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I Navier – Stokes equations for incompressible viscous fluids

∂tu + (u · ∇)u = −∇p + ν∆u (1)

∇ · u = 0

I For t = 0 specify an initial velocity field u0(x),∇ · u0 = 0
Finite energy

e(u0) := 1
2

∫
|u0(x)|2 dx

= 1
2‖u0‖2

L2 < +∞

I Space-time domain

D = R3 (x, t) ∈ R3 × R+ := Q

Alternatively

D = T3 (x, t) ∈ T3 × R+

A domain D ⊆ R3 with smooth boundary – we leave this open.
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I Question: do solutions exist?

I Answer, yes in some sense.

If no singularities are formed, then yes.

Solutions exist, they are unique, and the mathematical theory is
satisfactory

If singularities form, then weak solutions exist. However they
may not be unique, they exhibit infinite velocities, and the theory
is less than satisfactory

I The original existence theorem is due to Leray (1934)
There have been many further contributions
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Leray weak solutions
The usual definition of a weak solution over t ∈ [0,T]:

1. The pair (u(x, t), p(x, t)) is a solution of (1) in the sense of
distributions

2. Integrability conditions Initial energy e(u0) := 1
2 R2 < +∞

1
2

∫
|u(x, t)|2 dx < +∞ (2)

ν

∫ T

0

∫
D
|∇u(x, t)|2 dxdt < +∞∫∫

loc
|p|5/3 dxdt < +∞ (Sohr & vonWahl (1986))

3. The energy inequality is satisfied

1
2

∫
D
|u(x,T)|2 dx + ν

∫ T

0

∫
D
|∇u(x, t)|2 dxdt ≤ 1

2

∫
D
|u0(x)|2 dx
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Theorem (Leray (1934))
Given u0 ∈ L2(D) divergence free, then there exists at least one weak
solution to (1) globally in time. Weak solutions satisfy

u ∈ L∞t (L2
x) ∩ L2

t (Ḣ1
x ) p ∈ L5/3

loc (Q) (3)

A lot is known about such solutions, including weak continuity

u ∈ Ct(L2
x : weak topology)

as well as

u ∈ Ls
t (Lp

x) ,
3
p

+
2
s

=
3
2

2 ≤ p ≤ 6

Uniqueness and global regularity are unknown
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Definition (Singular set)
Given a weak solution (u, p) of (1), the singular set S(u) is the set of
space-time points at which u(x, t) is not locally bounded.

That is, (x0, t0) 6∈ S(u) if there is a neighborhood Qr := Qr(x0, t0)
such that u(x, t) is bounded in Qr

Hence S(u) is a closed set

This makes sense due to a theorem of Serrin (1962) which states that
if (x0, t0) 6∈ S(u), then for all k (and with some 0 < α < 1)

∂k
x u(x, t) ∈ Cα(Qr/2(x0, t0)) (4)

Serrin’s condition is actually u ∈ Ls
t (Lp

x)(Qr(x0, t0)) for 3
p + 2

s < 1

Improved by Struwe (1995) to equality, with s <∞
And by Escauriaza, Seregin and Sveràk (2003) to

u ∈ L∞t (L3
x)(Qr(x0, t0))
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Upper bounds on the singular set
I Singular times

Theorem (Leray, Foiaş & Temam)
The set of singular times τ(u) = πtS(u) ∈ R+ has zero
1/2-Hausdorff dimensional measure

H1/2(τ(u)) = 0 (5)

I Partial regularity

Theorem (Caffarelli, Kohn & Nirenberg (1982))
If (u, p) is a suitable weak solution of (1) then the parabolic
one-dimensional Hausdorff measure of S(u) is zero;

P1(S(u)) = 0 (6)

I The solutions constructed by Leray are suitable.
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Hausdorff dimension

I Definition (Hausdorff dimension)
Cover a set S with balls Brj of radii rj < δ. The β-dimensional
Hausdorff measure of S is

