A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

Jeff Ovall
University of Kentucky Mathematics
www.math.uky.edu/~jovall
jovall@ms.uky.edu

Introduction, Motivation

Mouse AcetyIcholinesterase (mAChE) Monomer, 8362 Atoms

Sandia Long-life Thermal Battery

Model Problem

Setting

- $\Omega \subset \mathbb{R}^{d}(d=2,3)$, bounded, polyhedral
- $\Gamma=\partial \Omega=\Gamma_{D} \cup \Gamma_{N}, \Gamma_{D} \cap \Gamma_{N}=\emptyset$
- $\mathcal{H}=\left\{v \in H^{1}(\Omega): v=0\right.$ on Γ_{D} in the trace sense $\}$

Variational Problem

Find $u \in \mathcal{H}$ such that

$$
\underbrace{\int_{\Omega}(A \nabla u) \cdot \nabla v+(\mathbf{b} \cdot \nabla u+c u) v d V}_{B(u, v)}=\underbrace{\int_{\Omega} f v d V+\int_{\Gamma_{N}} g v d S}_{F(v)}, \forall v \in \mathcal{H}
$$

- $|B(v, w)| \leq M\|v\|_{1}\|w\|_{1} \quad, \quad B(v, v) \geq m\|v\|_{1}^{2}$
(can have inf-sup instead)
- $|F(v)| \leq L\|v\|_{1}$
- Piecewise-smooth data, A, \mathbf{b}, c, f, g

Finite Element Discretization

Approximation Space:

- Mesh \mathcal{T} : Conforming simplicial partition (triangles in \mathbb{R}^{2}, tetrahedra in \mathbb{R}^{3})
- Simplices T : align with discontinuities in data A, \mathbf{b}, c, f, g
- Vertices z : all $\overline{\mathcal{V}}$, non-Dirichlet \mathcal{V}, Dirichlet \mathcal{V}_{D}
- Edges E : all $\overline{\mathcal{E}}$, non-Dirichlet \mathcal{E}, Dirichlet \mathcal{E}_{D}
- Faces F : all $\overline{\mathcal{F}}$, non-Dirichlet \mathcal{F}, Dirichlet \mathcal{F}_{D}
- Approximation Space V : piecewise polynomials of a fixed degree k

$$
V=\mathbb{P}_{k}(\mathcal{T})=\left\{v \in \mathcal{H} \cap C(\bar{\Omega}):\left.v\right|_{T} \in \mathbb{P}_{k} \text { for all } T \in \mathcal{T}\right\}
$$

Discrete Approximation Problem:

- $V=\operatorname{span}\left\{\phi_{j}: 1 \leq j \leq N\right\}, \phi_{j}$ locally-supported
- Find $\hat{u} \in V$ such that $B(\hat{u}, v)=F(v)$ for all $v \in V$
- $B \mathbf{u}=\mathbf{f}$ where $B_{i j}=B\left(\phi_{j}, \phi_{i}\right)$ and $\mathbf{f}_{i}=F\left(\phi_{i}\right)$
- B large, sparse, but ill-conditioned $\left(\kappa(B) \sim N^{2 / d} \sim h^{-2}\right)$

Motivation for A Posteriori Error Estimation and Adaptivity

Approximation Quality $\hat{u} \approx u$

$$
B(u-\hat{u}, v)=0 \text { for all } v \in V \Longrightarrow\|u-\hat{u}\|_{1} \leq C \inf _{v \in V}\|u-v\|_{1}
$$

- Discretization error comparable to interpolation error
- Interpolation error related to regularity/smoothness of u
- Efficiently and reliably identify problem areas and adaptively improve
$\cdots \longrightarrow$ solve \longrightarrow estimate error \longrightarrow mark elements \longrightarrow refine $\longrightarrow \cdots$

Common Causes of Singularities in u

- (Re-entrant) corners and/or edges in domain
- Changes in boundary condition type (Dirichlet-Neumann interface)
- Discontinuities in problem data (abrupt changes in material properties)

