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The Physical Problem 

g 

F= c/(gh)1/2, Froude number, nondimensional wave speed. 

=T/(h2g), Bond number, nondimensional surface tension. 

 

We are interested in the traveling waves moving on the free 

surface. Assume the fluid is inviscid and incompressible and 

the flow is irrotational.  
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Introduction 

     Scott Russell (1844) first observed a single 
hump wave moving with a constant speed in 
a canal and subsequently studied such 
waves by experiments. He found that F=1 is 
a critical value. Later, Boussinesq (1871) and 
Korteweg and deVries (1895) formally 
derived a first order model equation for the 
free surface (t, x)=1+ (3/2t, 1/2x) (h=1) 
with (t, x) satisfying 

             t - 1x - 3x + ( -1/3)xxx = 0 

   under the long wave assumption from the 
exact Euler equations, where F-2=1+1 for 
small  >0.  



They also found the traveling wave solution  

  (x, t) 

 = -(c1 + 1) sech2(((c1 +1)/( -1/3))1/2( x-c1t)/2) 

for the model equation (KdV equation), where 

c1 is a free constant. 

 

Question: Is this traveling wave solution an 

approximation of a solution of the exact Euler 

equations? 

 

 



Steady-State Solution 
     Since we can always choose a coordinate system 

moving with the same speed as the traveling wave so 
that the wave is steady in this coordinate system, in 
the following we only consider the time-independent 
case. Therefore the K-dV equation becomes 

                     -1 x -3 x+( -1/3)xxx =0 

    and 

                (x) = - 1sech2((1/( -1/3))1/2 x/2) 

    is the solitary wave solution. Besides the Froude 
number F, the Bond number  is also a very 
important parameter for the solitary wave solution 
and  =1/3 is another critical value  

   Question: Is this solitary wave solution an 
approximation of a solution of the exact equations? 



Formal Derivation 
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Governing equations: 
Assume that the fluid with constant density  is 

inviscid and the flow is irrotational. A coordinate 
system moving with the wave is chosen so that the 
governing equations are the following exact Euler 
equations; 

            u*x* + v*y* = 0 ,     u*y* - v*x* = 0 , 

                  (u*u*x* + v*u*y*) = -p*x* , 

                  (u*v*x* + v*v*y*) = -p*y*  -  g 

at y* = *(x), 

                         u**x* - v* = 0, 

                   p* = - T*x*x* (1 + (*x*)
2)-3/2 

at y* = 0,  v* = 0, where the variables with * are 
dimensional variables. Then  

                      u* = *y* ,  v* =- *x* . 



Use (x*, *) as independent variables and y*= f*(x*,*) 
as the dependent variable where 

                         *(x*, f*)  = a constant  

is a stream line and f* is the stream-line function. Then   

                       u*  =1/f** ,      v*= - f*x* /f** . 

Make these variables nondimensional to obtain 

       (1 + (fx)
2) f  - 2 fx f fx + (f)

2 fxx=  0 ,     

                                           for     |x| < , 0 <  <1; 

at  = 1, (1 + (fx)
2)/(2 (f)

2) - F-2 fxx(1 + (fx)
2)-3/2 + F-2f  

                                          = 1/2 + F-1; 

at  = 0,                f = 0. 

where   =1 is the free surface, F-2 = gh/c2,  = T/( 
h2g), f=f*/h, x=x*/h. The nondimensional constants 
 and F will determine the solutions of these 
equations. We shall call these as exact equations, 
which are equivalent to the exact Euler equations. 



Derivation: 

Assume that f(x, ) and F-1 have asymptotic expansions of the 
following form 

              f =  +  w1+ 2 w2+     , 

              F-2 =  = 0+  1, (1 = 1  or  -1) 

and x1 = 1/2x, which is so called long wave assumption. The 
expansion of f is called long wave expansion and 0 is the 
critical value of F-1. After substituting these into the exact 
equations, the equations for the first order approximation are 

                     w1 =0                   in  0 <  <1,  

                     w1 - 0 w1=0          at  =1, 

                     w1=0                       at  =0  

From this equation it is easy to obtain (for simplicity, x1 = x ) 

                             w1= (x)  ,     0=1.  

To obtain (x), we need equations for the second approximation. 



   The equations for the second approximation are 

        w2 = - xx(x)        in 0 <  <1, 

        w2 - 0w2 = 1(x) - xx(x) + (3/2)2(x)    at   =1 , 

              w2 = 0                    at   =0.  

    This is a nonhomogeneous boundary value problem. 
By Fredholm alternative Theorem for this ODE, the 
nonhomogeneous terms must satisfy a solvability 
condition to have the solution w2. From this condition 
we can obtain the following equation for  (x) 

                 - 1  + (3/2)2 + ( -(1/3)) xx = 0      . 

