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Motivation

» Waves are ubiquitous in the
oceans and atmosphere (we just
don't see them in the atmosphere).
» Waves are very fast, and have
relatively short spatial scales.

* If these waves are everywhere,
why don't we hear the weather man
talking about them, i.e

The inertial
gravity waves in
__ this area are...

Image courtesy of http://personal.maths.surrey.ac.uk/st/T.Bridges/WATERWAVES/
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don't see them in the atmosphere).
» Waves are very fast, and have
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* If these waves are everywhere,
why don't we hear the weather man
talking about them?

* Because most of us don't care

— = - what happens on the scale of
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hard to capture such scales anyway
(weather/climate is a global
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* How do we predict those scales of interest, while
avoiding these fast, small scales?

» Waves are ubiquitous in the
oceans and atmosphere (we just
don't see them in the atmosphere).
» Waves are very fast, and have
relatively short spatial scales.

* If these waves are everywhere,
why don't we hear the weather man
talking about them?

» Because most of us don't care
what happens on the scale of
minutes or meters, and it is a little
hard to capture such scales anyway
(weather/climate is a global
problem).



Some historical perspective
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Numerical Integration of the Barotr ABSTRACT

An n-level generalization of the 24-dimensional model is derived by specialization of the complete three-
By J. G. CHARNEY, R. FJ()RTOFT‘, dimensional quasi-geostrophic equations. In the case n = 1, it reduces to the two-dimensional single-layer
. . barometric model. In the case » = 2, it reduces to the double-layer barotropic model, or — what is shown
The Institute for Advanced Study, Prin to be mathematically equivalent—the 24-dimensional model. Methods of numerical integration of the 2-
and 24-dimensional equations, and the machine requirements for such integrations, are discussed.
(Manuscript received 1 Novem The results of a series of six two-dimensional and six 24-dimensional forecasts for 12 and 24 hours are
presented. Although the 24-dimensional forecasts are noticeably superior to the two-dimensional forecasts,
it is apparent that considerable improvement will be possible with models in which there are fewer artificial
constraints. A method of integration is therefore proposed for the #n-level generalization of the 23-dimen-
sional model, and computation schemes are outlined for the general three-dimensional quasi-geostrophic
equations. The semi-Lagrangian coordinate system with potential temperature as vertical coordinate is
shown to exhibit favorable properties for machine integration. :

Abstract

A method is given for the numerical solution of t
over a limited area of the carth’s surface. The lack ol i
investigation of the appropriate boundary conditions. These are determined by a
heuristic argument and are shown to be sufficient in a special case. Approximate
conditions necessary to insure the mathematical stability of the difference equation
are derived. The results of a series of four 24-hour forecasts computed from actual
data at the so0 mb level are presented, together with an interpretation and analysis.
An attempt is made to determine the causes of the forecast errors. These are ascribed
partly to the use of too large a space increment and partly to the effects of baroclinicity.
The role of the latter is investigated in some detail by means of a simple baroclinic model.



Some historical perspective

In his baroclinic instability study, Charney had derived a mathematically tractable equation for the unsta-
ble waves ‘by eliminating from consideration at the outset the meteorologically unimportant acoustic and

shearing-gravitational oscillations’ [6]. The multi-scale nature of atmospheric dynamics, with low-frequency
and high-freaniencv comnonents. 18 also found in a wide rance of other nhvsical contexts The advantaces

From P. Lynch 'The origins of computer weather prediction and climate modeling', JCP 2008.

« Removed the 'fast' gravity waves thus allowing for the 1% accurate numerical weather prediction
model to be developed in the early 1950s.
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Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.



What did Charney et. al. really do?

Most evolution equations for GFD are of the form:
~—+B(u,u)+—Lii=D1u
Ot €
Typically L represents rotation and/or stable stratification, and is
skew-Hermitian (purely imaginary, discrete spectrum) meaning it
IS wave-generating.

What happens if we lete — 0, i.e. the waves get faster and
faster?

To avoid this unpleasantry, we can consider information (flow)
that lives in the kernel of L, so there are no waves. This is
equivalent to what Charney & Co. did in the 1950s.

In meteorology this is referred to as an O(1) balance relation,
and the resultant set of solutions is called the slow manifold.



