Aubry-Mather Theory for PDEs

Timothy Blass

CNA Seminar
Carnegie Mellon University

4 October 2011

Outline

(1) Background Material

2 Comparison for the Sobolev Gradient

(3) Numerical Method

4 Asymptotic Analysis

Energy Functionals and Minimizers

- A function $u \in H^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ is a minimizer for a formal energy

$$
S(u)=\int_{\mathbb{R}^{d}} F(x, u, \nabla u) d x
$$

if for all compactly supported $\varphi \in H^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$

$$
\int_{\operatorname{supp}(\varphi)} F(x, u+\varphi, \nabla(u+\varphi))-F(x, u, \nabla u) d x \geq 0
$$

- Assumptions: F is smooth, $F(x+k, y+l, p)=F(x, y, p)$ for all $(k, l) \in Z^{d+1}$, and satisfies growth and convexity requirements in p, so that the Euler-Lagrange equation for S is elliptic.

Energy Functionals and Minimizers

- A function $u \in H^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ is a minimizer for a formal energy

$$
S(u)=\int_{\mathbb{R}^{d}} F(x, u, \nabla u) d x
$$

if for all compactly supported $\varphi \in H^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$

$$
\int_{\operatorname{supp}(\varphi)} F(x, u+\varphi, \nabla(u+\varphi))-F(x, u, \nabla u) d x \geq 0
$$

- Assumptions: F is smooth, $F(x+k, y+l, p)=F(x, y, p)$ for all $(k, l) \in Z^{d+1}$, and satisfies growth and convexity requirements in p, so that the Euler-Lagrange equation for S is elliptic.

Birkhoff Minimizers and Average Slope

- A continuous $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Birkhoff function if

$$
u(x-k)+j-u(x) \leq 0 \quad \text { or } \quad \geq 0
$$

depending on $(k, j) \in \mathbb{Z}^{d+1}$ but independent of x.

- If u is a Birkhoff minimizer, then there is a $\omega \in \mathbb{R}^{d}$ such that

Theorem (Moser, '86)

For each $\omega \in \mathbb{R}^{d}$ there is a Birkhoff minimizer u with slope ω.

$$
\mathcal{M}_{\omega}=\{u \mid u \text { is Birkhoff minimizer of } S \text { with slope } \omega\} \neq \emptyset
$$

Birkhoff Minimizers and Average Slope

- A continuous $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Birkhoff function if

$$
u(x-k)+j-u(x) \leq 0 \quad \text { or } \quad \geq 0
$$

depending on $(k, j) \in \mathbb{Z}^{d+1}$ but independent of x.

- If u is a Birkhoff minimizer, then there is a $\omega \in \mathbb{R}^{d}$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|u(x)-\omega \cdot x|<\infty
$$

Theorem (Moser, '86)

For each $\omega \in \mathbb{R}^{d}$ there is a Birkhoff minimizer u with slope ω.
\square

Birkhoff Minimizers and Average Slope

- A continuous $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Birkhoff function if

$$
u(x-k)+j-u(x) \leq 0 \quad \text { or } \quad \geq 0
$$

depending on $(k, j) \in \mathbb{Z}^{d+1}$ but independent of x.

- If u is a Birkhoff minimizer, then there is a $\omega \in \mathbb{R}^{d}$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|u(x)-\omega \cdot x|<\infty
$$

Theorem (Moser, '86)

For each $\omega \in \mathbb{R}^{d}$ there is a Birkhoff minimizer u with slope ω.

$$
\mathcal{M}_{\omega}=\{u \mid u \text { is Birkhoff minimizer of } S \text { with slope } \omega\} \neq \emptyset
$$

Minimal Average Energy and Crystal Shape

- The average energy of Birkhoff minimizers depends only on the slope:

$$
E(\omega)=\lim _{r \rightarrow \infty} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} F(x, u, \nabla u) d x, \quad u \in \mathcal{M}_{\omega}
$$

- The differentiability of $E(\omega)$ depends on the structure of \mathcal{M}_{ω}.
- A crystal $W \subset \mathbb{R}^{3}$ can be modeled as a set that minimizes surface energy, ϕ, for a fixed volume:

where

Minimal Average Energy and Crystal Shape

- The average energy of Birkhoff minimizers depends only on the slope:

$$
E(\omega)=\lim _{r \rightarrow \infty} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} F(x, u, \nabla u) d x, \quad u \in \mathcal{M}_{\omega}
$$

- The differentiability of $E(\omega)$ depends on the structure of \mathcal{M}_{ω}.
- A crystal $W \subset \mathbb{R}^{3}$ can be modeled as a set that minimizes surface energy, ϕ, for a fixed volume:

$$
\min _{W} \int_{\partial W} \phi(\nu(x)) d x, \quad \operatorname{vol}(W)=\text { const }
$$

where

$$
\phi(\nu)=\frac{1}{|\nu|} E(\omega), \quad \nu=(\omega,-1)
$$

Outline

(1) Background Material

(2) Comparison for the Sobolev Gradient
(3) Numerical Method

4 Asymptotic Analysis

Specific Form of S

- $A u=-\operatorname{div}(a(x) \nabla u)$

$$
S(u)=\int_{\mathbb{R}^{d}} \frac{1}{2}(A u) u+V(x, u) d x=\int_{\mathbb{R}^{d}} \frac{1}{2}(a(x) \nabla u) \cdot \nabla u+V(x, u) d x
$$

V is \mathbb{Z}^{d+1}-periodic, and $a(x)$ is symmetric, positive definite and Z^{d}-periodic.