Hβ(S) := lim inf
δ→0

∑
j

rβj

The Hausdorff dimension of S is the infimum of β such that
Hβ(S) = 0

I The parabolic Hausdorff dimension is the same, however using
parabolic cylinders Qr for space-time

Qr(x0, t0) := {(x, t) : |x0 − x| < r , 0 < t0 − t < r2}
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Homogeneous (or box counting) dimension

I Definition (homogeneous dimension)
Given a closed set S, consider C∞0 cutoff functions 0 ≤ ϕε ≤ 1 such
that on an ε-tubular neighborhood oε(S) of S

ϕε(x) = 1

Then the homogeneous dimension of S is

D(S) := d − lim inf
ε→0

log(
∫
ϕε)

log(ε)

I This is to say that ∫
ϕε dx ∼ εd−D(S)

I The main lemma of the Caffarelli Kohn Nirenberg theorem also
implies that D(S) ≤ 1
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Restrict to a time slice
I For t0 fixed, the singular set St0 := S(u) ∩ {t = t0} in each time

slice is at most one-dimensional, and

H1(St0) = 0 (7)

I Suitable weak solutions are those satisfying a local energy
inequality∫

D

1
2 |u(·, t)|2ϕ dx

∣∣∣T
t=0

+ ν

∫ T

0

∫
D
|∇u(·, t)|2ϕ dxdt (8)

≤ 1
2

∫ T

0

∫
D
|u(·, t)|2

(
∂tϕ+ ν∆ϕ

)
dxdt

+

∫ T

0

∫
D

(
p + 1

2 |u(·, t)|2
)

u · ∇ϕ dxdt
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Theorem 1: lower bounds in phase space

Theorem (2011)
If t0 ∈ τ(u) is a singular time for u then

Dim (WF(u)) ≥ 1
2 (9)

I dimension comparison: S(u) ∩ {t = t0} := St0(u) is a subset of
R3 while the wave front set WF(u) ⊆ T∗(R3) can be considered
as a subset of S∗(R3), which is 5 dimensional

I This lower bound is essentially valid fiber-wise WFx0 ⊆ T∗x0
(D),

for each fiber for which (x0, t0) ∈ St0(u)



Phase space dimension of WF(u)
I Consider cutoff symbols 0 ≤ a(x, ξ) ≤ 1 in S0

ρδ such that and
a(x, ξ) = 1 on WF(u) ∩ Br(x0) and

(1− a(x,D))u ∈ Ct(C∞x )(Qr(x0, t0))

I The volume growth of supp (a) gives an upper bound on the
phase space neighborhood of WF(u)x0 ⊆ T∗x0

(D) supporting the
singularity

vol
(
πξsupp (a) ∩ BR(0)

)
∼ R1+β

Definition (DimWF(u)x0)

β̄x0(u) := lim inf
r,a

(β) (10)



Three inequalities
1. The energy inequality

1
2

∫
D
|u(x,T)|2 dx + ν

∫ T

0

∫
D
|∇u(x, t)|2 dxdt ≤ 1

2

∫
D
|u0(x)|2 dx

and its consequences under interpolation
2. Foiaş, Guillopé & Temam (1981), Chemin (2004)∫ T

0
‖u(·, t)‖L∞ dt < +∞ , ∀T ∈ R+ (11)

3. Theorem (Biryuk & C. (2009))
Let BR(0) ⊆ L2(D) and define

AR1 := {(û(ξ))ξ∈Rd : |ξ||û(ξ)| < R1} (12)

If R2/
√

2π
3
< νR1 then AR1 ∩ BR(0) is a (future) invariant set for

Navier – Stokes flow
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I That is to say, if initial data satisfies |û0(ξ)| < R1
|ξ| then for all

time t > 0
|û(ξ, t)| < R1

|ξ|
, ∀ξ (13)

I Corollary (Biryuk & C (2009))
If the initial data satisfies |û0(ξ)| < R1

|ξ| , then additionally for all T ≥ 0

ν

∫ T

0
|û(ξ, t)|2 dt ≤

R2
2
|ξ|4

(14)