Of slow 'manifolds' and 'balance relations'
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Balance and the Slow Quasimanifold: Some Explicit Results

RUPERT FORD,* MICHAEL E. MCINTYRE, AND WARWICK A. NORTONT

Centre for Atmospheric Science,# Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, United Kingdom

(Manuscript received 19 June 1998, in final form 24 March 1999)

The 1deas of balanced flow and slow manifold for
stratified, rotating fluid systems (e.g., Charney 1948;
Leith 1980; Lorenz 1980) are among the most useful,
important, and arguably central 1ideas in dynamical me-
teorology and oceanography, for well-known reasons.



This re|

Time-si scale.

* |f the data lives on the slow manifold, i.e. in the kernel of L (and fast

waves don't really matter) this restriction vanishes.
* |f the slow manifold is invariant, and the initial data is in the kernel of

L, then numerical models in this space are not restricted by the fast
waves.



Speaking of manifolds

TN
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The meteorological definition of the slow manifold likely does not
coincide with the mathematical one.

Basically it is an invariant region of phase space where there are no
fast waves.

The biggest difficulty in defining and utilizing the slow manifold is
that typically the invariance property does not hold.

This means that either the fast waves can influence the slow mean
flow, or the slow mean flow can spontaneously generate fast waves.



Interactions between 'fast' and 'slow’

J. Fluid Mech. (1989), vol. 206, pp. 433-462 433
Printed in Great Britain

Wave-vortex dynamics in rotatmg shallow water

(shallow-water) equations. In the case of small geopo onsidered
w energy exchange between tM inertio—gravitational J@d the

l

p Deep-Sea Research |, Vol. 42, No. 7, pp. 1063-1081, 1995
ergamon Copyright © 1995 Elsevier Science Ltd
g 0967-0637(95)00040-2 Printed in Great Britain. All rights reserved
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Abstract—This paper shows that the rapid, inertia—gravity oscillations present in all numerical
integrations of nonlinear rotating fluid systems have no effect on the slower, quasi-geostrophic,

oscilatio at Jeast to leading order in Rossby number. fically with

reduced-__ ..., .- . ___ ., _. R . e ae ..¢ frictions.
leferences between these findings and those from theoretical turbulence are dlscussed these are
probably due to the frictional terms, which are active in the numerical calculations here and act to
damp out the enstrophy cascade.



Spontaneous generation of 'fast' waves

15 JaNnuaAry 2004 VANNESTE AND YAVNEH 211

Fast

|

ABSTRACT

The spontaneous generation of inertia—gravity waves by balanced motion is investigated in the limit of small
Rossby number € < 1. Particular (sheared disturbance) solutions of the three-dimensional Boussinesq equations
are considered. For these solutions, there is a strict separation between balanced motion and inertia—gravity
waves for large times. This makes it possible to estimate the amplitude of the inertia—gravity waves that are
generated spontaneously from perfectly balanced initial conditions. It is shown analytically using exponential
asymptotics, and confirmed numerically, that this amplitude is proportional to €~ '? exp(—a/€), with a constant
a > 0 and a proportionality constant that are givThis result demonstratesnonstrates the inevitability
of inertia—gravit o 4 hence the nonexistence of an invariant slow manifold 'S¢ exemplifies
the remarkable, CApULICIILAL, DLIALLITSS UL WE WAave ZUuTlduuvll 1UL € & 1. 1UC UIPUILALVG uf the smgularlty
structure of the balanced motion for complex values of time is emphasized, and some general implications of
the results are discussed.



Spontaneous generation of 'fast' waves

The above results seem to mitigate against the

" existence of a slow manifold, or at the very least,

p they indicate that if it exists, it is unstable, since, ,
except for steady flows, the trajectories seem to
possess a gravity-inertial wave component which
persists for all time. If this is indeed the case, it

Num hecomes necessary to reconsider the definition of ¥ water

equa -gravity
wave balanced flow for the truncated model under ers and
long _ s .t O e tem A eV ek e mmmmmm 4 'bythe
nonli penerated naturally. The sequence of manifolds,l;';‘;z;
space /™ can be regarded as an asymptotic sequence quasi-
geostr stween

acual fOr the G's which can be used to define an open, i (e
amow gamewhat ‘“fuzzy” balanced set, B, which has the 'm the

rotatic lossby

numb same dimension as the underlying space (Fig. 11).



