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Liquid crystals: physics

A measure µ such that 0 ≤ µ(A) ≤ 1 ∀A ⊂ S2

The probability that the molecules are pointing in a direction
contained in the surface A ⊂ S2 is µ(A)

Physical requirement µ(A) = µ(−A) ∀A ⊂ S2
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Landau-de Gennes Q-tensor reduction and earlier
theories

Q =

∫
S2

p ⊗ p dµ(p) −
1
3

Id

Q is a 3 × 3 symmetric, traceless matrix - a Q-tensor

The Q-tensor is:
isotropic is Q = 0
uniaxial if it has two equal eigenvalues
biaxial otherwise

Ericksen’s theory (1991) for uniaxial Q-tensors which can be
written as

Q(x) = s(x)

(
n(x) ⊗ n(x) −

1
3

Id
)
, s ∈ R, n ∈ S2

Oseen-Frank theory (1958) take s in the uniaxial
representation to be a fixed constant s+
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Q-tensors: beyond liquid crystals

Carbon nanotubes:

LC states of DNA:

Active LC: cytoskeletal filaments and motor proteins
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The big picture

Full system-weak solutions (work in progress) with G.
Schimperna (Pavia) and E. Fereisl (Prague)

Coupled Navier-Stokes Q-tensor system(weak
solutions and regularity in 2D) (submitted) with M.
Paicu (Bordeaux)

Dynamics for the Q-tensor system only-statistical
dynamics (work in progress) with Ph.D. student M.
Wilkinson (Oxford) and E. Kirr (Urbana-Champaign)

Stationary elliptic system

singular perturbation problem(published) with A.
Majumdar(Oxford) and refinement (submitted) with L.
Nguyen (Princeton)
existence and energetic stability(work in progress)
index 1

2 -defects (with V. Slastikov (Bristol) and J.
Robbins (Bristol)
existence and energetic stability(work in progress)
radial hegehog (with R. Ignat (Paris), L. Nguyen and
V. Slastikov)

Q-harmonic maps: topological issues (submitted and
in progress) with M. Atiyah, J. Ball (Oxford)
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Topological aspects: line fields (constrained
Q-tensors)

Use functions Q : Ω→ {s+

(
n ⊗ n − 1

3 Id
)
} with s+ = s+(α,T , b , c)

and n ∈ S2.

Theorem

(JM Ball-AZ) In a simply connected domain a line field in W1,p is
orientable if p ≥ 2. For p < 2 there exist line fields that are not
orientable.
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A complex topology

Theorem (JM Ball, AZ) Let G be a domain with holes in the plane. A
line field in W1,p for p ≥ 2 is orientable if and only if its restriction to
the boundary is orientable.
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A domain with holes and partial boundary
conditions
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Comparison between line fields and vector fields
global energy minimizers
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Beyond constrained Q-tensors

Energy functionals in the three theories:
Landau-de Gennes:

FLG[Q] =

∫
Ω

L
2

Qij,k (x)Qij,k (x) + fB(Q(x)) dx

fB(Q) =
α(T − T ∗)

2
tr

(
Q2

)
−

b
3

tr
(
Q3

)
+

c
4

(
trQ2

)2

with Q(x) : Ω→ {M ∈ R3,M = Mt , trM = 0} a Q-tensor
Ericksen’s theory:

FE [s, n] =

∫
Ω

s(x)2|∇n(x)|2 + k |∇s(x)|2 + W0(s(x)) dx

with (s, n) ∈ R × S2

Oseen-Frank:

FOF [n] =

∫
Ω

ni,k (x)ni,k (x) dx, n ∈ S2
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Analogy with Ginzburg Landau

We can denote f̃B(Q) = fB(Q) −min fB(Q) and we have

F̃LG[Q] =

∫
Ω

|∇Q |2

2
+

f̃B(Q)

L
dx

f̃B(Q) ≥ 0 and f̃B(Q) = 0⇔ Q ∈ {s+

(
n ⊗ n − 1

3 Id
)
} with

s+ = s+(α,T , b , c) and n ∈ S2.