   The solution of this equation, which decays at infinity, 
is 

                  (x) = -1sech2((1/( -1/3))1/2x/2)    , 

   and f(x,) =  + (x) + O(2) and (x) = f(x,1). 



Previous work on the exact equations 
Without Surface Tension: 

(1) M.A. Lavrent'ev (1943), K.O. Friedrichs and D. Hyers 
(1954), J.T. Beale (1977) 

With Surface Tension: 

(1) J.K. Hunter and J.M. Vanden-Broeck (1983, and more) 

(2) C.J. Amick and K. Kirchgassner (1987),  R. Sachs (1991), 
Buffoni (2002). (large surface tension) 

(3) J.T. Beale (1989), S.M. Sun (1989), G. Ioose and K. 
Kirchgassner (1990) (small surface tension) 

(4) S.M. Sun and M.C. Shen (1991), E. Lombardi (1997) 
(exponential estimates on oscillatory tails) 

(5) S. M. Sun (1999) (nonexistence proof) 

For Other Fluids: 

 Amick, Benjamin, Bona, Bose, Lankers, Kirchgassner, Sachs, 
Ter-Krikorov, Turner, many many more. 



Exact Existence results 

1.  = 0: 

      

 

This solitary wave of elevation decays 
exponentially at infinity. 

2.  > 1/3: 

 

 

This solitary wave of depression decays 
exponentially at infinity. 

 

 

 



3. 0 <  < 1/3:  

 

 

This “solitary wave” of elevation has very 

small oscillations at infinity. 

4. (1/3) -  <  < 1/3 (  >0 small): 

 

 

There exist no solitary waves that decay 

exponentially at infinity. 

 



Three Dimensional (3D) Surface Waves 

 

 

 

 

 

 

 

F= c/(gh)1/2, Froude number, nondimensional wave 

speed. 

=T/(h2g), Bond number, nondimensional surface 

tension.  
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The governing equations 

After making variables non-dimensional, we 

have 

       xx+ yy+ zz=0,         0 < y < (x,z,t) 

                 y = 0    at   y =0 

       t- x+ x x +  z z - y =0   at   y =(x,z,t) 

   t- x+(1/2)( (x)
2  + (y)

2+ (z)
2 )  

       + F-2 ( -1) -  (x(1 + (x)
2 + (z)

2) -1/2)x  

   -  (z(1 + (x)
2 + (z)

2) -1/2)z =0     at y =(x,z,t) 

with 1, (x, y, z) 0 as |x|.  



Transformation 

Let Y= y/(x,z,t), which transforms the fluid 
region to  0 < Y < 1, denote  

          (x, Y, z, t) = (x, Y, z, t) 

The equations with new variables are 

         xx+ YY+ zz = N1(, ),   0 < Y < 1 

                 Y = 0    at   Y =0 

          t- x- Y =N2(, )   at   Y=1 

   t - x + F-2 ( -1) -  xx -  zz= N3(, )  

                                           at   Y =1 

where N1, N2, N3 are nonlinear in , . 



Kadomtsev-Petviashvili (KP) equation 

If F-2 = 1+ 1 and   

              (x, z, t) = 1+  ( 1/2 x, z, 3/2 t) 

with  > 0 small and h=1, then (x,z,t) satisfies 

       (t - 1 x - 3  x + ( - 1/3) xxx )x - zz=0 

called KP equation. The equation is an approximate 

equation derived from the exact governing equations 

under long wave assumption using asymptotic 

method.  

If  (x, z, t) is independent of z, the equation is reduced 

to Korteweg-de Vries (KdV) equation 

           t - 1 x - 3  x + ( - 1/3) xxx =0  



Kadomtsev-Petviashvili (KP) equation 
If  > 1/3, it is called KP-I equation. 

If  < 1/3, it is called KP-II equation. 

Here, we mainly consider the case with  > 1/3, i.e., 
KP-I equation. KP-I equation has a family of 
traveling wave solutions: 

 

 

 

where [0,1), x1= x-ct 

 

 

 

(Tajiri &Murakami, 1990) 
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Three dimensional steady-state solution: 

If we choose a coordinate system moving with the 

wave, the wave is steady and the KP-I equation is 

          (- 1  - (3/2) 2 + ( - 1/3) xx )xx -  zz=0 

 which has one family of solutions 

 

 

with [0,1),  

 

 

It is easy to easy to check that for any fixed z(-, ),  

(x,z)0 exponentially as |x|   and for any 

fixed x (-, ), (x, z) is periodic in z. 
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Special cases: 
If =0, then 

               0(x,z)= -1  sech2((1/(-1/3))1/2x/2) 

is the solitary wave solution of the KdV equation 

(here  can be < 1/3). 

