxial ring into a uniaxial form
with a positive S.

Q-tensor theory
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Proposition

(i) Let Q1) be a global minimizer of F.5[Q]. Then there exists a set
of measure zero, possibly empty, Qg in Q such that the eigenvectors
of QL) are smooth at all points x € Q \ Qq. The uniaxial-biaxial ,

The uniform isotropic-uniaxial or isotropic-biaxial interfaces are contained in €.

convergence

kel (i) Let K S be a compact subset of ) that does not contain
singularities of the limiting map Q(®). Let n) denote the leading

eigenvector of Q) Then, for L small enough (depending on K), the

leading eigendirection n't) @ n(t) € C*® (K : M3X3).

Arghir Dani Zarnescu Q-tensor theory



The geometry of the Q-tensor (1)
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m Recall AQW) =1 [—azo - b? (02 - @Id) + C2Qtr(02)]
m Heuristically: Q1Y) ~ Q© + LR 1 h.o.t

Refined
description of
minimizers (with
Luc Nguyen)
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Refined
description of
minimizers (with
Luc Nguyen)

The geometry of the Q-tensor (1)

m Recall AQW) =1 [—azo - b? (02 - @Id) + C2Qtr(02)]

m Heuristically: Q1Y) ~ Q© + LR 1 h.o.t
= The limit @ = s, (n®@n - }id) and QO AQ® = AQ®Q®

Arghir Dani Zarnescu Q-tensor theory



The geometry of the Q-tensor (1)

Q-tensor theory
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Recall AQ®) = 1 [-a2Q - b2 (@2 - “Fid) + c2Qur(@?)|

m Heuristically: Q1Y) ~ Q© + LR 1 h.o.t
= The limit @ = s, (n®@n - }id) and QO AQ® = AQ®Q®
m After some geometry...

AQ®) = -2 (Q) = Zid) 30— (VaQ))?

etnes m Equivalently the initial equation is
description of AQL’(, = —%(QLK, — 2—3 Id) 2:1 (VQQL’(, )2 —+ Lk’ RLk’

minimizers (with
Luc Nguyen)

We want to determine R( % lim; o 1(Q®) — Q@)

Arghir Dani Zarnescu Q-tensor theory
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Refined
description of
minimizers (with
Luc Nguyen)

The geometry of the Q-tensor (Il)

Lemma

For a point Q € S., the tangent and normal spaces to S, at Q are

ToS. = (Qe MY 25,0=QQ+QA),
(TeS.)" ={Q e M7 Q*Q=QQ"}

Lemma

Let Q be a pointin S,. For X, Y in TqS, and Z, W in (ToS.)*, we
have XY + YX, ZW + WZ € (TS.)* and XZ + ZX € TgS..

Arghir Dani Zarnescu Q-tensor theory
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Refined
description of
minimizers (with
Luc Nguyen)

The equation for the next term in the asymptotic

expansion

Proposition

(L. Nguyen, AZ) Assume that Q, € CZ(Q, So) is a critical point of I, , and that as L
— 0, Qu, converges on compact subsets of Q in C2-norm to Q. € C'é(Q S.) which is
a critical point of I, and L1_k(QLk - Q,) converges in C?-norm to some Q. € C?(%, Sp).
If we write Q. = Q! + Q+ with Q! € Tq, S, and Q+ € (Tg, S.)*, then

(i) Qf is given by

3
5= —E[mw@f(cz Q.+ %bzld)(Q* - 1§S+ ld) —(;(V,,Q*)Z],
4)
(i) and Q! satisfies in Q the equations
aql=[-p2(Qla +Q Q) - ot — ¢ var all
° ¢ 6a2 + b% s,

- s%[(VoU)" va. +va.(val) (@ - gs: ) (acz). @)

where (V(ﬂ)H and (AQ,‘)” are the tangential components ofVQH and AQZ,
respectively.

Arghir Dani Zarnescu Q-tensor theory




Dynamical issues: statistical aspects of

EooEn“near coarsening

Q-tensor theory

m The quenching from the isotropic into the nematic occurs

SZamesc through the creation of nematically ordered islands into the
ambient isotropic fluid.

m A scaling phenomenon: the pattern of domains at a later time
looks statistically similar to that at an earlier time, up to a
time-dependent change of scale.

u

C(r,t) = (Tr[Q(x + r,H)Q(x, 1)) )

(TrlQ(x. HQ(x, t)])
where the brackets (, ) denote an average over x € R and over
the initial conditions.

m The statistical scaling hypothesis states that for late enough

R times the correlation function C(r, t) will assume a scaling form:

statistical
dynamics (with r

Wikinson) C(r.t) ~ f(m) 7)
where L(t) is the time-dependent length scale of the nematic
domains.

