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A nonlocal aggregation model

Consider the aggregation equation

ρt −∇ · (ρ(∇K ∗ ρ)) = 0 in RN

where ρ=density of aggregation and K=interaction potential.

This equation arises in a number of applications: Granular media,
self-assembly of nanoparticles, Ginzburg–Landau vortices,
molecular dynamics simulations of matter, and in particular social
aggregation models such as insect swarms, bird flocks, fish schools
or bacteria colonies.
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The repulsive-attractive interaction potential

The interaction potential is of the form

K (x) :=
(

1

q
|x |q

)
︸ ︷︷ ︸
attractive
short-range
interactions

+

(
−1

p
|x |p

)
︸ ︷︷ ︸

repulsive
long-range
interactions

, x ∈ RN

for −N < p < q.
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Examples of K with −N < p < 0 < q, −N < p < q < 0, and 0 < p < q, resp.



Interaction energy

Minimize the energy

E [ρ] =

ˆ
RN

ˆ
RN

K (x − y)ρ(x)ρ(y) dxdy

=

ˆ
RN

ˆ
RN

(
|x − y |q

q
− |x − y |p

p

)
ρ(x)ρ(y) dxdy

The aggregation equation is the gradient flow of the energy with
respect to the Wasserstein metric.

Indeed, the evolution equation can be written in the form

∂tρ = ∇ ·
(

ρ∇δE [ρ]

δρ

)
.
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Particle models

Recent work by Bodnar/Velazquez, Balague, Bernoff, Bertozzi,
Carrillo, Kolokolnikov, Laurent, Topaz,...: the gradient flow
structure in the particle (individual-based) model describing the
pairwise interaction of N particles in RN :

dXi

dt
= − 1

N

N

∑
i ,j=1
j 6=i

∇iK (Xi − Xj ), i = 1 . . .N,

Xi (t)=the spatial location of the i-th individual at time t.

Even simple choices of interaction potentials can lead to very
diverse and complex equilibrium solutions ⇒ disks, rings and
annular regions in 2D, balls, spheres and soccer balls in 3D
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Back to the interaction energy

In the regime −N < p < 0 < q or −N < p < q < 0 minimize the
energy E [ρ] over

uniformly bounded

radially symmetric

non-negative

density functions ρ ∈ L1(RN) ∩ L∞(RN) satisfying a mass
constraint

‖ρ‖L1(RN ) = m > 0.

Even though uniform boundedness seems restrictive, previous work
by Balague/Carrillo/Laurent/Raoul shows that when p < 0 and
N = 3 minimizers cannot concentrate on sets of dimension less
than 3.

Uniform boundedness is necessary to prevent concentrations. The
energy does not bound any Ls -norm.



Back to the interaction energy

In the regime −N < p < 0 < q or −N < p < q < 0 minimize the
energy E [ρ] over

uniformly bounded

radially symmetric

non-negative

density functions ρ ∈ L1(RN) ∩ L∞(RN) satisfying a mass
constraint

‖ρ‖L1(RN ) = m > 0.

Even though uniform boundedness seems restrictive, previous work
by Balague/Carrillo/Laurent/Raoul shows that when p < 0 and
N = 3 minimizers cannot concentrate on sets of dimension less
than 3.

Uniform boundedness is necessary to prevent concentrations. The
energy does not bound any Ls -norm.



Back to the interaction energy

In the regime −N < p < 0 < q or −N < p < q < 0 minimize the
energy E [ρ] over

uniformly bounded

radially symmetric

non-negative

density functions ρ ∈ L1(RN) ∩ L∞(RN) satisfying a mass
constraint

‖ρ‖L1(RN ) = m > 0.

Even though uniform boundedness seems restrictive, previous work
by Balague/Carrillo/Laurent/Raoul shows that when p < 0 and
N = 3 minimizers cannot concentrate on sets of dimension less
than 3.

Uniform boundedness is necessary to prevent concentrations. The
energy does not bound any Ls -norm.



We will use the direct method of the calculus of variations to prove
the existence of minimizers. There are two key tools we need.

Lemma (Lions’ concentration-compactness lemma)

For a sequence {ρn}n∈N ⊂ L1(RN) such that ρn > 0 and
‖ρn‖L1 = m there exists a subsequence satisfying exactly one of
the following three possibilities: tightness up to translation,
vanishing or splitting.