I Proof of theorem and corollary given at end of talk
(if there is time)

The quantity supt ‖|ξ|û(ξ, t)‖L∞ scales like the BV norm
supt ‖∂xu(·, t)‖L1 (for which there are no known bounds).
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|û(ξ, t)| < R1

|ξ|
, ∀ξ (13)

I Corollary (Biryuk & C (2009))
If the initial data satisfies |û0(ξ)| < R1
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|ξ| then for all

time t > 0
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Energy discontinuities

I The energy e(u(·, t)) = 1
2‖u(·, t)‖2

L2 could be discontinuous at
t0 ∈ τ(u).

Or else it may be continuous (but nonetheless ‖∇u(·, t)‖2
L2 is

necessarily unbounded on [t0 − δ, t0] for any δ)

I Decompose the set of singular times τ(u) into

τ(u) := τ1 ∪ τ2

where τ1 are the energy discontinuities

τ1 := {t0 : lim sup
t→t−0

‖u(·, t)‖2
L2 > ‖u(·, t0)‖2

L2}

and τ2 = τ(u)\τ1 is the remainder
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The energy concentration set SL2

I Suppose that t0 ∈ τ1; that is, u(x, t) is not strong L2 continuous
for t 7→ t−0 .

Definition (L2 concentration set)
The point x0 6∈ SL2

t0 if there exists r > 0 such that

lim
t→t0−

‖u(·, t)‖2
L2(Br(x0))

= ‖u(·, t0)‖2
L2(Br(x0))

(15)

Thus L2 concentration is associated with a point set SL2

t0 ∈ R3

I The set SL2

t0 is closed
Indeed norm convergence plus weak convergence implies strong
convergence, and any Br1(x1) ⊆ Br(x0) shares this strong
convergence

I Since u(·, t) is smooth outside the singular set St0(u),

SL2

t0 ⊆ St0(u) (16)
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I Suppose that t0 ∈ τ1; that is, u(x, t) is not strong L2 continuous
for t 7→ t−0 .

Definition (L2 concentration set)
The point x0 6∈ SL2

t0 if there exists r > 0 such that

lim
t→t0−

‖u(·, t)‖2
L2(Br(x0))

= ‖u(·, t0)‖2
L2(Br(x0))

(15)

Thus L2 concentration is associated with a point set SL2

t0 ∈ R3

I The set SL2

t0 is closed
Indeed norm convergence plus weak convergence implies strong
convergence, and any Br1(x1) ⊆ Br(x0) shares this strong
convergence

I Since u(·, t) is smooth outside the singular set St0(u),

SL2

t0 ⊆ St0(u) (16)



Theorem 2: lower bounds on the energy concentration set

I A lower bound on the size of the energy concentration wave
front set WFL2

(u) when t0 ∈ τ1

Theorem (Arnold & C. (2010))
If t0 ∈ τ1 is an energy discontinuity for u then

Dim (WFL2
(u)) ≥ 1 (17)

I Remark: SL2

t0 ⊆ St0 , and as well WFL2 ⊆ WF, so that whenever
x0 ∈ SL2

t0 then Theorem 2 implies Theorem 1 with

Dim (WF(u)) ≥ 1

However Theorem 1 applies in the case that x0 ∈ St0\SL2

t0
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Outline of the proof of Theorem 2

I Probe the solution with Weyl calculus pseudodifferential
operators

I Identify the L2 discontinuities with defect measures, and
WFL2

(u) ⊆ WF(u) with their support.
This identifies the microlocal L2 concentration set WFL2

(u) as a
geometric subset of T∗(R3)

I Define the dimension of the sets WF(u) and WFL2
(u) using

symbol classes S0
ρδ, for 0 < ρ ≤ 1

I If the solution concentrates onto WFL2
(u) on a set which is too

small, argue by contradiction, using the third estimate (13) and
the Lebesgue dominated convergence theorem