- Minimizing surfaces satisfy the elliptic PDE

$$
-A u=V_{u}(x, u)
$$

Specific Form of S

- $A u=-\operatorname{div}(a(x) \nabla u)$

$$
S(u)=\int_{\mathbb{R}^{d}} \frac{1}{2}(A u) u+V(x, u) d x=\int_{\mathbb{R}^{d}} \frac{1}{2}(a(x) \nabla u) \cdot \nabla u+V(x, u) d x
$$

V is \mathbb{Z}^{d+1}-periodic, and $a(x)$ is symmetric, positive definite and Z^{d}-periodic.

- Minimizing surfaces satisfy the elliptic PDE

$$
-A u=V_{u}(x, u)
$$

The Reduced Functional

- Fix $\omega \in \frac{1}{N} \mathbb{Z}^{d}$ and look for N-periodic Birkhoff minimizers of S of the form $u(x)=\omega \cdot x+z(x)$.
- This reduces to minimizing

where $u(x)=\omega \cdot x+z(x)$ and $z(x+k)=z(x)$ for all $k \in N \mathbb{Z}^{d}$.
- S_{N} is called a reduced functional, and minimizers satisfy

This is a cell problem for $z(x)$.

The Reduced Functional

- Fix $\omega \in \frac{1}{N} \mathbb{Z}^{d}$ and look for N-periodic Birkhoff minimizers of S of the form $u(x)=\omega \cdot x+z(x)$.
- This reduces to minimizing

$$
S_{N}(u)=\int_{[0, N]^{d}} \frac{1}{2}(A u) u+V(x, u(x)) d x
$$

where $u(x)=\omega \cdot x+z(x)$ and $z(x+k)=z(x)$ for all $k \in N \mathbb{Z}^{d}$.

- S_{N} is called a reduced functional, and minimizers satisfy

This is a cell problem for $z(x)$.

The Reduced Functional

- Fix $\omega \in \frac{1}{N} \mathbb{Z}^{d}$ and look for N-periodic Birkhoff minimizers of S of the form $u(x)=\omega \cdot x+z(x)$.
- This reduces to minimizing

$$
S_{N}(u)=\int_{[0, N]^{d}} \frac{1}{2}(A u) u+V(x, u(x)) d x
$$

where $u(x)=\omega \cdot x+z(x)$ and $z(x+k)=z(x)$ for all $k \in N \mathbb{Z}^{d}$.

- S_{N} is called a reduced functional, and minimizers satisfy

$$
\operatorname{div}(a(x) \nabla u)=V_{u}(x, u), \quad z(x+k)=z(x) \forall k \in N \mathbb{Z}^{d}
$$

This is a cell problem for $z(x)$.

The Sobolev Spaces $H_{\gamma, A}^{\beta}$

- For $\gamma>0$, fractional powers of $\gamma I+A$ are defined as

$$
(\gamma I+A)^{-\beta}=C_{\beta} \int_{0}^{\infty} t^{\beta-1} e^{-t(\gamma I+A)} d t
$$

- $H_{\gamma, A}^{\beta}$ is defined as

$$
H_{\gamma, A}^{\beta}\left(N T^{d}\right)=\left\{u \in H^{0}\left(N T^{d}\right):\left\langle(\gamma I+A)^{\beta} u, u\right\rangle_{0}<\infty\right\}
$$

with the inner product

$$
\langle u, v\rangle_{\beta}=\left\langle(\gamma I+A)^{\beta} u, v\right\rangle_{0} .
$$

The Sobolev Spaces $H_{\gamma, A}^{\beta}$

- For $\gamma>0$, fractional powers of $\gamma I+A$ are defined as

$$
(\gamma I+A)^{-\beta}=C_{\beta} \int_{0}^{\infty} t^{\beta-1} e^{-t(\gamma I+A)} d t
$$

- $H_{\gamma, A}^{\beta}$ is defined as

$$
H_{\gamma, A}^{\beta}\left(N \mathbb{T}^{d}\right)=\left\{u \in H^{0}\left(N \mathbb{T}^{d}\right):\left\langle(\gamma I+A)^{\beta} u, u\right\rangle_{0}<\infty\right\}
$$

with the inner product

$$
\langle u, v\rangle_{\beta}=\left\langle(\gamma I+A)^{\beta} u, v\right\rangle_{0} .
$$