Experimentally L << 1

Ginzburg-Landau: u : Rn → Rn and energy functional

FGL [u] =

∫
Ω

|∇u(x)|2

2
+

1
ε2 (1 − |u|2)2 dx
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Boundary conditions and the W1,2 convergence

We denote

Qmin = {s+

(
n(x) ⊗ n(x) −

1
3

Id
)
, n ∈ S2}

so that f̃B(Q) = 0⇔ Q ∈ Qmin.
Boundary conditions:
Qb(x) = s+

(
nb(x) ⊗ nb(x) − 1

3 Id
)
, nb(x) ∈ C∞(∂Ω,S2)

Recall: F̃LG =
∫

Ω
|∇Q |2

2 +
f̃B (Q)

L dx

Q(L) → Q(0) in W1,2 on a subsequence, as L → 0.

Q(0) a global energy minimizer of
∫

Ω
|∇Q |2

2 in the space
W1,2(Ω,Qmin)

Q(0) = s+
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The uniform convergence: obtaining uniform W1,∞

bounds-the general mechanism

Recall the energy functional:

FLG[Q] =

∫
Ω

L
2

Qij,k (x)Qij,k (x) + fB(Q(x)) dx

fB(Q) =
α(T − T ∗)

2
tr

(
Q2

)
−

b
3

tr
(
Q3

)
+

c
4

(
trQ2

)2

The energy inequality:

1
r

∫
Br

|∇Q |2

2
+

f̃B(Q)

L
dx ≤

1
R

∫
BR

|∇Q |2

2
+

f̃B(Q)

L
dx

for r < R
Bochner-type inequality:

−∆eL ≤ e2
L

where eL =
∫

Br

|∇Q |2

2 +
f̃B (Q)

L

Combine the two into a standard rescaling and blow-up
argument. Troubles near the boundary.
Remark that uniform W1,∞ bounds cannot hold in the whole Ω
but only away from the singularities of the limiting harmonic map
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Remark that uniform W1,∞ bounds cannot hold in the whole Ω
but only away from the singularities of the limiting harmonic map
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Heuristical bookkeeping: work with spectral
quantitities

Examples

fB(Q) =
α(T − T ∗)

2
tr

(
Q2

)
−

b
3

tr
(
Q3

)
+

c
4

(
trQ2

)2

[
α(T − T ∗)Qij − b

(
QilQlj − δij tr(Q)2

)
+ cQij tr(Q2)

]
×[

α(T − T ∗)Qij − b
(
QilQlj − δij tr(Q)2

)
+ cQij tr(Q2)

]

[
α(T − T ∗)Qij − b

(
QilQlj − δij tr(Q)2

)
+ cQij tr(Q2)

]
Qij
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Apriori L∞ bounds

L∆Qij = −a2Qij−b2
(
QipQpj −

1
3

trQ2δij

)
+c2

(
trQ2

)
Qij , i, j = 1, 2, 3

Multiply by Qij sum over repeated indices and obtain:

L∆(QijQij) − 2LQij,lQij,l = L∆QijQij ≥ Lg(|Q |)

g(|Q |) def
= −a2|Q |2 −

b2

√
6
|Q |3 + c2|Q |4

On the other hand g(|Q |) > 0 for |Q | >
√

2
3 s+

Hence L∆
(
|Q |2

)
(x) > 0 for all interior points x ∈ Ω, where

|Q(x)| >
√

2
3 s+.
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The uniform convergence result

Proposition

(A. Majumdar, AZ) Let Ω ⊂ R3 be a simply-connected bounded open
set with smooth boundary. Let Q(L) denote a global minimizer of the
energy

F̃LG[Q] =

∫
Ω

L
2

Qij,k (x)Qij,k (x) + f̃B(Q(x)) dx

with Q ∈ W1,2 subject to boundary conditions Qb ∈ C∞(∂Ω), with
Qb(x) = s+

(
n ⊗ n − 1

3 Id
)
, n ∈ S2. Let Lk → 0 be a sequence such

that Q(Lk ) → Q(0) in W1,2(Ω).
Let K ⊂ Ω be a compact set which contains no singularity of Q(0).
Then

lim
k→∞

Q(Lk )(x) = Q(0)(x), uniformly for x ∈ K (1)
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Beyond the small L limit