More interesting case is that if  1, then 

 

(x,z)  1(x,z)=  

 

 

which is called lump solution (or localized solution) of 

KP-I equation since 1(x,z) 0 as |x|+|z| . 
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Lump (or localized) wave 

 

 

 

 



Question: 

Are these solutions approximations of some 
solutions of the exact fully nonlinear 
governing equations? 

Here, we note that the KP-I equation is an 
approximation of the fully nonlinear equation 
and the solutions that were discussed are 
solutions of the KP-I equation.  

Recent work on 3D waves:  

Groves, et al. (2002, 2003),  

Parau, Vanden-Broeck and Cooker (2005) 

Kim and Akylas (2005), Milewski (2005) 



Three dimensional waves 

        Consider the case that  is near zero for 
(x, z) . For KP-I equation, when  goes 
from zero to a small positive number, a 
transversely inhomogeneous solution (x, 
z) spontaneously emerges from 0(x) that is 
homogeneous in the z-direction. This is 
termed as dimension-breaking 
phenomenon. So, for the KP-I equation, a 
family of periodically modulated solitary 
waves emerges from the KdV solitary wave 
in a dimension-breaking bifurcation. 



Dimension-breaking for fully nonlinear equations 

It was shown by Amick and Kirchgassner 

that for  > 1/3, there is a two-dimensional 

solitary wave solution for the fully 

nonlinear equations.  

 

Question: Can we obtain a dimensional 

breaking bifurcation from the two-

dimensional solitary wave using the exact 

equations after one dimension is added in 

the equations? 



Dimension-breaking for water waves (Groves,Haragus, S. 2002) 

Let  > 1/3 and F-2 = 1 +   (i.e., 1=1). For  > 0 small, 

the exact equations have a 2D solitary wave 

solution (Amick and Kirchgassner) 

     *(x; ) = 1 -  sech2((/(2(-1/3)))1/2x) + O(2) 

Then there exist a constant 0 in the interval (0, 

(1/2)(-1/3)-1/2), a constant 0 > 0 and a small 

neighborhood N of 0 in R such that for all   (0, 0), 

a family of solutions {a(x,z; )}aN of the exact 

equations emerges from *(x; ) with  

            a(x,z; )= *(x; )  +  *a(
1/2x, z; )  

where *a O(|a|), *a is periodic in z with period 

2/(k + O(a2)), |k -0
2|= O(1/4).  



Existence of localized 3D waves (Grove, S. 2008) 

Let  > 1/3 and F-2 = 1 +   there exist a constant 0 > 
0 such that for all   (0, 0), the exact fully 
nonlinear equations have a time-independent 
solution  

 (, ) = (1/2(1/2x, Y, z; ), 1+ (1/2x, z; ))  

with (, ) satisfying 

0 < C0   ||x(x,Y, z; )||w1,p
(R

3
)  

   + ||Y(x,Y, z; )||w1,p
(R

3
) + ||z(x,Y, z; )||w1,p

(R
3

)  

       + ||(x, z; )||w2,p
(R

2
) + ||(x, z; )||w2,p

(R
2

)  C 

where C0 ,C are independent of  and p > 1 is large 
but fixed. Here Ws,p(R2) or Ws,p(R3) is the classical 
Sobolev space.  Moreover, the smoothness of the 
solution can be obtained up to any fixed order. 



Other type of 3D waves (not based on KP equation,    1/3 ) 

Let (t,x,y,z) be the velocity potential. Then  

and  satisfy that in D  = { 0 <  z < H +  } 

 

with boundary conditions, 



If we are interested in traveling wave 
solutions, then  

 

 

 

Introduce non-dimensional variables 

 

 

 

 

The governing equations are changed to 



where  = F-2  and  b = .   To transform the 

system into a dynamical system, we introduce 

new dependent variables  



The system is then changed to 

 

 

 

 

 

 

with boundary conditions 

 



Flatten the upper unknown boundary by 

 

which maps the domain D to a domain with     

 [0 ,1]. Then, the system is (still use z) 

 

 



with the boundary conditions: 

 

 

 

The Banach spaces to be used are defined 

as follows: 

 

 

 

and 

 

 

 

 

 



The system can be written 

 

 

 

 

 

Then we make a change of variables G: Hs 

  Hs   with G(v) = G( , u, ,  )  =  (, u, 

,  ) = w,  which changes the boundary 

conditions to  

 

 

 

 

 

 

 



Finally, the system is changed to 

 

 

with boundary conditions z|z=0,1 =0, where   

 

is a smooth vector field. Now, taking the 

linear part of the system, we have 

 

with the domain  



The spectrum of Ks consists of isolated 

eigenvalues of finite algebraic multiplicity and 

(Ks)iR is a finite set. The eigenvalue  is 

precisely the solution of 

 

with                               Moreover, there is a C 

such that 

for each real number  with || >0>0. 