Gradient Descent and $H_{\gamma, A}^{\beta}$

$$
\begin{aligned}
D S_{N}(u) \eta & =\left\langle\nabla_{0} S_{N}(u), \eta\right\rangle_{0} \\
& =\left\langle A u+V_{u}(x, u), \eta\right\rangle_{0} \\
& =\left\langle(\gamma I+A)^{\beta}(\gamma I+A)^{-\beta}\left(A u+V_{u}(x, u)\right), \eta\right\rangle_{0} \\
& =\left\langle(\gamma I+A)^{-\beta}\left(\gamma u+A u-\gamma u+V_{u}(x, u)\right), \eta\right\rangle_{\beta} \\
& =\left\langle(\gamma I+A)^{1-\beta} u-(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right), \eta\right\rangle_{\beta} \\
& =\left\langle\nabla_{\beta} S_{N}(u), \eta\right\rangle_{\beta}
\end{aligned}
$$

The descent equation $\partial_{t} u=-\nabla_{\beta} S_{N}(u)$ is

Gradient Descent and $H_{\gamma, A}^{\beta}$

$$
\begin{aligned}
D S_{N}(u) \eta & =\left\langle\nabla_{0} S_{N}(u), \eta\right\rangle_{0} \\
& =\left\langle A u+V_{u}(x, u), \eta\right\rangle_{0} \\
& =\left\langle(\gamma I+A)^{\beta}(\gamma I+A)^{-\beta}\left(A u+V_{u}(x, u)\right), \eta\right\rangle_{0} \\
& =\left\langle(\gamma I+A)^{-\beta}\left(\gamma u+A u-\gamma u+V_{u}(x, u)\right), \eta\right\rangle_{\beta} \\
& =\left\langle(\gamma I+A)^{1-\beta} u-(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right), \eta\right\rangle_{\beta} \\
& =\left\langle\nabla_{\beta} S_{N}(u), \eta\right\rangle_{\beta}
\end{aligned}
$$

The descent equation $\partial_{t} u=-\nabla_{\beta} S_{N}(u)$ is

$$
\partial_{t} u=-(\gamma I+A)^{1-\beta} u+(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right)
$$

The Descent Equation: $\partial_{t} u=-\nabla_{\beta} S_{N}(u)$

Theorem (B., de la Llave, Valdinoci)

If $u(t, x)$ and $w(t, x)$ are solutions to the gradient descent equation

$$
\partial_{t} u=-(\gamma+A)^{1-\beta} u+(\gamma+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right)
$$

for initial conditions $u_{0}, w_{0} \in L^{\infty}\left(N \mathbb{T}^{d}\right)$, with $\beta \in[0,1], \gamma>\sup \left|V_{u u}\right|$, $V \in C^{3}, u_{0}(x) \geq w_{0}(x)$ for a.e. x, then $u(t, x) \geq w(t, x)$ for all $t>0$ and a.e. $x \in N \mathbb{T}^{d}$. In particular, if $u_{0}(x)=\omega \cdot x+z_{0}(x)$ is a Birkhoff function, then $u(t, x)=\omega \cdot x+z(t, x)$ is Birkhoff for each $t>0$.

Sketch of Proof: Semigroup Theory

We rewrite gradient as $-\nabla_{\beta} S(u)=L u+X(u)$

$$
L:=-(\gamma I+A)^{1-\beta}, \quad X(u):=(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right) .
$$

Mild solutions of $\partial_{t} u=L u+X(u)$ satisfy

Smoothing estimates for $e^{t L}, X$ and Moser estimates show that solutions exist for bounded initial data and gain regularity.

Sketch of Proof: Semigroup Theory

We rewrite gradient as $-\nabla_{\beta} S(u)=L u+X(u)$

$$
L:=-(\gamma I+A)^{1-\beta}, \quad X(u):=(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right) .
$$

Mild solutions of $\partial_{t} u=L u+X(u)$ satisfy

$$
u(t, x)=e^{t L} u_{0}(x)+\int_{0}^{t} e^{(t-\tau) L} X(u(\tau, x)) d \tau
$$

Smoothing estimates for $e^{t L}, X$ and Moser estimates show that solutions exist for bounded initial data and gain regularity.

Sketch of Proof: Semigroup Theory

We rewrite gradient as $-\nabla_{\beta} S(u)=L u+X(u)$

$$
L:=-(\gamma I+A)^{1-\beta}, \quad X(u):=(\gamma I+A)^{-\beta}\left(\gamma u-V_{u}(x, u)\right) .
$$

Mild solutions of $\partial_{t} u=L u+X(u)$ satisfy

$$
u(t, x)=e^{t L} u_{0}(x)+\int_{0}^{t} e^{(t-\tau) L} X(u(\tau, x)) d \tau
$$

Smoothing estimates for $e^{t L}, X$ and Moser estimates show that solutions exist for bounded initial data and gain regularity.

$$
\left\|e^{t L}\right\|_{\mathcal{L}\left(H^{s}, H^{s+2 \alpha(1-\beta)}\right)} \leq c_{\alpha} t^{-\alpha}, \quad\|V(x, u)\|_{H^{r}} \leq c_{r}|V|_{C^{r}}\left(1+\|u\|_{H^{r}}\right)
$$

Sketch of Proof: Comparison

If $u \geq w$ and $\gamma>\sup \left|V_{u u}\right|$ then $\gamma u-V_{u}(x, u) \geq \gamma w-V_{u}(x, w)$.

$$
(\gamma I+A)^{-\beta}=C_{\beta} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau(\gamma I+A)} d \tau
$$

implies $(\gamma I+A)^{-\beta} u \geq(\gamma I+A)^{-\beta} w$ when $u \geq w$, and $X(u) \geq X(w)$ follows.