Heuristically: Q(L) ∼ Q(0) + LR(L) + h.o.t

Beyond the first order term: biaxial
Q = s

(
n ⊗ n − 1

3 Id
)

+ r
(
m ⊗m − 1

3 Id
)

β(Q) = 1 −
6(tr(Q3))

2

(tr(Q2))3 -biaxiality parameter

S. Kralj, E.G. Virga, J. Phys. A (2001)
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Defects:A physical experiment

Arghir Dani Zarnescu Q-tensor theory



Q-tensor theory

Arghir Dani
Zarnescu

Liquid crystal
modeling

The constrained
de Gennes’
theory (with JM
Ball)

Analogy with
Ginzburg-Landau

The uniform
convergence
(with A.
Majumdar)

Refined
description of
minimizers (with
Luc Nguyen)

Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)

Q-tensors+NSE
(with M. Paicu)

A possible interpretation of defects in Landau-de
Gennes theory

A matrix depending smoothly on a parameter can have discontinuous eigenvectors
Example: A real analytic matrix

Q(L)(x, y, z) =

 1 y 0
y 1 0
0 0 −2

︸                       ︷︷                       ︸
def
= Q(0)

+

 Lx 0 0
0 −Lx 0
0 0 0

︸                           ︷︷                           ︸
def
= LR(1)

On y = 0 and L , 0 we have eigenvectors

 1
0
0

,
 0

1
0

,
 0

0
1

. On x = 0 and L , 0 we have eigenvectors

 1
−1
0

, 1
1
0

,
 0

0
1

. If L = 0 we have that

 1
−1
0

,
 1

1
0

,
 0

0
1

 are eigenvectors everywhere.

Consistent with the interpretation of PG De Gennes (Comptes Rendus Hebdomadaires des Seances de l’Academie des
sciences, Serie B, 275(9) 1972)
A. Sonnet, A. Killian and S. Hess Phys. Rev. E 52 (1995)
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The regularity of eigenvectors in our case

Proposition

(i) Let Q(L) be a global minimizer of F̃LG[Q]. Then there exists a set
of measure zero, possibly empty, Ω0 in Ω such that the eigenvectors
of Q(L) are smooth at all points x ∈ Ω \ Ω0. The uniaxial-biaxial ,
isotropic-uniaxial or isotropic-biaxial interfaces are contained in Ω0.

(ii) Let K ⊂ Ω be a compact subset of Ω that does not contain
singularities of the limiting map Q(0). Let n(L) denote the leading
eigenvector of Q(L) Then, for L small enough (depending on K), the
leading eigendirection n(L) ⊗ n(L) ∈ C∞

(
K ; M3×3

)
.
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The geometry of the Q-tensor (I)

Recall ∆Q(L) = 1
L

[
−a2Q − b2

(
Q2 −

tr(Q2)
3 Id

)
+ c2Qtr(Q2)

]
Heuristically: Q(L) ∼ Q(0) + LR(1) + h.o.t

The limit Q(0) = s+

(
n ⊗ n − 1

3 Id
)

and Q(0)∆Q(0) = ∆Q(0)Q(0)

After some geometry...
∆Q(0) = − 4

s2
+

(Q(0) − 1
6 Id)

∑3
α=1(∇αQ(0))2

Equivalently the initial equation is
∆QLk ′ = − 4

s2
+

(QLk ′ −
1
6 Id)

∑3
α=1(∇αQLk ′ )

2 + Lk ′ RLk ′

We want to determine R(1) def
= limL→0

1
L (Q(L) − Q(0))
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The geometry of the Q-tensor (II)

Lemma

For a point Q ∈ S∗, the tangent and normal spaces to S∗ at Q are

TQS∗ = {Q̇ ∈ Msym
3×3 :

1
3

s+Q̇ = Q̇ Q + Q Q̇}, (2)

(TQS∗)⊥ = {Q⊥ ∈ Msym
3×3 : Q⊥Q = Q Q⊥}. (3)

Lemma

Let Q be a point in S∗. For X, Y in TQS∗ and Z, W in (TQS∗)⊥, we
have XY + YX, ZW + WZ ∈ (TQS∗)⊥ and XZ + ZX ∈ TQS∗.
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The equation for the next term in the asymptotic
expansion

Proposition

(L. Nguyen, AZ) Assume that QLk ∈ C2(Ω,S0) is a critical point of ILk , and that as Lk
→ 0, QLk converges on compact subsets of Ω in C2-norm to Q∗ ∈ C2(Ω,S∗) which is
a critical point of I∗ and 1

Lk
(QLk − Q∗) converges in C2-norm to some Q• ∈ C2(Ω,S0).