Types of Error Estimators on the Market

- Residual: Appropriate weighting of volumetric and "jump" portions of strong residual
- Oldest, most fully developed (reliablility and convergence) theory
- Gradient Recovery: Post-processing of $\nabla \hat{u}$ by local or global "averaging"
- Problem-independent approach, popular in (some) engineering circles
- Sometimes see (more often than is currently explainable) asymptotically exact estimation of error-super-convergence, strong smoothness assumptions
- Hierarchical Type: Approximate error function computed in an auxiliary space
- Very robust and flexible, often see gradient recovery-type performance
- Too expensive? I will argue "no"-certainly not for what you get
- Other Types used for Norm-Error Estimation: Equilibrated Residual, others based on solution of local Dirichlet and/or Neumann problems
- Functional Error Estimation, Goal-Oriented Adaptivity: functional error $G(u-\hat{u})$ of interest
- Many above types can be modified to work in this setting

Abstract View of Hierarchical Error Estimators

Original Problem
Find $u \in \mathcal{H}$ such that $B(u, v)=F(v)$ for all $v \in \mathcal{H}$

Discrete Problem

Find $\hat{u} \in V$ such that $B(\hat{u}, v)=F(v)$ for all $v \in V$

Discrete Error Problem

Find $\varepsilon \in W$ such that $B(\varepsilon, v)=F(v)-B(\hat{u}, v)=B(u-\hat{u}, v)$ for all $v \in W$

Some Common Choices for V, W :

- $V=\mathbb{P}_{k}(\mathcal{T}), W=\mathbb{P}_{k+1}(\mathcal{T}) \backslash \mathbb{P}_{k}(\mathcal{T})$
- $V=\mathbb{P}_{k}(\mathcal{T}), W=\mathbb{P}_{k}\left(\mathcal{T}^{\prime}\right) \backslash \mathbb{P}_{k}(\mathcal{T}), \mathcal{T}^{\prime}$ from uniform refinement(s) of \mathcal{T}

An Example in 2D-Thermal Battery Problem

Sandia Long-life
 Thermal Battery

Use radial symmetry, convert to 2D

$$
V=\mathbb{P}_{1}(\mathcal{T}), W=\mathbb{P}_{2}(\mathcal{T}) \backslash \mathbb{P}_{1}(\mathcal{T})
$$

A Framework for Constructing and Analyzing Hierarchical Estimators

The Traditional Analysis

See Bank (Acta Numerica '96), or Ainsworth\&Oden book

Setting/Assumptions

- B is an inner-product (no convection), energy norm \|| • \||
- $V \cap W=\{0\}$, and V contains local constants (quite sensible)
- Strong Cauchy Inquality: $|B(v, w)| \leq \gamma\|v\|\|w\|$ for $v \in V$ and $w \in W$, where $\gamma=\gamma(B, V, W)<1$
- Saturation Assumption: $\inf _{v \in V \oplus W}\|u-v\| \leq \beta \inf _{v \in V}\|u-v\|$, where $\beta=\beta(B, V, W, F)<1$
- This assumption "compels" one to choose W so that $V \oplus W$ is a natural approximation space

$$
\|\varepsilon\| \leq\|u-\hat{u}\| \leq\left(\left(1-\gamma^{2}\right)\left(1-\beta^{2}\right)\right)^{-1 / 2}\|\varepsilon\|
$$

A Different Approach to the Analysis

See Grubisic/Ovall (MC 2009), Holst/Ovall/Szypowski (APNUM 2011), Bank/Grubisic/Ovall (MC 2011??),
New Approach: For any $v \in \mathcal{H}, \hat{v} \in V$ and $\hat{w} \in W$,

$$
\begin{aligned}
& B(u-\hat{u}, v)=B(\varepsilon, \hat{w})+B(u-\hat{u}, v-\hat{v}-\hat{w}) \\
& =B(\varepsilon, \hat{w})+[F(v-\hat{v}-\hat{w})-B(\hat{u}, v-\hat{v}-\hat{w})] \\
& |B(u-\hat{u}, v)| \leq\left[C_{1}\|\varepsilon\|+C_{2} \text { "residual oscillation" }\right]\|v\| \\
& K_{0}\|\varepsilon\| \leq\|u-\hat{u}\| \leq K_{1}\|\varepsilon\|+K_{2} \text { "residual oscillation" }
\end{aligned}
$$