Thank you



proof of the theorem that A ∩ BR(0) is invariant

I For fixed ξ the field û(ξ) ∈ C2
ξ ⊆ C3

Because of incompressibility ξ · û(ξ) = 0

I Proposition
The function û(ξ, t) is Lipschitz continuous as a function of t for every
ξ

I The Fourier transform satisfies

∂tû(ξ) = −ν|ξ|2û(ξ)− iξ√
(2π)3

Πξ

∫
û(ξ − ξ1) · û(ξ1) dξ1

:= X(u)ξ (18)
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∂tû(ξ) = −ν|ξ|2û(ξ)− iξ√
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I Suppose that ‖u(·)‖L2 ≤ R and consider the vector field X(u)ξ
when |û(ξ)| = R1/|ξ|. The radial component is

re(û(ξ) · X(u)ξ) < −ν|ξ|2(R1/|ξ|)2 + (R1/|ξ|)|ξ|
R2√
(2π)3

(19)

and therefore the LHS is negative when R2/
√

(2π)3 < νR1

I A similar argument holds when a forcing f (x, t) is present
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proof of corollary

I A fact about the vector field X(û) is that solutions obey

|û(ξ,T)|2 − |û0(ξ)|2 + 2ν
∫ T

0
|ξ|2|û(ξ, t)|2 dt

=
2√

(2π)3
im
[∫ T

0
û(ξ) ·

∫
û(ξ − ξ1) · ξ1 û(ξ1) dξ1dt

]
(20)

(again setting f = 0 for simplicity)

I Writing I2(ξ) = ν
∫ T

0 |ξ|
4|û(ξ, t)|2 dt

this gives an inequality

I2(ξ)− R2

2ν
√

(2π)3
I(ξ)−

R2
1

2
≤ 0 (21)
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|û(ξ,T)|2 − |û0(ξ)|2 + 2ν
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Microlocal behavior in x and ξ

I The Fourier transform û(ξ, t) ∈ Lip as a function of time

I Take x0 ∈ SL2

T , and localize the convergence question

v(x, t) := (u(x, t)− u(x,T))ϕ(x) , 0 ≤ ϕ ∈ C∞0 (Br(x0))

Proposition
As t→ T− then v̂(ξ, t)→ 0 pointwise in ξ ∈ R3

I What causes a lack of strong convergence is loss of L2 mass at
|ξ| → ∞



Weyl calculus

I Given a point x0 ∈ SL2

T we test for energy concentration using the
Weyl pseudodifferential calculus

aw(x,D)v(x, t) =

∫∫
eiξ·(x−y)a( x+y

2 , ξ)v(y, t) dydξ (22)

for a(x, ξ) ∈ S0
ρδ.

I A microlocal test of the energy is

〈v | aw(x,D)v〉 =

∫∫
a(x, ξ)W[v](x, ξ) dxdξ (23)

where W[v] is the Wigner transform of v

W[v](x, ξ) :=
1

(2π)d

∫
eiξ·yv(x + y/2)v(x− y/2) dy (24)
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microlocal L2 defects
I For a(x, ξ) ∈ S0

ρδ the operators aw(x,D) are continuous on L2

Whenever u(·, t) converges strongly to u(·,T) on Br(x0), for
v(x, t) := (u(x, t)− u(x,T))ϕ(x) then

lim
t→T−

〈a |W[v(t)]〉 = 0 (25)

I However if u(·, t) converges weakly but not strongly to u(·,T), it
is detected by a microlocal defect measure µ ∈M(S∗(R3)).