If we write Q• = Q‖• + Q⊥• with Q‖• ∈ TQ∗S∗ and Q⊥• ∈ (TQ∗S∗)
⊥, then

(i) Q⊥• is given by

Q⊥• = −
2

b2s2
+

[ 6
6a2 + b2 s+

|∇Q∗ |2
(
c2 Q∗+

1
3

b2Id
)(

Q∗ −
1
6

s+ Id
)
−

3∑
α=1

(∇αQ∗)2
]
,

(4)

(ii) and Q‖• satisfies in Ω the equations

∆Q‖• =
[
− b2(Q‖• Q⊥• + Q⊥• Q‖•) −

6c2

6a2 + b2 s+
|∇Q∗ |2 Q‖•

]
−

4
s2

+

[(
∇Q‖•

)‖
∇Q∗ + ∇Q∗

(
∇Q‖•

)‖](
Q∗ −

1
6

s+ Id
)
−

(
∆Q⊥•

)‖
, (5)

where
(
∇Q‖•

)‖
and

(
∆Q⊥•

)‖
are the tangential components of ∇Q‖• and ∆Q⊥• ,

respectively.
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Dynamical issues: statistical aspects of
coarsening

The quenching from the isotropic into the nematic occurs
through the creation of nematically ordered islands into the
ambient isotropic fluid.
A scaling phenomenon: the pattern of domains at a later time
looks statistically similar to that at an earlier time, up to a
time-dependent change of scale.

C(r , t) =
〈Tr [Q(x + r , t)Q(x, t)]〉

〈Tr [Q(x, t)Q(x, t)]〉
(6)

where the brackets 〈, 〉 denote an average over x ∈ Rd and over
the initial conditions.
The statistical scaling hypothesis states that for late enough
times the correlation function C(r , t) will assume a scaling form:

C(r , t) ∼ f(
r

L(t)
) (7)

where L(t) is the time-dependent length scale of the nematic
domains.
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Statistical solutions and the correlation function

The simplest gradient flow of the energy∫
Rd

L
2 |∇Q |2 + a

2 tr(Q2) − b
3 tr(Q3) + c

4 tr2(Q2) dx

∂t Qij = ∆Qij + a2Qij + b2

(
QilQlj −

δij

3
tr(Q2)

)
− c2Qij tr(Q2), i, j = 1, 2, 3

Consider an averaging measure µ0 on the infinite-dimensional
functional space of initial datas, let us call it H. If
Probability that Q0 ∈ A = µ0(A), for a Borel set A ⊂ H then one can
rigorously define the time-dependent family of measures
µt (A)

def
= µ0({S(t ,Q0) ∈ A }) = µ0(S(t)−1A)(where S(t ,Q0) is the

solution with initial data Q0 at time t) and study the evolution of these
measures.

We define then C(r , t):

C(r , t) def
=

∫
H

(∫
R3 Tr [Q(x + r)Q(x)] dx

)
dµt (Q)∫

H

(∫
R3 Tr [Q(x)Q(x)] dx

)
dµt (Q)
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The evolutionary equation: just a bistable gradient
system

High dimensional (in the domain and target space) version of:

∂tu = uxx − F ′(u), u(t , x) : R+ × R→ R

Choosing a suitable initial data, our system reduces to the scalar
equation above.