Spontaneous generation of 'fast' waves
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We conclude that the stochastic-layer hypothesis 1s
strongly supported by our analysis. In other words, it
appears that neither a strict slow manifold nor a unique
generalized slow manifold exists. As Warn (1997) and
others have already argued 1n other ways, i1t seems prac-
tically certain then that the entity traditionally called the
slow manifold—whose practical usefulness 1s not in
question—1s not, in fact, a manifold. We therefore sug-

gest, for the sake of continuity with the traditional ter-
minology, that this entity might be referred to as the

slow quasimanifold.



Is the slow manifold truly invariant?
%+B(ﬁ,a)+%Lﬁ=Dﬁ
Singular Limits of Quasilinear Hyperbolic Systems

with Large Parameters and the Incompressible
Limit of Compressible Fluids

JOURNAL OF DIFFERENTIAL EQUATIONS 114, 476-512 (1994)

Fast Singular Limits of Hyperbolic PDEs

SERGIU KLAINERMAN S S
Courant Institute TEVEN SCHOCHET
AND School of Mathematical Sciences,
Ruymond and Beverly Sackler Faculty of Exact Sciences,
ANDREW MAJDA Tel Aviv University, Ramat Aviv 69978, Israel

University of California at Berkeley Received April 13. 1992
ecelve pTl s

The theory of cancellation of oscillations was originally pioneered by
Bogliubov & company, and extended to singular limits of hyperbolic
problems:

Essentially, a discrete purely imaginary spectrum will generate
oscillatory terms, that when averaged across (to get the long time
behavior) will vanish...

lim %f e’ ds=0
0

T —00



Is the slow manifold truly invariant?

%+B(ﬁ,ﬁ)+éLﬁ=Dﬁ

So long as the nonlinearity is relatively well-behaved...
The theory of cancellation of oscillations guarantees that in the

infinite limit, the fast waves and the part of the flow living in the kernel
of L (slow manifold), are completely decoupled.

In reality this never occurs (we live in a 'finite world').

To understand what this means, we need to revisit the cancellation
of oscillations argument developed by Schochet and others.



Cancellation of Oscillations was motivated
by multiple scales asymptotics

. .. : : l
To treat the singular limit € =0, introduce the 'fast' time scalet=¢.

L -

Using the ansatz (¢, t,X)=e "i,(t,%)+O(e)leads to a reduced,
averaged equation for O( , %) that enforces no secular growth of the
lower order terms:

a—ﬁ(’:—limﬁw %f eSLB(e_SLu'[) e i )ds—l—hm

sL —sL
e"De “dsu
Ot A f ’

T— 0 T



Multiple time scales and renormalization

21’;+ i+ B(a,5)=Di

Available online at www.sciencedirect.com

seIENGE@DIHEGT' J?urna’ Of

Differential
A Equations
ELSEVIER I. Differential Equations 208 (2005) 215-257

http://www.elsevier.com/locate/jde

Renormalization group method applied to the
primitive equations

M. Petcu,®® R. Temam,*>* and D. Wirosoetisno®

* Laboratoire d’ Analyse Numérigue, Université de Paris-Sud, Orsay, France
® The Institute for Scientific Computing and Applied Mathematics, Indiana University, Rawles Hall,
831 E Third Street, Bloomington, IN, 47405-7106, USA
“The Institute of Mathematics of the Romanian Academy, Bucharest, Romania

Received June 27, 2003
Dedicated to George Sell on the occasion of his 65th birthday

With different notation, this same reduced system can be found via the
method of renormalization propagated by Temam et. al..



Limiting dynamics and linear algebra

gl“t‘Jr i+ B(a,5)=Di

. .. : : l
To treat the singular limit € =0, introduce the 'fast' time scalet=¢.

Using the ansatz (¢, t,%)=e ""ii,(t, X¥)+O(€)leads to a reduced,

averaged equation for O( , %) that enforces no secular growth of the

lower order terms:

81/7 . T L . T - R

a—toz—hmHoo %f eSLB(e@ e uo)a’s—l—hmHoo %f e’ De tdsii,
0 0

It turns out that this is exactly the same as projecting onto the kernel
of L.



Limiting dynamics and linear algebra

21“;+ i+ B(a,5)=Di

Define P as the projection onto the kernel of L. We then
decompose i =i,+u, where Py =i, and Pu'=0, Where i, is
the part of the flow on the slow manifold, and ' is everything
off it (both O(1) fast, and fast and slowO (€)terms).