The Bochner identity

Sketch of Proof: Comparison

If $u \geq w$ and $\gamma>\sup \left|V_{u u}\right|$ then $\gamma u-V_{u}(x, u) \geq \gamma w-V_{u}(x, w)$.

$$
(\gamma I+A)^{-\beta}=C_{\beta} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau(\gamma I+A)} d \tau
$$

implies $(\gamma I+A)^{-\beta} u \geq(\gamma I+A)^{-\beta} w$ when $u \geq w$, and $X(u) \geq X(w)$ follows.

The Bochner identity

$$
e^{t L}=\int_{0}^{\infty} \phi(t, \beta, \tau) e^{-\tau(\gamma I+A)} d \tau, \quad \phi(t, \beta, \tau)>0 \forall \tau>0
$$

gives $e^{t L} u \geq e^{t L} w$ when $u \geq w$.

Sketch of Proof: Iteration and Extension

If $u \geq w$ then $e^{(t-\tau) L} X(u(\tau, x)) \geq e^{(t-\tau) L} X(w(\tau, x))$.
If $u_{0}(x) \geq w_{0}(x)$ then $w^{j}(t, x) \geq w^{j}(t, x)$, where

$u^{j+1}(t, x)$ converges to solution of $\partial_{t} u=L u+X(u)$.
The method generalizes to energies of the form

$$
S(u)=\int_{\mathbb{R}^{d}} \frac{1}{2}\left(A^{\alpha} u\right) u+V(x, u) d x, \quad \alpha \in(0,1)
$$

where equilibrium solutions solve

$$
-A^{\alpha} u=V_{u}(x, u)
$$

Sketch of Proof: Iteration and Extension

If $u \geq w$ then $e^{(t-\tau) L} X(u(\tau, x)) \geq e^{(t-\tau) L} X(w(\tau, x))$.
If $u_{0}(x) \geq w_{0}(x)$ then $u^{j}(t, x) \geq w^{j}(t, x)$, where

$$
u^{j+1}(t, x)=e^{i L} u_{0}(x)+\int_{0}^{t} e^{(t-\tau) L} X\left(u^{j}(\tau, x)\right) d \tau, \quad u^{0}(t, x)=e^{t L} u_{0}(x) .
$$

$u^{j+1}(t, x)$ converges to solution of $\partial_{t} u=L u+X(u)$.
The method generalizes to energies of the form

where equilibrium solutions solve

Sketch of Proof: Iteration and Extension

If $u \geq w$ then $e^{(t-\tau) L} X(u(\tau, x)) \geq e^{(t-\tau) L} X(w(\tau, x))$.
If $u_{0}(x) \geq w_{0}(x)$ then $u^{j}(t, x) \geq w^{j}(t, x)$, where

$$
u^{j+1}(t, x)=e^{t L} u_{0}(x)+\int_{0}^{t} e^{(t-\tau) L} X\left(u^{j}(\tau, x)\right) d \tau, \quad u^{0}(t, x)=e^{t L} u_{0}(x) .
$$

$u^{j+1}(t, x)$ converges to solution of $\partial_{t} u=L u+X(u)$.
The method generalizes to energies of the form

$$
S(u)=\int_{\mathbb{R}^{d}} \frac{1}{2}\left(A^{\alpha} u\right) u+V(x, u) d x, \quad \alpha \in(0,1)
$$

where equilibrium solutions solve

$$
-A^{\alpha} u=V_{u}(x, u)
$$

Outline

(1) Background Material

(2) Comparison for the Sobolev Gradient

(3) Numerical Method

(4) Asymptotic Analysis

The Numerical Method, $d=2$

Constant coefficients case: $u(x)=\omega \cdot x+z(x)$

$$
\partial_{t} z=-(\gamma I-\Delta)^{1-\beta} z+(\gamma I-\Delta)^{-\beta}(\gamma z-V(x, \omega \cdot x+z))
$$

In Fourier space the descent equation is

- If n^{2} Fourier modes are used, the number of operations for one step is on the order of $n^{2} \log (n)$.
- If $\beta \approx 1$, the stiffness of the equation is greatly reduced.