- Not necessarily in energy-norm setting; always true (not just asymptotic); only H^{1}-regularity assumption on u
- Constants scale-invariant; clear what they depend on and how-do not depend on F !!
- Choose space W, and then \hat{v}, \hat{w}, to make residual oscillation small
- $\hat{v}+\hat{w}$ a well-chosen quasi-interpolant
- Local vanishing moments for $v-(\hat{v}+\hat{w})$
- Choose space W so that computation of ε is cheap

A Realization of this Framework in \mathbb{R}^{3}

The Error Equation Revisited:

$$
\begin{aligned}
& B(u-\hat{u}, v)=B(\varepsilon, w)+[F(v-\hat{v}-\hat{w})-B(\hat{u}, v-\hat{v}-\hat{w})] \\
&=B(\varepsilon, \hat{w})+\int_{\Omega}(f-\mathbf{b} \cdot \nabla \hat{u}-c \hat{u})(v-\hat{v}-\hat{w})-A \nabla \hat{u} \cdot \nabla(v-\hat{v}-\hat{w}) d x \\
&+\int_{\Gamma_{N}}(g-A \nabla \hat{u} \cdot \mathbf{n})(v-\hat{v}-\hat{w}) d s \\
&=B(\varepsilon, \hat{w})+\int_{\Omega} R(v-\hat{v}-\hat{w}) d x+\sum_{F \in \mathcal{F}} \int_{F} r(v-\hat{v}-\hat{w}) d s \\
& R_{\left.\right|_{T}}=f-(-\nabla \cdot A \nabla \hat{u}+\mathbf{b} \cdot \nabla \hat{u}+c \hat{u}) \\
& r_{\left.\right|_{F}}=\left\{\begin{array}{cc}
-(A \nabla \hat{u}) \cdot \mathbf{n}_{T}-(A \nabla \hat{u}) \cdot \mathbf{n}_{T^{\prime}} \quad, \quad F \in \mathcal{F}_{I} \\
g-(A \nabla \hat{u}) \cdot \mathbf{n} \quad & F \in \mathcal{F}_{N}
\end{array}\right.
\end{aligned}
$$

A Realization of this Framework in \mathbb{R}^{3}

Approximation Space:

- $V=\mathbb{P}_{1}(\mathcal{T})=\operatorname{span}\left\{\ell_{z}: z \in \mathcal{V}\right\}, \ell_{z}\left(z^{\prime}\right)=\delta_{z z^{\prime}}$ for all $z, z^{\prime} \in \overline{\mathcal{V}}$
- A (non-smooth) partition-of-unity $\sum_{z \in \overline{\mathcal{V}}} \ell_{z}=1$ on Ω
- $\omega_{z} \doteq \operatorname{supp}\left(\ell_{z}\right)$

Error Equation (Again):

$$
B(u-\hat{u}, v)=B(\varepsilon, w)+\sum_{z \in \overline{\mathcal{V}}} \int_{\Omega} R\left(v \ell_{z}-\hat{v}_{z}-\hat{w}_{z}\right) d x+\sum_{F \in \mathcal{F}} \int_{F} r(v-\hat{v}-\hat{w}) d s
$$

- $\hat{v}=\sum_{z \in \overline{\mathcal{V}}} v_{z}, \hat{w}=\sum_{z \in \overline{\mathcal{V}}} w_{z}$
- How to choose error space W ? functions v_{z}, w_{z} ?