This allows us to diagnose how the fluctuations (primed
variables) affect the O(1) slow manifold and vice versa. The
theory of cancellation of fast oscillations guarantees that there
IS no interaction between these terms in the infinite limit, but
what happens when €>07?

Can we clarify how the invariance of the slow manifold fails,

l.e. is it spontanteous generation of 'fast' waves or is it because
these 'fast' waves affect the evolution of the mean flow on the
slow manifold?



Returning to geophysical applications:

Consider the rotating, stratified Boussinesq equations with equally strong
rotation and stratification, written in nonlocal form (the pressure 1s
eliminated by solving the inherent Poisson problem):




Returning to geophysical applications:

Geophys. Astrophys. Fluid Dynamics, Vol. 87, pp. 1 -50 @© 1998 OPA (Overseas Publishers Association)
Reprints available directly from the publisher Amsterdam B.V. Published under license
Photocopying permitted by license only under the Gordon and Breach Science

Publishers imprint.
Printed in India.

LOW FROUDE NUMBER LIMITING
DYNAMICS FOR STABLY STRATIFIED
FLOW WITH SMALL OR FINITE
ROSSBY NUMBERS

PEDRO F. EMBID* and ANDREW J. MAJDA”
*Mathematics Department, The University of New Mexico, Albuguerque,

New Mexico 87131, USA; ®Courant Institute of Mathematical Sciences,
New York University, New York 10012, USA

( Received 8 October 1996; In final form 5 June 1997)

Schochet's theory i1s extended to include this particular quadratic nonlinear
Interaction, 1.e. in the limit as the rotation and stratification simultaneously

dominate, the resultant slow dynamics (quasi-geostrophy) 1s the rigorously
justified limiting system.



Returning to geophysical applications:

What 1f the rotation and stratification were not equally strong (fast)?

1

oii 1 1 # * | reAY
——I——Ku—l——Lu—I—B( , )zDu where u=\v|, Du=
0ot Ro Fr P |

PrRe

<i

Ap

1[0
Ki=[53+VaT o) paolze=VAT S| g )= VI-VAT (V(5-V)
0

v-Vp
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Limiting dynamics and linear algebra for the
Boussinesq equations:

Define P as the projection onto the kernel of L (or K). We
decompose u=1u,+u', where Pi,=i, and Pu'=0, where i, is
the part of the flow on the slow manifold, and u ' is everything
off it (both O (1) fast, and fast and slow O(¢) terms).

N <V»H>Z_VHA;II(VH.<V_FH>2) . V»H_VHA;II(VH'V_}H)
Prott= (w). Ppu= 0
& Py
- FI"Z -1 azv_;{ 1 N Fr N
b o] R e g ek Val Vi g V(e
. Fr —1 1
p_R_OAQG az<vH><v_>H))_AQGAHp

Fr* p?
Ro° 0z

where A AV



Approaching the Limit: Evolution of the
dynamics on the slow manifold

Rapid Rotation

-

aVRO ) ) - _>0 o ->0 — - -
= +V§IO'VHV§1 _VHAHI(VH.(VZ 'VHVR LAijfl :_(1 _VHAHI vH' )<{V Vv ")
ot Re

V., vy =0,
aWRO—I_V_]EO.V WRO+L<p> _LWR0:_<§’°VW,>
ot BT Fr'’? Re z7
ap Ro 1 Ro 1 - ]
—+vVp——w"— Ap=—v"Vp+—w'.
a; TV Ve W g Ap=—V Vit o

2l b = G o dD T a3
1 d —. I =
3 i € oD+ [ winds



Approaching the Limit: Evolution of the
dynamics on the slow manifold

Strong Stratification

ovy = - 1 + 1 = 1
+vy Vv +—2xv, €V 0" =V (v Vv )P —
Ot H-THTH T B, H Ro w Vi Viavy Re

1=V, A, Vo {3V},
VH'ngoa
8pFr 1 a2pFr

ot RePr 52> —(VVp )y

va : 32

2 dtHvH

o == o5V o)z

Fr
Avy,



Approaching the Limit: Evolution of the
dynamics on the slow manifold

Quasi-Geostrophy

ovee s o ) I
g;’ +v%G-VHv%G—Bu2Aan2522(VQG.V VQG)

=—{v '-Vv'}+AQg(VH(VH-{v'-Vv'}H)—BuVHx +Bu2AQg;—22{v'-V§'}H
Z

25{7"Vp'})

angJ“VH V- B”AQéaaZ(VH- h0% |- AL A, (V;Q;G.vaG)_Rel?ApQG
="V +Bub gLV X (D VD + A0 A 7V )
b, - I alrof 2
1 o L T | o L
Lol [ o o 2w 0 [0

[ o™ [1-ag6a,]9"-Vo'la% + R—OI[pQGAgg(Vwa'-Vv']H)]dx



What to do with this information?