The Numerical Method, $d=2$

Constant coefficients case: $u(x)=\omega \cdot x+z(x)$

$$
\partial_{t} z=-(\gamma I-\Delta)^{1-\beta} z+(\gamma I-\Delta)^{-\beta}(\gamma z-V(x, \omega \cdot x+z))
$$

In Fourier space the descent equation is
$\partial_{t} \widehat{z}=-\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{1-\beta} \widehat{z}+\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{-\beta}\left(\widehat{\gamma}-\mathcal{F}\left[V_{u}(x, \omega \cdot x+z)\right]\right)$

- If n^{2} Fourier modes are used, the number of operations for one step is on the order of $n^{2} \log (n)$.
- If $\beta \approx 1$, the stiffness of the equation is greatly reduced.

The Numerical Method, $d=2$

Constant coefficients case: $u(x)=\omega \cdot x+z(x)$

$$
\partial_{t} z=-(\gamma I-\Delta)^{1-\beta} z+(\gamma I-\Delta)^{-\beta}(\gamma z-V(x, \omega \cdot x+z))
$$

In Fourier space the descent equation is
$\partial_{t} \widehat{z}=-\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{1-\beta} \widehat{z}+\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{-\beta}\left(\gamma \widehat{z}-\mathcal{F}\left[V_{u}(x, \omega \cdot x+z)\right]\right)$

- If n^{2} Fourier modes are used, the number of operations for one step is on the order of $n^{2} \log (n)$.
- If $\beta \approx 1$, the stiffness of the equation is greatly reduced.

The Numerical Method, $d=2$

Constant coefficients case: $u(x)=\omega \cdot x+z(x)$

$$
\partial_{t} z=-(\gamma I-\Delta)^{1-\beta} z+(\gamma I-\Delta)^{-\beta}(\gamma z-V(x, \omega \cdot x+z))
$$

In Fourier space the descent equation is
$\partial_{t} \widehat{z}=-\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{1-\beta} \widehat{z}+\left(\gamma+\frac{4 \pi^{2}}{N^{2}}|k|^{2}\right)^{-\beta}\left(\gamma \widehat{z}-\mathcal{F}\left[V_{u}(x, \omega \cdot x+z)\right]\right)$

- If n^{2} Fourier modes are used, the number of operations for one step is on the order of $n^{2} \log (n)$.
- If $\beta \approx 1$, the stiffness of the equation is greatly reduced.

Example: $\varepsilon=0$ compared with $\varepsilon>0$

$$
E_{\varepsilon}(\omega)=\frac{1}{N^{2}} \int_{[0, N]^{2}} \frac{1}{2}|\nabla u|^{2}+\varepsilon \sin \left(2 \pi k_{1} x_{1}\right) \sin \left(2 \pi k_{2} x_{2}\right) \cos (2 \pi u) d x
$$

(a) $\varepsilon=0$
(b) $\varepsilon>0$

Computed from $u(x)=\omega \cdot x+z(x)$ for $\omega \in[-2,2]^{2}$ and $k=(1,1)$

Outline

(1) Background Material

(2) Comparison for the Sobolev Gradient
(3) Numerical Method
(4) Asymptotic Analysis

Senn's Formula

- Minimizing surfaces define a set of gaps G.
- Senn's Formula for the derivative:
$D_{e_{j}} A_{\varepsilon}(\omega)+D_{-e_{j}} A_{\varepsilon}(\omega)=\sum_{G} \int_{0}^{\infty} \int_{0}^{1} F_{\varepsilon}\left(x, u_{T}, \nabla u_{T}\right)-F_{\varepsilon}\left(x, u_{B}, \nabla u_{B}\right) d x_{i} d x_{j}$

Senn's Formula

- Minimizing surfaces define a set of gaps G.
- Senn's Formula for the derivative:

$$
D_{e_{j}} A_{\varepsilon}(\omega)+D_{-e_{j}} A_{\varepsilon}(\omega)=\sum_{G} \int_{0}^{\infty} \int_{0}^{1} F_{\varepsilon}\left(x, u_{T}, \nabla u_{T}\right)-F_{\varepsilon}\left(x, u_{B}, \nabla u_{B}\right) d x_{i} d x_{j}
$$

(e)

(f)

Lindstedt Series

- Take $F_{\varepsilon}(x, u, \nabla u)=\frac{1}{2}|\nabla u|^{2}+\varepsilon V(x, u)$
- For fixed $\omega \in \frac{1}{N} \mathbb{Z}^{d}$, find an expression for $u_{\varepsilon}(x)$ as a series in ε

with $u_{j} N$-periodic, and solving

- Also find expression for the heteroclinic connections between the gaps.

Lindstedt Series

- Take $F_{\varepsilon}(x, u, \nabla u)=\frac{1}{2}|\nabla u|^{2}+\varepsilon V(x, u)$
- For fixed $\omega \in \frac{1}{N} \mathbb{Z}^{d}$, find an expression for $u_{\varepsilon}(x)$ as a series in ε

$$
u_{\varepsilon}(x)=\sum_{j=0}^{\infty} u_{j}(x) \varepsilon^{j}
$$

with $u_{j} N$-periodic, and solving

$$
-\Delta u_{\varepsilon}+\varepsilon V_{u}\left(x, u_{\varepsilon}\right)=0, \quad \sup _{x}\left|u_{\varepsilon}(x)-\omega \cdot x\right|<\infty
$$

- Also find expression for the heteroclinic connections between the gaps.