Lemma (Convergence of energies)

Let ρn and ρ be admissible functions such that ρn ⇀ ρ weakly in
Ls(RN) for some 1 < s < ∞. Then

lim
n→∞

ˆ
RN

ˆ
RN

ρn(x)ρn(y)

|x − y |a dxdy =

ˆ
RN

ˆ
RN

ρ(x)ρ(y)

|x − y |a dxdy

where 0 < a < N.

Remark: The uniform boundedness is crucial for proving the
convergence lemma.
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Existence of minimizers

Theorem

For any m > 0, and −N < p < 0 < q or −N < p < q < 0 the
energy E [ρ] admits a minimizer over the uniformly bounded,
radially symmetric non-negative density functions
ρ ∈ L1(RN) ∩ L∞(RN) satisfying ‖ρ‖L1(RN ) = m.
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−N < p < 0 < q case: We use the fact that K (|x |)↗ ∞ as
|x | ↗ ∞ to eliminate the possibilities of “vanishing” and
“splitting” in the concentration-compactness lemma.



Existence of minimizers

Theorem

For any m > 0, and −N < p < 0 < q or −N < p < q < 0 the
energy E [ρ] admits a minimizer over the uniformly bounded,
radially symmetric non-negative density functions
ρ ∈ L1(RN) ∩ L∞(RN) satisfying ‖ρ‖L1(RN ) = m.

 x¤

K@ x¤D

 x¤

K@ x¤D

 x¤

K@ x¤D

−N < p < 0 < q case: We use the fact that K (|x |)↗ ∞ as
|x | ↗ ∞ to eliminate the possibilities of “vanishing” and
“splitting” in the concentration-compactness lemma.



Existence of minimizers

Theorem

For any m > 0, and −N < p < 0 < q or −N < p < q < 0 the
energy E [ρ] admits a minimizer over the uniformly bounded,
radially symmetric non-negative density functions
ρ ∈ L1(RN) ∩ L∞(RN) satisfying ‖ρ‖L1(RN ) = m.

 x¤

K@ x¤D

 x¤

K@ x¤D

 x¤

K@ x¤D

−N < p < 0 < q case: We use the fact that K (|x |)↗ ∞ as
|x | ↗ ∞ to eliminate the possibilities of “vanishing” and
“splitting” in the concentration-compactness lemma.



Next, tightness implies the existence of a weakly convergent
subsequence and the fact that its weak limit is in the right class of
admissible functions.

Finally the convergence lemma and the growth of K implies the
weak lower semi-continuity.

−N < p < q < 0 case: In this case the minimum energy is
negative and the character of the functional is different than
before.

Look at the scaling

ρλ(x) =
1

λN
ρλ

( x
λ

)
.

ρλ is an admissible function for λ > 1.

Then the energy of ρλ is

E [ρλ] = λq Attraction(ρ) + λp Repulsion(ρ).
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Since Attraction(ρ) < 0 and Repulsion(ρ) > 0, taking λ large
implies that E [ρλ] < 0. Thus the infimum is negative.

If “vanishing” occurs then one sees that

lim inf
n→∞

Attraction(ρn) > 0.

Contradiction with the negativity of the infimum and the
attraction part.

The scaling argument also provides a weak subadditivity condition
(also used by Bedrossian for a different type of kernels):

for m1 > m2 we have Im1 < Im2 .

Here Im = infimum with mass m.

This is used to eliminate “splitting;” hence, we can pass to a limit.

The weak lower semi-continuity again follows from the convergence
lemma (this time directly).
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When 0 < p < q the character of the interaction potential is even
more different!
K does not have a singularity; hence, we need to allow
concentrations on sets of dimension less than N.
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Carrillo/DiFrancesco/Figalli/Laurent/Slepčev show existence of
global-in-time weak measure solutions for

∂tµ(t)− div([∇K ∗ µ(t)]µ(t)) = 0

under certain conditions on the potential K and with an initial
datum in the space of probability measures with bounded second
moment.
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For q > p > 0, define the energy over radially symmetric
probability measures, P r (RN):

E [µ] =

ˆ
RN

ˆ
RN

|x − y |q
q

− |x − y |p
p

dµ(x)dµ(y).

Theorem

For any q > p > 0 the energy E [µ] admits a minimizer over
P r (RN).

Concentration-compactness lemma works also for measures: The
growth of K and radial symmetry of measure ⇒ “vanishing” and
“splitting” does not occur.

A minimizing sequence is tight up to translation ⇒ it has a weak-*
convergent subsequence (Prokhorov’s theorem) and the limit is in
the admissible class.