This is the 21% Century, and | used to work for a DOE Lab...so

Direct Numerical Simulations (DNS) of the rotating, stratified
Boussinesq system.



What to do with this information?

Direct Numerical Slmulatlons (DNS) of the rotating, stratified
Boussinesq system. |

« 51273 simulations for a variety of Ro and Fr #s.

» Force the density (density and horizontal momentum are
decoupled on the slow manifold for Ro=0, or Fr=0).

 Large scale forcing for Ro->0 limit, and small scale forcing for
Fr->0 and QG limits.

» Modeled dissipation to ensure longer range of attainable
scales.



Horizontal Kinetic Energy

Rapidly rotating: exchanges Ip energy

LA = —Lfwtpras — w5,V w).d5

2 dt
Llolp = = w'ods + = [wipd3
2 dt Fr
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Rapidly rotating' Exchanges in Energy

Y va<v Vv'l,).dx

3 - (J' R -
3o G o D T v D
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50 200
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Approaching the limit of rapid rotation: where does
all the energy go?

4.5

= N o
o N o w o o

Horizontal Kinetic Energy

—

0.5

0 50 100 150 200

» Recall that the energy is inserted into the potential for these simulations, and then sent
to both slow and fast parts of the flow.

* Yet, everything moves onto the slow manifold, even for moderately small Ro (Ro<0.5).
» Does this indicate that the slow manifold is attracting?



Strongly stratified: where does the energy go?

0 100 200 300 400 500
Time



Strongly stratified: where does the energy go?

2
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Strongly stratified: where does the energy go?

sl
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Simultaneously strong stratification and rapid
rotation: what about the energy?

S 1 S

Vol

Ro=Fr=0.05 Ro=Fr=0.05
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Simultaneously strong stratification and rapid
rotation: what about the energy?

This
2 de QG _%I IQ{GAéé; VHX 2£{V%G HpQG d.;(,t
gk l‘g—ﬁﬁ a 2)[»"%7 e | N =R A | E:
QG F]" 0G QG R

—f{pQG(l—AQGAH)i}’-Vp']d} + %I{DQG QG(VHX[V -V?'}H”d}

IS a bit of a mess, so the only message we really
get is that the energy off the slow manifold does
not grow in time, apparently remaining bounded.



SO WHAT?

« All 3 limits appear to have a bounded amount of
energy in the 'fast' component of the flow.

» Although the forcing is applied to the density,
the potential energy is bounded.

* The limit of rapid rotation and weak stratification
has a very distinctive movement of energy.

* Apparently the fluctuations act as a conduit to
move energy onto the 'slow manifold'.

e |Is there some connection here to the attractor?



On 'fast waves' and the slow manifold:
3 different 'slow manifolds' for 1 system?

This brings up another question:

While the O(1) fast waves cannot influence the O(1) slow dynamics,
these simulations indicate that the higher order 'fast' part of the flow

acts as a conduit to move energy onto the O(1) slow manifold as kinetic
energy.

In his baroclinic instability study, Charney had derived a mathematica actable equation for the unsta-
ble waves ‘by eliminating from consideration at the outset theQueteorologically unimportanacoustic and
shearing-gravitational oscillations’ [6]. The multi-scale nature of atmospheri mamics, with low-frequency

and high-frequency components, is also found in a wide range of other physical contexts. The advantages
From P. Lynch '"The origins of computer weather prediction and climate modeling', JCP 2008.




Are such waves truly meteorologically
unimportant?

A reduced model that considers only the O(1) slow manifold will 'miss’
the influence of the higher order 'fast’' variables, which may be an
important forcing of the slow system.

In other words, the part of the flow living off the O(1) slow manifold is
important and provides more than just a dissipative effect.