The equation is: ut = uxx − au + bu2 − c2u3 with a > 0 in the
shallow quenching and a < 0 in the deep quenching

We continue referring just to the shallow quenching regime!
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Statistical solutions as averages of individual
solutions and the individual behaviour I

(A. Zlatos, JAMS, 19 (2006)) For initial data u(0, x) = χ[−L ,L ] we have
that there exists L0 > 0 so that

If L < L0 u(t , x)→ 0 uniformly on compacts
If L = L0 u(t , x)→ U uniformly on compacts, with U a stationary
solution
If L > L0 u(t , x)→ 1 uniformly on compacts

Cn(r , t) =

Σ
J(n)
j=1 θ

(n)
j

∫
H

(∫
R3 Tr [Q(x + r)Q(x)] dx

)
dδ

Q(n)
j∫

H

(∫
R3 Tr [Q(x)Q(x)] dx

)
dσ dδ

Q(n)
j

→ C(r , t) (8)

where Σ
J(n)
j=1 θ

(n)
j = 1.

Understanding the behaviour of individual solution helps to understand
the statistical solutions. But it might not be necessary...
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Statistical solutions as averages of individual
solutions and the individual behaviour II

For small enough initial data we have a representation

Qij(t , x) = Aij(Q)
e−

|x |2

4(t+1)

ea2t (4π(t + 1))3/2 + wij(t , x)

where wij decays faster than the first term.

Let Cδ(r , t)
def
=

∫
H(

∫
R3 Tr[Q(x+r)Q(x)] dx) dδQ(t)(Q)∫

H(
∫
R3 Tr[Q(x)Q(x)] dx) dδQ(t)(Q)

. Then

‖Cδ(r , t) − e−
|r |2

8(t+1) ‖L∞(dr) = o(1) as t → ∞.

Thus for small initial data, L(t) ∼ t
1
2 , but this scaling only

captures the underlying brownian motion.
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Statistical solutions as averages of individual
solutions and the individual behaviour III

If u0(x) is spherically symmetric u0(x) = χB(0,R) for R large enough we
have u(t , x) ∼ χB(0,c̄t) and Cδ(r , t) ∼ P( r

t ) as t → ∞ (where P is a third
order polynomial).

Thus for some large enough initial data L(t) ∼ t as t → ∞

Averaging over Zlatos’ initial data
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The Q-tensors+NSE system of equations

The flow equations: {
∂t u + u∇u = ν∆u + ∇p + ∇ · τ + ∇ · σ
∇ · u = 0

where we have the symmetric part of the additional stress tensor:

τ = −ξ

(
Q +

1
3

Id
)

H − ξH
(
Q +

1
3

Id
)

+2ξ(Q +
1
3

Id)QH − L
(
∇Q � ∇Q +

tr(Q2)

3
Id

)
and an antisymmetric part σ = QH − HQ where

H = L∆Q − aQ + b[Q2 −
tr(Q2)

3
Id] − cQtr(Q2)

The equation for the liquid crystal molecules, represented by functions with
values in the space of Q-tensors (i.e. symmetric and traceless d × d matrices):

(∂t + u · ∇)Q − S(∇u,Q) = ΓH

with

S(∇u,Q)
def
= (ξD + Ω)(Q +

1
3

Id) + (Q +
1
3

Id)(ξD −Ω) − 2ξ(Q +
1
3

Id)tr(Q∇u)
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Energy dissipation and weak solutions-apriori
bounds

E(t) def
=

∫
Rd

L
2
|∇Q |2 +

a
2

tr(Q2) −
b
3

tr(Q3) +
c
4

tr2(Q2) dx︸                                                                 ︷︷                                                                 ︸
free energy of the liquid crystal molecules

+
1
2

∫
Rd
|u|2(t , x) dx︸                  ︷︷                  ︸

kinetic energy of the flow

is decreasing d
dt E(t) ≤ 0.

Note that this does not readily provide Lp norm estimates.