Arghir Dani Zarnescu Q-tensor theory



Statistical solutions and the correlation function

Q-tensor theory

Avai et m The simplest gradient flow of the energy
Zarnescu j}t{d %|VQ|2 —+ gtr(oz) - gtr(oa) + %trz(oz) dX

6.,
0:Qj = AQ; + a*Q; + b? (o,-,o,,- - Eutr(Qz)) - c?Qutr(Q?),i,j=1,2,3

m Consider an averaging measure y, on the infinite-dimensional
functional space of initial datas, let us call it H. If
Probability that Qo € A = io(A), for a Borel set A ¢ H then one can
rigorously define the time-dependent family of measures
1e(A) Z 1o ({S(t, Qo) € A}) = uo(S(t)™TA)(where S(t, Qo) is the
solution with initial data Q, at time t) and study the evolution of these

measures.
e m We define then C(r, t):

dyna_mics (with

i e 0.1y 2 JaUs THIL + DAL 9x) dki(Q)

Ju (L Tr[Q()Q()] dx) du(Q)

Arghir Dani Zarnescu Q-tensor theory



The evolutionary equation: just a bistable gradient

Q-tensor theory

m High dimensional (in the domain and target space) version of:

Arghir Dani
Zarnescu

Ot = Uy — F'(u), u(t,x) : Ry xR >R

m Choosing a suitable initial data, our system reduces to the scalar
equation above.

F(w)
\ \
\\ 1 / s= |0 s+ /
= opic | e
nematic L
Coarsening and ] Shallow quenching regime Deep quenching regime

statistical
dynamics (with

E. Kirr and M. m The equation is: u; = Uy — au + bu® — c®u® with a > 0 in the
Wilkinson) . . .
shallow quenching and a < 0 in the deep quenching

Arghir Dani Zarnescu Q-tensor theory



The evolutionary equation: just a bistable gradient

Q-tensor theory

m High dimensional (in the domain and target space) version of:

Arghir Dani
Zarnescu

Ot = Uy — F'(u), u(t,x) : Ry xR >R

m Choosing a suitable initial data, our system reduces to the scalar
equation above.

F(w)
\ \
\\ 1 / s= |0 s+ /
= opic | e
nematic L
Coarsening and ] Shallow quenching regime Deep quenching regime

statistical
dynamics (with

E. Kirr and M. m The equation is: u; = Uy — au + bu® — c®u® with a > 0 in the
Wilkinson) . . .
shallow quenching and a < 0 in the deep quenching

m We continue referring just to the shallow quenching regime!

Arghir Dani Zarnescu Q-tensor theory



Statistical solutions as averages of individual
b solutions and the individual behaviour |

POE

Q-tensor theory

Arghir Dani

Zamescu m (A. Zlatos, JAMS, 19 (2006)) For initial data u(0, x)
that there exists Ly > 0 so that

= X[-L.L] W€ have

m If L < Lo u(t, x) — 0 uniformly on compacts

m If L = Ly u(t, x) — U uniformly on compacts, with U a stationary
solution

m If L > Lo u(t, x) — 1 uniformly on compacts

u
47 f, (i TrIQGx -+ NQ(0] o) g
el = o) @
fH (s Tr[@(x)Q(x)] dx) do ds o
g where )Z 9(”) —1.
Elkimand . u Understandlng the behaviour of individual solution helps to understand

Wilkinson)

the statistical solutions. But it might not be necessary...

Arghir Dani Zarnescu Q-tensor theory



Statistical solutions as averages of individual
b solutions and the individual behaviour Il

POE

Q-tensor theory
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m For small enough initial data we have a representation

_ 2
e A(t+1)

et (4n(t +1))*?

Qy(t,x) = A4(Q) + wj(t,x)
where w;; decays faster than the first term.

def Ju(fis TH{QUx+r) Q)] dx) dog(n(Q)
1 (s THQO)Q(x)] dx ) doan (Q)

_
ICs(r. 1) — &% llL=(ar) = 0(1) as t — co.

m Let Cs(r, 1) . Then

Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)

Arghir Dani Zarnescu Q-tensor theory



Statistical solutions as averages of individual
b solutions and the individual behaviour Il

POE

Q-tensor theory
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Zarnescu

m For small enough initial data we have a representation

_ 2
e 4(t+1)

et (4n(t +1))*?