Were we asking the wrong question before? It is true that the slow
manifold can spontaneously generate fast waves, but it appears that
these fast waves also have a nontrivial influence on the dynamics on
the slow manifold, i.e. their influence should not be ignored.



If the fast part of the flow really matters, are
these 3 limits all we need to worry about?
* We need further testing of the assumptions we used in the
DNS, however beyond that...
 Ro and Fr are dependent on time and space.
* We need to understand the transitions between these limits.

 How does the slow manifold change with Ro and Fr?



Returning to the Boussinesqg equations:

What 1f the rotation and stratification were not equally strong (fast)?

1 -
dil 1 _ . (3 | Re A
E+6Ku+ELu-I—B( i)=Dii where u=|\"v|, Du= 0

o<

A
PrRe P

<

R _1[ O . _ T
kn=2XV+VA 17— tp—-VaA™T 8_2 B(7,1)= v Vyi-VA V(3 V)
0 v-Vp
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Singular limits of a single 'fast’ time scale

Considers distinguished limits when either §=0(1) or e=0(1).

But what happens if e -0, d—0 and %7&0(1)?
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Singular limits of two distinct 'fast’' time scales

ou, 1 Ku+1Lu+B( i)

PRI =Du
Allow d=¢€” for some integer p.

{

Introduce the 2 fast time scales T=¢, a=< and consider the ansatz

3
T 0(,56)4—0(62).

u(t,X)=u,(t,t,0,X)+eil(t,

Using this ansatz, and matching terms of each order implies that:

1 ou . . =) pal

€pq): 603+Luq20 = uq(t,r,oc,x)ze f (t T, %)
for all g=0,..., p—2.
The final 2 terms (up to O(1)) yield:

1) ou, . Ou, .
Ogi 5o ‘|‘Lup_1+a—+KI/l0=O
ou o, o, .

Oll): =L+Lid, +——+Ki,+——+B(u, ii,)—Dii,=0.

oo 0T ot



Singular limits of two distinct 'fast’' time scales

ou, 1 Kii+vLi+B(7,

ot O
u(t,%)=i,(t,7,0,%)+ei, (¢, t,a,%)+0le).

u)=Du

ﬁq(t,r,(x,k’): L?A’q(t,r,?c)forallq=0,...,p—2.

1| ou, aao R
Ole): —ZL+La, \+>2+Kiiy=0
01, (¢ _ 2
= eaLin_lzﬁp_1|a:0—oca—TO— feSLKe ds|i,.
0

To ensure the ansatz remains valid, we must force %, , to not have
secular growth in .

A
-

. . u
This leads to the requirement that 8—10 =—

A
-

U,.

é f e Ke ™" ds

0




Singular limits of two distinct 'fast’' time scales

ou, 1 Kii+vLi+B(7,

ot O
0(t,%)=i,(¢t,7,0,%)+eid, (¢, 7,0, %)+0.

u)=Du

—OLL—»(

ﬁ’q(t,r,(x,k’): t,t,x)forall g=0...., p—2.

ai‘fo 1 ( sL —sL
——=—| | e Ke “ds
0T O‘{
partlcularly for large a., 1.e.

uo(t t,%)=¢ ", (t,%) where M=lim,_,, M (o)

u, needs to be true to avoid secular growth,

and M (a)=¢ f e’ Ke *ds.

Inserting this back into the O é equation leads to

A

ﬁp_l(t,r,oc,})ze aLﬁp_l(t,r,Bc’)



Singular limits of two distinct 'fast’' time scales

ou 1 =
E_I_(SKLH_ Li+B(u,1u)=Du
u(t,%)=i,(t,7,0,%)+ei, (¢, t,a,%)+0le).