A Realization of this Framework in \mathbb{R}^{3}

$$
B(u-\hat{u}, v)=B(\varepsilon, w)+\sum_{z \in \overline{\mathcal{V}}} \int_{\Omega} R\left(v \ell_{z}-\hat{v}_{z}-\hat{w}_{z}\right) d x+\sum_{F \in \mathcal{F}} \int_{F} r(v-\hat{v}-\hat{w}) d s
$$

A Useful Quasi-Interpolant: $\mathcal{I} v=\hat{v}+\hat{w} \in V \oplus W$

$$
\begin{gather*}
\int_{\Omega}\left(v \ell_{z}-v_{z}-w_{z}\right)=0 \text { for all } z \in \overline{\mathcal{V}}, \quad \int_{F}(v-\hat{v}-\hat{w})=0 \text { for all } F \in \mathcal{F} \tag{1}\\
\operatorname{supp}\left(v_{z}\right), \operatorname{supp}\left(w_{z}\right) \subset \Omega_{z}=\left\{\begin{array}{ll}
\omega_{z} & , z \in \mathcal{V} \\
\omega_{z} \cup \omega_{z^{\prime}} & \text { for some } z^{\prime} \in \mathcal{V} \text { adjacent to } z
\end{array}, z \in \mathcal{V}_{D}\right.
\end{gather*} ~ .
$$

Choosing W :

- A space W providing a single degree-of-freedom for each $F \in \mathcal{F}$ is sufficient for (1)
- We choose $W \subset \mathbb{P}_{3}(\mathcal{T})$ consisting of functions vanishing on every edge (cubic "face bubbles")
- $V \oplus W$ is not a standard approximation space

A Realization of this Framework in \mathbb{R}^{3}

$$
\|u-\hat{u}\|_{1} \leq K_{1}\|\varepsilon\|_{1}+K_{2} \operatorname{osc}(R, r)
$$

Reliability Argument:

$$
\begin{aligned}
&|B(u-\hat{u}, v)| \leq M\|\varepsilon\|_{1}\|\hat{w}\|_{1}+\sum_{z \in \overline{\mathcal{V}}} \inf _{R_{z} \in \mathbb{R}}\left\|R-R_{z}\right\|_{0, \Omega_{z}}\left\|v \ell_{z}-v_{z}-w_{z}\right\|_{0, \Omega_{z}} \\
&+\sum_{F \in \mathcal{F}^{\prime}} \inf _{r_{F} \in \mathbb{R}}\left\|r-r_{F}\right\|_{0, F}\|v-\hat{v}-\hat{w}\|_{0, F} \\
&|B(u-\hat{u}, v)| \leq C_{1}\|\varepsilon\|_{1}\|v\|_{1}+C_{21} \sum_{z \in \overline{\mathcal{V}}} D_{z} \inf _{R_{z} \in \mathbb{R}}\left\|R-R_{z}\right\|_{0, \Omega_{z}}\|v\|_{1, \omega_{z}} \\
&+C_{22} \sum_{F \in \mathcal{F}}|F|^{1 / 4} \inf _{r_{F} \in \mathbb{R}}\left\|r-r_{F}\right\|_{0, F}\|v\|_{1, \Omega_{F}} \\
&|B(u-\hat{u}, v)| \leq\left[C_{1}\|\varepsilon\|_{1}+C_{2} \operatorname{Osc}(R, r)\right]\|v\|_{1} \\
& {[\operatorname{Osc}(R, r)]^{2}=} \sum_{z \in \overline{\mathcal{V}}} D_{z}^{2} \inf _{R_{z} \in \mathbb{R}}\left\|R-R_{z}\right\|_{0, \Omega_{z}}^{2}+\sum_{F \in \mathcal{F}}|F|^{1 / 2} \inf _{r_{F} \in \mathbb{R}}\left\|r-r_{F}\right\|_{0, F}^{2}
\end{aligned}
$$

Reflecting on Effectivity Result and Analysis

$$
K_{0}\|\varepsilon\|_{1} \leq\|u-\hat{u}\|_{1} \leq K_{1}\|\varepsilon\|_{1}+K_{2} \operatorname{osc}(R, r)
$$