Theorem (L. Tartar (1990), P. Gérard (1991))
Let µx0 be a microlocal defect measure of limtj→T− v(x, tj). Suppose
that for all symbols a ∈ S0

10 homogeneous degree zero

lim
tj→T−

〈a |W[v(tj)]〉 :=

∫∫
S∗(R3)

a(x, ξ)µx0(dxdSξ) = 0 (26)

then µx0 = 0 and u(·, tj) converges strongly in L2(Br(x0)) to u(·,T).
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the L2 wave front set WFL2

Definition
Let Ar be the set of all microlocal defect measures µx0,r as t→ T− of
ϕr(·)(u(·, t)− u(·,T) := vr, with suppϕr ⊆ Br(x0). The L2 wave
front set is

WFL2

x0T :=
⋂
r>0

⋃
Ar

supp (µx0,r) (27)

I The sets suppµx0,r are monotone decreasing in r → 0
I Our definition of “dimension” gives an upper bound on the

Hausdorff dimension of WFL2

T ∩ S∗(D), which is geometric. But
it is not necessarily an equality.

I Our resulting lower bounds contain more analytic information, in
non-conic neighborhoods of WFL2

T ⊆ T∗(D).
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Hörmander symbol classes S0
ρδ and WFL2

I One probes WFL2

x0T more finely with symbols a ∈ S0
ρδ, with

0 ≤ δ < ρ ≤ 1

For example a(x, ξ) = ϕ(x)χ( ξ′

〈ξ1〉ρ ) ∈ S0
ρ0 for 0 < ρ ≤ 1

By standard theory, the operators aw(x,D) are bounded on L2.

These symbol classes include ones of quasi-homogeneous type
Beals & Fefferman (1974), Boutet de Monvel (1975), Lascar (1977)

I Suppose that 0 ≤ a(x, ξ) ≤ 1 is such that

lim
t→T−

〈v|(1− a)w(x,D)v〉 = 0 (28)

then
WFL2

x0T ⊆ supp (a)

and L2 mass is transported to infinity in supp (a), microlocally
near x0
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L2 concentration at infinity

I Given test symbols a(x, ξ), the volume growth of supp (a) gives
an upper bound on the neighborhood of WFL2

x0T ⊆ T∗(D) with L2

mass concentration
I Consider a(x, ξ) ∈ S0

ρδ such that 0 ≤ a ≤ 1,

lim
t→T−

〈(1− a) |W[v(t)]〉 = 0 (29)

and
vol
(
πξsupp (a) ∩ BR(0)

)
∼ R1+β (30)

Definition (size of WFL2

x0T)

β̄x0(v) := inf(β) (31)



Lower bounds for the L2 wave front set

Theorem (Arnold & C. (2010))
The set WFL2

x0T ⊆ WFx0T(u) is not too small (if it is nonempty), in that

β̄x0(v) ≥ 1 (32)

This is essentially a lower bound in each fiber of T∗x0
(R3)
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Thank you



Proof of Theorem 2

Taking into account the local character of the problem, the real result
states.

Conjecture (A & C)(work in progress)
Suppose that ᾱ is the Hausdorff dimension of the set SL2

T , then

β̄x0(v) ≥ ᾱ+ 1 (33)



I Assume that β̄x0(v) < 1. Choose a ∈ S0
ρδ with above support

properties and volume growth β̄x0(v) < β < 1, and test v(·, t)

lim
t→T−

〈a|W[v]〉 = lim
t→T−

∫
vaw(x,D)v dx (34)

= lim
t→T−

∫
dη
[∫

ã(η, ξ)v̂(ξ + η/2, t)v̂(ξ − η/2, t) dξ
]

where ã(η, ξ) is the Fourier transform of a with respect to x.
I For each η, the volume growth of supp ã(η, ξ) is bounded by

R1+β

I There is now a majorant: for each η

|ã(η, ξ)||v̂(ξ+η/2, t)||v̂(ξ−η/2, t)| ≤ |ã(η, ξ)|〈ξ+η/2〉−1〈ξ−η/2〉−1

I This is integrable over ξ. Indeed∫
ξ
(∗) dξ ≤

∫
〈r〉−2rβ dr < +∞ (35)

The Lebesgue dominated convergence theorem implies that as
t→ T− the limit vanishes.
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where ã(η, ξ) is the Fourier transform of a with respect to x.
I For each η, the volume growth of supp ã(η, ξ) is bounded by
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