Lindstedt Series

- Take $F_{\varepsilon}(x, u, \nabla u)=\frac{1}{2}|\nabla u|^{2}+\varepsilon V(x, u)$
- For fixed $\omega \in \frac{1}{N} \mathbb{Z}^{d}$, find an expression for $u_{\varepsilon}(x)$ as a series in ε

$$
u_{\varepsilon}(x)=\sum_{j=0}^{\infty} u_{j}(x) \varepsilon^{j}
$$

with $u_{j} N$-periodic, and solving

$$
-\Delta u_{\varepsilon}+\varepsilon V_{u}\left(x, u_{\varepsilon}\right)=0, \quad \sup _{x}\left|u_{\varepsilon}(x)-\omega \cdot x\right|<\infty
$$

- Also find expression for the heteroclinic connections between the gaps.

Lindstedt Series

To solve $\Delta\left(u_{0}+\varepsilon u_{1}+\ldots\right)=\varepsilon V_{u}\left(x, u_{0}+\varepsilon u_{1}+\ldots\right)$ collect powers of ε :

$$
\begin{aligned}
\Delta u_{0} & =0 \quad \Longrightarrow u_{0}=\omega \cdot x+\alpha \\
\Delta u_{1} & =V_{u}\left(x, u_{0}\right) \\
\Delta u_{2} & =V_{u u}\left(x, u_{0}\right) u_{1} \\
\Delta u_{3} & =V_{u u}\left(x, u_{0}\right) u_{2}+\frac{1}{2} V_{u u u}\left(x, u_{0}\right) u_{1}^{2} \\
& \vdots \\
\Delta u_{j} & =\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}=V_{u u}\left(x, u_{0}\right) u_{j-1}+\ldots
\end{aligned}
$$

- Compatibility condition $\int_{N \mathbb{T}^{d}}\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1} d x=0$.
- Will the series converge?

Lindstedt Series

To solve $\Delta\left(u_{0}+\varepsilon u_{1}+\ldots\right)=\varepsilon V_{u}\left(x, u_{0}+\varepsilon u_{1}+\ldots\right)$ collect powers of ε :

$$
\begin{aligned}
\Delta u_{0} & =0 \quad \Longrightarrow u_{0}=\omega \cdot x+\alpha \\
\Delta u_{1} & =V_{u}\left(x, u_{0}\right) \\
\Delta u_{2} & =V_{u u}\left(x, u_{0}\right) u_{1} \\
\Delta u_{3} & =V_{u u}\left(x, u_{0}\right) u_{2}+\frac{1}{2} V_{u u u}\left(x, u_{0}\right) u_{1}^{2} \\
& \vdots \\
\Delta u_{j} & =\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}=V_{u u}\left(x, u_{0}\right) u_{j-1}+\ldots
\end{aligned}
$$

- Compatibility condition $\int_{N \mathbb{T}^{d}}\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1} d x=0$.

Lindstedt Series

To solve $\Delta\left(u_{0}+\varepsilon u_{1}+\ldots\right)=\varepsilon V_{u}\left(x, u_{0}+\varepsilon u_{1}+\ldots\right)$ collect powers of ε :

$$
\begin{aligned}
\Delta u_{0} & =0 \quad \Longrightarrow u_{0}=\omega \cdot x+\alpha \\
\Delta u_{1} & =V_{u}\left(x, u_{0}\right) \\
\Delta u_{2} & =V_{u u}\left(x, u_{0}\right) u_{1} \\
\Delta u_{3} & =V_{u u}\left(x, u_{0}\right) u_{2}+\frac{1}{2} V_{u u u}\left(x, u_{0}\right) u_{1}^{2} \\
& \vdots \\
\Delta u_{j} & =\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}=V_{u u}\left(x, u_{0}\right) u_{j-1}+\ldots
\end{aligned}
$$

- Compatibility condition $\int_{N \mathbb{T}^{d}}\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1} d x=0$.
- Will the series converge?

Solving to All Orders in ε

Theorem (B., de la Llave)
Let $u_{0}(x)=\omega \cdot x+\alpha, \omega \in \frac{1}{N} \mathbb{Z}^{d}$, and $\alpha \in[0,1)$. If

$$
\int_{N \mathbb{T}^{d}} V_{u u}\left(x, u_{0}\right) d x \neq 0
$$

then there are at least two choices of α such that $\Delta u_{j}=\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}$ has a periodic solution for all $j \geq 1$.