Qy(t,x) = A4(Q) + wj(t,x)
where w;; decays faster than the first term.

def [, (fis THQ(x+1)Q(x)] dx) dog (Q)
T L(Fa Q) Q(x)] dx) doa(Q)

2
ICs(r,t) — € T [|Lw(gny = 0(1) as t — co.
(o)

m Let Cs(r, 1) . Then

T 1 . .
Coarsening and m Thus for small initial data, L(t) ~ tz, but this scaling only
statistical . . .
dynamics (with captures the underlying brownian motion.
E. Kir d M.
Wilkinrsao:)

Arghir Dani Zarnescu Q-tensor theory



Statistical solutions as averages of individual

:\:En“near solutions and the individual behaviour Il

Q-tensor theory

Brongban m If up(x) is spherically symmetric up(x) = xs(0,7) for R large enough we
have u(t, x) ~ xs(o.st) and Cs(r, ) ~ P({) as t — oo (where P is a third
order polynomial).

Zarnescu

Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)
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Statistical solutions as averages of individual

:\:En“near solutions and the individual behaviour Il

Q-tensor theory

Arghir Danl m If up(x) is spherically symmetric up(x) = xs(0,7) for R large enough we
have u(t, x) ~ xs(o.st) and Cs(r, ) ~ P({) as t — oo (where P is a third
order polynomial).

m Thus for some large enough initial data L(t) ~ tas t — oo

tA{1/2} scaling t scaling t scaling

f /—/§<\

0 Lo
Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)

t*{1/2} scaling no scaling t scaling
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Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)

Statistical solutions as averages of individual

solutions and the individual behaviour Il

m If up(x) is spherically symmetric up(x) = xs(0,7) for R large enough we
have u(t, x) ~ xs(o.st) and Cs(r, ) ~ P({) as t — oo (where P is a third
order polynomial).

m Thus for some large enough initial data L(t) ~ tas t — oo

m Averaging over Zlatos’ initial data

tA{1/2} scaling t scaling t scaling
0 Lo
= t*{1/2} scaling no scaling t scaling
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Q-tensors+NSE
(with M. Paicu)

The Q-tensors+NSE system of equations

The flow equations:

{ ou+uvu=vAu+Vp+V-t+V.o

V-u=0

where we have the symmetric part of the additional stress tensor:

= —§(o+ Id)H {-‘H(Q+ 7Id)

+2£(Q + %Id)QH -L (vo ova+

tr(Q?)
),

and an antisymmetric part o = QH — HQ where

H=LAQ-aQ+ b[Q® -

tr(Q )

Id] - cQtr(Q?)

m The equation for the liquid crystal molecules, represented by functions with
values in the space of Q-tensors (i.e. symmetric and traceless d x d matrices):

(0 +u-V)Q-S(Vu,Q) =TH

with
S(Vu, Q)

(§D+Q)(o+ —Id) +(Q+ =

Arghir Dani Zarnescu

Q-tensor theory

’d)(fD Q)-2£(Q+ 5

Id)tr(QVu)
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Q-tensors+NSE
(with M. Paicu)

Energy dissipation and weak solutions-apriori
bounds

def

def L 2, @ 2 _E 3 c 2
E(t) = fRd 5IVQF + Su(Q%) 3tr(Q )+ 4t12(Q ) dx

free energy of the liquid crystal molecules

1 2
z t,x)d
+2fRdIUI(X)x

— ——
kinetic energy of the flow

is decreasing E(t) < 0.
m Note that this does not readily provide LP norm estimates.

Proposition

For d = 2,3 there exists a weak solution (Q, u) of the coupled system, with restrictions
¢ > 0 and €] < &, subject to initial conditions

Q(0,x) = Q(x) € H'(RY), u(0,x) = ti(x) € L3(RY),V-T =0 in D'(RY)  (9)
(R+; H1) n L2 (R+; Hz) and

loc

The solution (Q, u) is such that Q € L5,
uel® (Ry;L2)n L2 (Ry;H).

loc loc

Arghir Dani Zarnescu Q-tensor theory



Regularity difficulties: the maximal derivatives
b and “the co-rotational parameter”

POE

Q-tensor theory
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m Recall the system:

(0t +u-V)Q = (£D(u) + Qu))(Q + F1d) + (Q + Fd)(<D(u) - Q(u))
—-2£(Q + Fd)w(QVu) =TH

8tu+uVu:vAu,1+Vp+V-(QH—HQ)

—V‘(E(:O +3Id)H+£H(Q ‘gld))
126V ((o + %)QH)— LV-(VQova+ §u(Q?))
V-u=0

with H = LAQ - aQ + b[@? - "% 1] - cQur(Q2).
m Worse than Navier-Stokes
m Where’s the difficulty?