ﬁq(t,r,(x,k’): _O‘L"(t t,X)forall g=0,..., p—2.
(1,0, %)= e M, (¢, %)
i, (0, %)=, (1,1, %) ae (M —M(a)le Vi, %)

O(1) leads to :

o

sL —tM —sL
fe e e
0

ou,

2 2 8140
e 'u =u —OLF—OLM(OQMI—

Ot

-

L —M—L—r_—M—L—»
—fes B(e e u,e e )ds-l— U,

0

(04

L —tM —sL
fSDeT e “ds
0




Singular limits of two distinct 'fast’' time scales
O(1) leads to :

(0

L —tM —sL
J"eseT e “ds
0

(0
L —TtM —sL=> —1tM —sL>
—feSB(eT e “u,e e’ )ds-l—
0

ou,

e u =i';p—ocﬂ—ocM(oc)ifl—

8u0
ot

L —M—L
feSD e ds|u,

To avoid secular growth of U, in o:

M=+ 5 81_/20 ( BM |- 1 ( sL M —sL> —BM —sL>
U =u,—t—-—|¢e hmwwafe B(e e “uje e uo)ds
T L 1 (0 L
BM | 1; sL —BM _—sL =
+ fe hmwwafe De " e ds]dﬁ u,

0 0

Where this is highly dependent on the fact that M and L commute.

dfs



Singular limits of two distinct 'fast’' time scales

Avoiding secular growth of %, in o

and # . In T leads to the O(1) slow evolution equation:

aao . ¥ M
- =—lm._, lim,_,,
i, lim, ] [ e

e "Me ", U, e e PV et iio) dsdp+Dii,

where D=lim._ lim_, Laffef’ e "Ml dsd .
0 0

The same result can be achieved via the renormalization method but
the algebra 1s far more complicated.

This 1s a double averaging over both fast time scales, but the order is important.

ya
This works for 0=¢€"
where p>g by a simple re-definition of the parameters, 1.e.
this yields the O(1) slow equations whenever 0 — 0 at a faster rate than € —0.



Singular limits of two distinct 'fast’' time scales
o 1

—+< Ku—|— Lu+B =Du
=13 (i, i)
5570_ . 1 ¢ ¢ par s B
2 im, lim = [ [ e i, e ti,|dsd B+ D,
Ot 0 0 |
where D=Ilim,_,, lim,_,, Laffeﬁ e MMe ™ dsdp.
0 0

Using a change of variables motivated by this multiple time scale approach,
we can use Schochet's theory of cancellation of oscillations to show that the
solution to this system (under suitable restrictions on the nonlinearity and
regularity of the solution) satisfies:

s =t

i(t,X)=e< e u,(t,x)+o(1)
so long as the limits 0 — 0 and € — 0 can be taken consecutively,
where 0 —0 priorto €e—0.



Returning to the rotating, stratified Boussinesq
system: the limiting system, i.e. SO WHAT?

Rapid rotation with weak

stratification
av_ko . 1 -
8t +VH V VZ-FV Re AHVZ,
V., vf,O—O, | | | |
P 1w Rapid rotation dominating strong

3 +viy Vyw +—<p>z R W stratification

a Ro 1

i - 0_ A ) -

Gt Vo Fr Repr P 8\/15{_'_*5 V*S_i_v | A—;g
R Vi VYV =—AV,,
V=) wh=(w)., or T Tl TRe T

V 'V}S;_O
aWS S 1
_—A ’
8t V Re W
GDS S S 1 S
— 40 — A
o TV Ve ERo AP

V=), w=(w),—(w), p’=p—{(p).



Returning to the rotating, stratified Boussinesq
system: the limiting system, i.e. SO WHAT?

Strong stratification with weak

rotation
av_ilr 777/ _I?r 1 A _;7r Fr 1 _1»7}’
57 +VH'VHVH+R—O XVH+VHP ZQAVH,
VH'ngoa

apFr_ 1 62pFr
ot RePr gz* '’

Strong stratification dominating

Fr

P =P )y rapid rotation
ov: - K 1%
atH +vZ'VHvZ+VHPS=gAV}§p

VH'Vilzoa
5pS_ 1 &
51 Re Pr aZZ ’

-

VZ:V_»H_<VH>_<V_;—I>H’ pS:<p>H-



Singular limits of two distinct 'fast’' time scales

In any case, whether rotation dominates stratification or stratification
dominates rotation, the O(1) slow limiting system is NOT quasi-
geostrophy. Geophysically there 1s more going on, particularly when
dealing with the entire globe.




At the end of the day

* The invariance (or lack thereof) of the slow manifold goes 2
ways:

* The slow manifold can spontaneously generate fast waves
off of it.

« Fast waves may act as a source for the dynamics on the
slow manifold, and should not be ignored!

 When more than one fast time scale is present, there are
several limiting systems (slow manifolds). Not everything is QG!






Approaching the limit of Fast Rotation: what does
it look like?
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