Proof of Theorem

If $\Phi(\alpha)=\int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x$, then

$$
\begin{aligned}
\int_{0}^{1} \Phi(\alpha) d \alpha & =\int_{0}^{1} \int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{0}^{1} \int_{N \mathbb{T}^{d}} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{N \mathbb{T}^{d}} V(x, \omega \cdot x+1)-V(x, \omega \cdot x) d x=0 \\
& \Longrightarrow \Phi \text { has a zero in }[0,1)
\end{aligned}
$$

- $\Phi(\alpha)=\Phi(\alpha+1) \Longrightarrow \Phi$ has at least two zeros.
- $\Delta u_{1}=V_{1,}\left(x, u_{0}\right)$ can be solved for $u_{1}=u_{1}^{*}+\lambda_{1}$.

Proof of Theorem

If $\Phi(\alpha)=\int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x$, then

$$
\begin{aligned}
\int_{0}^{1} \Phi(\alpha) d \alpha & =\int_{0}^{1} \int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{0}^{1} \int_{N \mathbb{T}^{d}} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{N \mathbb{T}^{d}} V(x, \omega \cdot x+1)-V(x, \omega \cdot x) d x=0 \\
& \Longrightarrow \Phi \text { has a zero in }[0,1)
\end{aligned}
$$

- $\Phi(\alpha)=\Phi(\alpha+1) \Longrightarrow \Phi$ has at least two zeros.
- $\Delta u_{1}=V_{u}\left(x, u_{0}\right)$ can be solved for $u_{1}=u_{1}^{*}+\lambda_{1}$.

Proof of Theorem

If $\Phi(\alpha)=\int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x$, then

$$
\begin{aligned}
\int_{0}^{1} \Phi(\alpha) d \alpha & =\int_{0}^{1} \int_{N \mathbb{T}^{d}} V_{u}(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{0}^{1} \int_{N \mathbb{T}^{d}} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x+\alpha) d x d \alpha \\
& =\int_{N \mathbb{T}^{d}} V(x, \omega \cdot x+1)-V(x, \omega \cdot x) d x=0 \\
& \Longrightarrow \Phi \text { has a zero in }[0,1)
\end{aligned}
$$

- $\Phi(\alpha)=\Phi(\alpha+1) \Longrightarrow \Phi$ has at least two zeros.
- $\Delta u_{1}=V_{u}\left(x, u_{0}\right)$ can be solved for $u_{1}=u_{1}^{*}+\lambda_{1}$.

Proof of Theorem

Assuming we have solved $\Delta u_{j}=\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}$ for $u_{j}=u_{j}^{*}+\lambda_{j}$. Write $\left[V_{u}\left(x, u^{<j+1}\right)\right]_{j}=V_{u u}\left(x, u_{0}\right)\left(u_{j}^{*}+\lambda_{j}\right)+R\left(u^{<j}\right)$.

Then

Proof of Theorem

Assuming we have solved $\Delta u_{j}=\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}$ for $u_{j}=u_{j}^{*}+\lambda_{j}$. Write $\left[V_{u}\left(x, u^{<j+1}\right)\right]_{j}=V_{u u}\left(x, u_{0}\right)\left(u_{j}^{*}+\lambda_{j}\right)+R\left(u^{<j}\right)$.

Set $\quad \lambda_{j}=-\frac{\int V_{u u}\left(x, u_{0}\right) u_{j}^{*}+R\left(u^{<j}\right) d x}{\int V_{u u}\left(x, u_{0}\right) d x}$.
Then

Proof of Theorem

Assuming we have solved $\Delta u_{j}=\left[V_{u}\left(x, u^{<j}\right)\right]_{j-1}$ for $u_{j}=u_{j}^{*}+\lambda_{j}$. Write

$$
\left[V_{u}\left(x, u^{<j+1}\right)\right]_{j}=V_{u u}\left(x, u_{0}\right)\left(u_{j}^{*}+\lambda_{j}\right)+R\left(u^{<j}\right) .
$$

Set $\quad \lambda_{j}=-\frac{\int V_{u u}\left(x, u_{0}\right) u_{j}^{*}+R\left(u^{<j}\right) d x}{\int V_{u u}\left(x, u_{0}\right) d x}$.
Then

$$
\int_{N \mathbb{T}^{d}}\left[V_{u}\left(x, u^{<j+1}\right)\right]_{j} d x=\int_{N \mathbb{T}^{d}} V_{u u}\left(x, u_{0}\right)\left(u_{j}^{*}+\lambda_{j}\right)+R\left(u^{<j}\right) d x=0
$$

and $\Delta u_{j+1}=\left[V_{u}\left(x, u^{<j+1}\right)\right]_{j}$ can be solved for $u_{j+1}=u_{j+1}^{*}+\lambda_{j+1}$.

Convergence via Newton Method

- Set $G_{\varepsilon}(u)=-\Delta u+\varepsilon V_{u}(x, u)$, find u_{ε} with $G_{\varepsilon}\left(u_{\varepsilon}\right)=0$.
- Find a zero of G_{ε} via Newton Method:

$$
U_{\varepsilon}^{n+1}=U_{\varepsilon}^{n}-D G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)^{-1} G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)
$$

with initial guess

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then $U_{\varepsilon}^{n} \rightarrow U_{\varepsilon}^{\infty}$, analytic in ε in a neighborhood of zero, and $G_{\varepsilon}\left(U_{\varepsilon}^{\infty}\right)=0$.