Use Center manifolds by Mielke (1988) to obtain 

for any integer r > 0, the system has a finite 

dimensional center manifold of class Cr.  

Spectrum of linear operator Ks 



Eigenvalues of Ks 

Ks has a zero eigenvalue which has a geometric 

multiplicity 1 and algebraic multiplicity 2 if  ≠ 1. The 

other eigenvalues are  



Previous work: 

 

Exact equations: 

Groves (2001): periodic in the propagation 

direction. 

Groves and Mielke (2001): Generalized 

solitary wave solutions . 

Dias and Iooss (2003) gave a general spatial 

dynamical formulation. 

 



The existence theorem: (Deng and S) 
For    (0, 0], assume that   = 0 +   with  

  (b, 0) on C1
+

.    Then, there exists a continuous 

function 1 of  with  = 9/2 1 such that the 

original system has a solitary-wave solution that 

approaches to a periodic solution             at 

infinity (called a generalized solitary wave 

solution) in the propagation direction and is 

periodic in the transverse direction, provided 

that some conditions are satisfied. The part of 

solitary-wave solution satisfies the Schrodinger 

equation. 



The picture of the 3D wave: 



Solutions near the intersection of C1, =1 



Existence for  near 1 and b<1/3 

For    (0, 0], assume that   = 1 -   and b = 

b0 + m( ) with b0  (0,1/3).  Then, there 

exists a continuous function 1 of   with  = 

3/2 1 such that the original system has a 

generalized solitary-wave solution that 

approaches to a periodic solution             at 

infinity in the propagation direction and is 

periodic in the transverse direction, provided 

that some conditions are satisfied. The part 

of solitary-wave solution satisfies a system of  

KdV-Schrodinger equations. 

 



The equations for the case with  near 1 

and b < 1/3 

It is found that the first-order approximation of the 

solution for (x,y)=1+  A(1/2x) +  B(1/2x) 

cos(2y/P)  where A(x) and B(x) satisfy 

       Axx – c1 A + c2 A
2 + c3 B

2 = 0 , 

       Bxx – d1 B + d2 AB = 0.  

If B= 0, the equations become the KdV equation. 

If A=0, another terms has to be added |B|2B in the 

equation for B, which is  the Schrödinger 

equation (time independent). 



    



Experiments: 



Multi-Solitary Waves 
From experiments, we can see that two solitary 

waves with same amplitude can propagate 

together, which can be explained intuitively as 

well. For surface waves on water without surface 

tension, it has been shown (Craig and Sternberg) 

that the Euler equations have no multi-solitary-

wave solutions. However, if the surface tension is 

small, there are solitary waves with oscillations at 

infinity. With these oscillations, it is possible to 

construct solutions with multi-humps.  Similar 

problems have been discussed by Buffoni, 

Groves, et al. for solitary waves with decaying 

oscillations at infinity.  



Existence of multi-hump solutions 

Here, we consider the following model 

equation: 

   - 1  - (3/2)  2 + ( - 1/3) xx  -  xxxx =0 

where  > 0 is small constant. This fifth-order 

KdV equation has been used to model the 

water-wave problem for 0 <  < 1/3. It was 

shown that this equation has no solutions 

decaying to zero at infinity (Amick, McLeod, et 

al.), but has solitary-wave solutions with non-

decaying oscillations at infinity (Hunter, 

Scheurle, et al.).  



Existence Theorem (Choi, Lee, Oh, S., Whang) 

It has been known that if A = a  n for a fixed a ≠ 0 and an 

integer n ≥ 3 and some appropriate chosen constants  
and , the fifth-order KdV equation has a solution 

   (x) = S(x) +  R0 (x) + A [ cos( x  -1 -  tanh (  x ) )  

                  +  A  R+ (x  -1 -  tanh (  x ) ) ] 

where S(x) is the solution of the KdV equation, R0(x) 

decays exponentially at infinity and R+(x) is periodic with 

periodic 2. Moreover, for any given integer m > 0 , the 

fifth-order KdV equation has an m-hump solution that 

consists of m identical functions obtained above patched 

together by a suitable choice of a that may depend on  
and the distance between adjacent humps, which may go 

to infinity as  goes to zero.   



Future project:  

Show that the exact Euler equations have 

multi-hump solutions using the solitary-wave 

solutions with oscillations at infinity for the 

case of small surface tension.  



Thanks for your 

attention! 