Q-tensors+NSE

(with M. Paicu)
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m Recall the system:

(0t +u-V)Q = (£D(u) + Qu))(Q + F1d) + (Q + Fd)(<D(u) - Q(u))
—-2£(Q + Fd)w(QVu) =TH

8tu+uVu:vAu,1+Vp+V-(QH—HQ)

—V‘(E(:O +3Id)H+£H(Q ‘gld))
126V ((o + %)QH)— LV-(VQova+ §u(Q?))
V-u=0

with H = LAQ - aQ + b[@? - "% 1] - cQur(Q2).
m Worse than Navier-Stokes
m Where’s the difficulty?

m |f £ = 0 maximal derivatives only

Q-tensors+NSE
(with M. Paicu)
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m Recall the system:

(0t +u-V)Q = (£D(u) + Qu))(Q + F1d) + (Q + Fd)(<D(u) - Q(u))
—-2£(Q + Fd)w(QVu) =TH

8tu+uVu:vAu,1+Vp+V-(QH—HQ)

—V‘(E(:O +3Id)H+£H(Q ‘gld))
126V ((o + %)QH)— LV-(VQova+ §u(Q?))
V-u=0

with H = LAQ - aQ + b[@? - "% 1] - cQur(Q2).
Worse than Navier-Stokes
Where’s the difficulty?

If ¢ = 0 maximal derivatives only

If £ # 0 maximal derivatives+high power of Q
Q-tensors+NSE

(with M. Paicu)
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m Recall the system:

(0t +u-V)Q = (£D(u) + Qu))(Q + F1d) + (Q + Fd)(<D(u) - Q(u))
—-2£(Q + Fd)w(QVu) =TH

8tu+uVu:vAu,1+Vp+V-(QH—HQ)

—V‘(E(:O +3Id)H+£H(Q ‘gld))
126V ((o + %)QH)— LV-(VQova+ §u(Q?))
V-u=0

with H = LAQ - aQ + b[@? - "% 1] - cQur(Q2).
Worse than Navier-Stokes
Where’s the difficulty?

If ¢ = 0 maximal derivatives only

If £ # 0 maximal derivatives+high power of Q
Q-tensors+NSE

(with M. Paicu)
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The regularity result, in 2D

Q-tensor theory

Arghir Dani Theorem

Zarnescu _

Lets > 0 and (Q, 0) € H"'(R?) x H%(R?). There exists a global a
solution (Q(t, x), u(t, x)) of the coupled system, with restrictions
¢ > 0 and |¢| < &, subject to initial conditions

Q(0,x) = Q(x), u(0, x) = t(x)

and Q € L2 (R,; H"2(R?)) N L (R HSH1(R?)),

loc
ueLZ (Ry; HST'(R?) N L (R4; H®). Moreover, we have:

loc

e

LIVQt, Y ey + Ut WEreay < e + 1Qllss(s2) + Wllges))

(10)

where the constant C depends only on Q, 1, a,b,c, T and L. If¢ =0
the increase in time of the norms above can be made to be only

vt doubly exponential.
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The full system (in progress with E. Feireisl and

G. Schimperna)

Q-tensor theory

Arghir Dani Q-LC molecules, u-fluid velocity, 6-temperature

Zarnescu

(6r+u-V)O—[(E+1)Vu+(f—1)Vu’](g + Z%’Id)—(%)

n ld )€+ 1)7u+ (€~ 1)vul]

1 B Q) 1 (o
+26(Q+  ld)u(QVY) = r(LAo— 2t Bu(ﬁ)/d)
- -
defy

Gpu+V-(UBU) V- (/{(9)[0;-:7 HQ]-pld - ’? (Vu+ VUY))

L:lgT1

= v.(a(a)’—g(Q- %/d)H—fH(Q + %Id) +26(Q + :—jJOH— Lva @VQD+f

d;sz

V.u=0
040+ V- (0u) + V- (J(Q,0)70)) = (Tq + T2) : Vu

Q-tensors+NSE
(with M. Paicu)
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THANK YOU!

Q-tensors+NSE
(with M. Paicu)
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