Weak lower semi-continuity of the energy E follows since (a) K
does not have a singularity at x = 0, (b) it is growing indefinitely
with |x |, and (c) most of the mass of the weak-* limit lies in a ball.
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Radial symmetry assumption

Restrictive especially in the regime q > p > 0.
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2D simulation with q = 7, p = 1.5

Particle simulations show non-radially
symmetric steady states.

Remark: Negativity of the infimum
+ radial symmetry assumption ⇒ the
minimizer does not accumulate on a Dirac
mass concentrated at 0.

In the regime p < 0 we conjecture:

Conjecture: Minimizers are radially symmetric.

Symmetric rearrangement type arguments don’t apply immediately
since K is decreasing. However, particle simulations do not reveal
non-symmetric steady states.
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p < 0 Case

We can give a weak characterization of critical points of E [ρ]
(weak formulation of Euler–Lagrange equation) as follows:

If ρ is a critical point of E [ρ] then

ˆ
RN

ˆ
RN
|x − y |qρ(x)ρ(y) dxdy =

ˆ
RN

ˆ
RN
|x − y |pρ(x)ρ(y) dxdy .

Moreover, if ρ is a local minimizer then

Λ(x) > µ a.e. on the set {x : ρ0(x) = 0}
Λ(x) = µ a.e. on the set {x : ρ0(x) > 0}

where

Λ(x) := 2

ˆ
RN

(
1

q
|x − y |q − 1

p
|x − y |p

)
ρ0(y) dy ,

and µ is a constant.
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Newtonian case p = 2− N

Fetecau, Huang, Kolokolnikov consider the evolution equation
when p = 2−N. When q > 2−N, they show the existence of a
unique radially symmetric, bounded and compactly supported
steady state.

In particular, when q = 2 the steady state consists of uniform
density in a ball.

Bertozzi/Laurent/Leger show that these uniform densities are
global attractors.

Looking at these steady states from a variational point of view we
prove the following

Theorem

For any m > 0 and M > m
ωN

, the function ρ(x) =
m

ωN
χB(0,1)(x)

is the global minimizer of E [ρ] when q = 2, p = 2−N.
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Binary density version

minimize E(A) =
ˆ
A

ˆ
A
K (x − y) dxdy

over radial sets A of finite measure subject to the constraint

|A| = m.

Following the calculations in Choksi/Sternberg we can find the
criticality and stability conditions:

Criticality: If A a critical point of E(A), then

Λ(x) = λ for all x ∈ ∂A,

where

Λ(x) =

ˆ
A
K (x − y) dy

and the Lagrange multiplier λ is a constant.
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Stability: If A is a stable critical point, then for any smooth
function ξ on ∂A satisfying the condition

ˆ
∂A

ξ(x) dHN−1
x = 0,

we have thatˆ
∂A

ˆ
∂A
K (x − y)ξ(x)ξ(y) dHN−1

x dHN−1
y

+

ˆ
∂A
(∇Λ(x) · ν(x))ξ2(x) dHN−1

x > 0,

where HN−1 denotes the N − 1-dimensional Hausdorff measure,
and ν denotes the unit normal on ∂A pointing out of A.



Theorem

For any m > 0 let R :=
(

m

ωN

)1/N

. Then the ball

B = B(0,R) ⊂ RN is the global minimizer of E(A) when q = 2
and p = 2−N.

When q = 2 and p = 2−N an explicit calculation allows us to
check criticality and stability.

Global minimality follows by looking at

E(A)− E(B)

and using the fact that the potential defined via the repulsive part
solves

−∆φ = C (χA − χB)

and is subharmonic on B.



Question: Do we see spherical annuli of constant density as critical
points as we increase q > 2?

There does not exist a positive number R > 0 such that the
spherical annulus

A := {x ∈ RN : R < |x | < (m+ RN)1/N}
is a critical point of E(A) with q > 2 and p = 2−N.
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Question: Do we ever see spherical annuli of constant density as
critical points as we increase q > 2?

Answer: Yes, if we perturb the energy via Newtonian repulsion:

Eδ[ρ] =

¨ (
|x − y |q

q
− |x − y |p

p

)
ρ(x)ρ(y) + δ

¨
ρ(x)ρ(y)

|x − y |N−2

for q > p > 0.
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2D Particle simulations with q = 3, p = 2, and δ = 0.5 and 0.0125

Kolokolnikov/Huang/Pavlovski show this using formal asymptotics.

Conjecture: This can be shown rigorously using Γ-convergence of
Eδ[ρ] to E [µ] as δ→ 0.
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Thank you for your attention