Proposition

For d = 2, 3 there exists a weak solution (Q , u) of the coupled system, with restrictions
c > 0 and |ξ| < ξ0s, subject to initial conditions

Q(0, x) = Q̄(x) ∈ H1(Rd), u(0, x) = ū(x) ∈ L2(Rd),∇ · ū = 0 inD′(Rd) (9)

The solution (Q , u) is such that Q ∈ L∞loc(R+; H1) ∩ L2
loc(R+; H2) and

u ∈ L∞loc(R+; L2) ∩ L2
loc(R+; H1).
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Regularity difficulties: the maximal derivatives
and “the co-rotational parameter”

Recall the system:

(∂t + u · ∇)Q −
(
ξD(u) + Ω(u)

)
(Q + 1

3 Id) + (Q + 1
3 Id)

(
ξD(u) −Ω(u)

)
−2ξ(Q + 1

3 Id)tr(Q∇u) = ΓH

∂t u + u∇u = ν∆uα + ∇p + ∇ ·
(
QH − HQ

)
−∇ ·

(
ξ
(
Q + 1

3 Id
)
H + ξH

(
Q + 1

3 Id
) )

+2ξ∇ ·
(
(Q + 1

3 )QH
)
− L∇ ·

(
∇Q � ∇Q + 1

3 tr(Q2)
)

∇ · u = 0

with H = L∆Q − aQ + b[Q2 −
tr(Q2)

3 Id] − cQtr(Q2).

Worse than Navier-Stokes

Where’s the difficulty?

If ξ = 0 maximal derivatives only

If ξ , 0 maximal derivatives+high power of Q
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The regularity result, in 2D

Theorem

Let s > 0 and (Q̄ , ū) ∈ Hs+1(R2) × Hs(R2). There exists a global a
solution (Q(t , x), u(t , x)) of the coupled system, with restrictions
c > 0 and |ξ| < ξ0, subject to initial conditions

Q(0, x) = Q̄(x), u(0, x) = ū(x)

and Q ∈ L2
loc(R+; Hs+2(R2)) ∩ L∞loc(R+; Hs+1(R2)),

u ∈ L2
loc(R+; Hs+1(R2) ∩ L∞loc(R+; Hs). Moreover, we have:

L‖∇Q(t , ·)‖2Hs(R2) + ‖u(t , ·)‖2Hs(R2) ≤ C
(
e + ‖Q̄‖Hs+1(R2) + ‖ū‖Hs(R2)

)eeeCt

(10)
where the constant C depends only on Q̄ , ū, a, b , c, Γ and L. If ξ = 0
the increase in time of the norms above can be made to be only
doubly exponential.
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The full system (in progress with E. Feireisl and
G. Schimperna)

Q-LC molecules, u-fluid velocity, θ-temperature

(∂t + u · ∇)Q −
[
(ξ + 1)∇u + (ξ − 1)∇ut ]( Q

2
+

1
2d

Id) − (
Q
2

+
1

2d
Id)

[
(ξ + 1)∇u + (ξ − 1)∇ut ]

+2ξ(Q +
1
d

Id)tr(Q∇u) = Γ

(
L∆Q −

∂ψ(Q)

∂Q
+

1
d

tr
(
∂ψ

∂Q

)
Id

)
︸                                         ︷︷                                         ︸

def
= H

∂t u + ∇ · (u ⊗ u) − ∇ ·

(
λ(θ)[QH − HQ]−pId −

µ(θ)

2
(∇u + ∇ut )

)
︸                                                     ︷︷                                                     ︸

def
= T1

= ∇ ·

(
λ(θ)

[
−ξ(Q +

1
d

Id)H − ξH(Q +
1
d

Id) + 2ξ(Q +
1
d

)QH − L∇Q � ∇Q
])

︸                                                                                                 ︷︷                                                                                                 ︸
def
= T2

+f

∇ · u = 0

∂t θ + ∇ · (θu) + ∇ · (J(Q , θ)∇θ)) =
(
T1 + T2

)
: ∇u

Arghir Dani Zarnescu Q-tensor theory



Q-tensor theory

Arghir Dani
Zarnescu

Liquid crystal
modeling

The constrained
de Gennes’
theory (with JM
Ball)

Analogy with
Ginzburg-Landau

The uniform
convergence
(with A.
Majumdar)

Refined
description of
minimizers (with
Luc Nguyen)

Coarsening and
statistical
dynamics (with
E. Kirr and M.
Wilkinson)

Q-tensors+NSE
(with M. Paicu)

THANK YOU!
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