Convergence via Newton Method

- Set $G_{\varepsilon}(u)=-\Delta u+\varepsilon V_{u}(x, u)$, find u_{ε} with $G_{\varepsilon}\left(u_{\varepsilon}\right)=0$.
- Find a zero of G_{ε} via Newton Method:

$$
U_{\varepsilon}^{n+1}=U_{\varepsilon}^{n}-D G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)^{-1} G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)
$$

with initial guess

$$
U_{\varepsilon}^{0}=\omega \cdot x+\alpha+\varepsilon u_{1}+\ldots+\varepsilon^{M} u_{M} .
$$

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then analytic in ε in a neighborhood of zero, and $G_{\varepsilon}\left(U_{\varepsilon}^{\infty}\right)=0$.

Convergence via Newton Method

- Set $G_{\varepsilon}(u)=-\Delta u+\varepsilon V_{u}(x, u)$, find u_{ε} with $G_{\varepsilon}\left(u_{\varepsilon}\right)=0$.
- Find a zero of G_{ε} via Newton Method:

$$
U_{\varepsilon}^{n+1}=U_{\varepsilon}^{n}-D G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)^{-1} G_{\varepsilon}\left(U_{\varepsilon}^{n}\right)
$$

with initial guess

$$
U_{\varepsilon}^{0}=\omega \cdot x+\alpha+\varepsilon u_{1}+\ldots+\varepsilon^{M} u_{M} .
$$

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then $U_{\varepsilon}^{n} \rightarrow U_{\varepsilon}^{\infty}$, analytic in ε in a neighborhood of zero, and $G_{\varepsilon}\left(U_{\varepsilon}^{\infty}\right)=0$.

Connecting Surfaces in the Gaps

- If $\int V_{u u}(x, \omega \cdot x+\alpha) d x \neq 0$ then to solve $\Delta u_{1}=V_{u}(x, \omega \cdot x+\alpha)$ we must make a choice of α.
- If we look for $u(x)=\omega \cdot x+\alpha(\sqrt{\varepsilon} x)+\varepsilon u_{1}(x)+\ldots$, we get a PDE of the form

- Example: $V(x, u)=\sin (2 \pi k x) \cos (2 \pi u)$, and $\omega=k \in \mathbb{Z}^{2}$

Connecting Surfaces in the Gaps

- If $\int V_{u u}(x, \omega \cdot x+\alpha) d x \neq 0$ then to solve $\Delta u_{1}=V_{u}(x, \omega \cdot x+\alpha)$ we must make a choice of α.
- If we look for $u(x)=\omega \cdot x+\alpha(\sqrt{\varepsilon} x)+\varepsilon u_{1}(x)+\ldots$, we get a PDE of the form

$$
\Delta \alpha=g_{\omega}(x, \alpha), \quad \alpha(x) \rightarrow \alpha_{ \pm} \text {as } x \cdot v \rightarrow \pm \infty
$$

- Example: $V(x, u)=\sin (2 \pi k x) \cos (2 \pi u)$, and $\omega=k \in \mathbb{Z}^{2}$

Connecting Surfaces in the Gaps

- If $\int V_{u u}(x, \omega \cdot x+\alpha) d x \neq 0$ then to solve $\Delta u_{1}=V_{u}(x, \omega \cdot x+\alpha)$ we must make a choice of α.
- If we look for $u(x)=\omega \cdot x+\alpha(\sqrt{\varepsilon} x)+\varepsilon u_{1}(x)+\ldots$, we get a PDE of the form

$$
\Delta \alpha=g_{\omega}(x, \alpha), \quad \alpha(x) \rightarrow \alpha_{ \pm} \text {as } x \cdot v \rightarrow \pm \infty
$$

- Example: $V(x, u)=\sin (2 \pi k x) \cos (2 \pi u)$, and $\omega=k \in \mathbb{Z}^{2}$

$$
\Delta \alpha=-\pi \cos (2 \pi \alpha), \quad \alpha_{+}=\frac{1}{4}, \alpha_{-}=-\frac{3}{4}
$$

Log-Log Plots of $J(\omega, \varepsilon)=D_{e_{1}} A_{\varepsilon}(\omega)+D_{-e_{1}} A_{\varepsilon}(\omega)$

(g) $J(\omega, \varepsilon) \approx \frac{4}{\pi} \sqrt{\varepsilon}$

(h) $J(\omega, \varepsilon) \approx \frac{4 \sqrt{2}}{\pi} \sqrt{\varepsilon}$

Figure: In $1(\mathrm{~g}) V(x, u)=\sin \left(2 \pi k_{1} x_{1}\right) \sin \left(2 \pi k_{2} x_{2}\right) \cos (2 \pi u)$, and in $1(\mathrm{~h})$ $V(x, u)=\sin (2 \pi k \cdot x) \cos (2 \pi u)$. Both plots are for $\omega=k$.