- Argument style quite general
- Different operators (eg. curl-curl), different elements (eg. Nédélec, Taylor-Hood)
- Let form of residuals determine choice of error space W
- Higher regularity: higher order elements for V, then more vanishing moments for $v-(\hat{v}+w)$
- Results hold under minimal practical assumptions (not an asymptotic or quasi-uniform analysis)
- Related notions of (data) oscillation in error analysis and AFEM convergence: Dörfler/Nochetto (2002), Nochetto/Siebert/Kreuzer/Cascon (2003,2008), Fierro/Veeser (2006), Bornemann/Erdmann/Kornhuber (1996)

Behavior of Face-Bump System

$$
\begin{array}{ll}
B_{F F^{\prime}}=B\left(b_{F^{\prime}}, b_{F}\right) & D=\operatorname{diag}(B) \\
\hat{B}_{F F^{\prime}}=\left(b_{F^{\prime}}, b_{F}\right)_{H^{1}(\Omega)} & \hat{D}=\operatorname{diag}(\hat{B})
\end{array}
$$

- Argue that B and D are spectrally-equivalent

1) Argue that B and \hat{B} are spectrally-equivalent, and D and \hat{D} are spectrally-equivalent
2) Argue that \hat{B} and \hat{D} are spectrally-equivalent
3) If μ is an eigenvalue of B, then

$$
m \lambda_{\min }(\hat{B}) \leq \operatorname{Re}(\mu) \leq M \lambda_{\max }(\hat{B}) \quad \text { and } \quad|\operatorname{lm}(\mu)| \leq M \lambda_{\max }(\hat{B})
$$

Argument for spectral equivalence of D and \hat{D} is even more trivial

Behavior of Face-Bump System

Spectral Equivalence of \hat{B} and \hat{D}

2) Let $\hat{B}_{T}=$ element matrix for $\hat{B}, \mathbf{v}_{T}=$ element coefficient vector for \mathbf{v}

$$
\mathbf{v}^{t} \hat{B} \mathbf{v}=\sum_{T \in \mathcal{T}} \mathbf{v}_{T}^{t} \hat{B}_{T} \mathbf{v}_{T}
$$

- If $k_{0} \mathbf{v}_{T}^{t} \hat{D}_{T} \mathbf{v}_{T} \leq \mathbf{v}_{T}^{t} \hat{B}_{T} \mathbf{v}_{T} \leq k_{1} \mathbf{v}_{T}^{t} \hat{D}_{T} \mathbf{v}_{T}$ for every T, then

$$
\begin{gathered}
k_{0} \mathbf{v}^{t} \hat{D} \mathbf{v} \leq \mathbf{v}^{t} \hat{B} \mathbf{v} \leq k_{1} \mathbf{v}^{t} \hat{D} \mathbf{v} \\
\left(\hat{B}_{T}\right)_{i j}=2 \frac{3!|T|}{7!}\left\{\begin{array}{cc}
\sum_{k=1}^{4} d_{k}^{-2} & , \quad i=j \\
\frac{\cos \theta_{k}}{d_{k} d_{l}}-\frac{2 \cos \theta_{i j}}{d_{i} d_{j}} & , \quad i \neq j
\end{array}+\frac{3!|T|}{9!} \begin{cases}8 & i=j \\
4 & i \neq j\end{cases} \right.
\end{gathered}
$$

- Straight-forward analysis shows that \hat{B}_{T} is spectrally-equivalent to \hat{D}_{T}, and hence \hat{B} is spectrally-equivalent to \hat{D}. For piecewise linears, \hat{B}_{T} is NOT spectrally-equivalent to \hat{D}_{T}.

Illustrating the Above Assertions

Poisson Problem with (near) Singularity

Problem:

$$
-\Delta u=f \text { in } \Omega \quad, \quad u=0 \text { on } \partial \Omega \quad, \quad u=\frac{\sin (\pi x) \sin (\pi y) \sin (\pi z)}{\left(0.001+x^{2}+y^{2}+z^{2}\right)^{1.5}}
$$

Initial Mesh and an Adapted Mesh

Poisson Problem with (near) Singularity

Global and Local Effectivities: $\frac{\|\varepsilon\|}{\|u-\hat{u}\|}, \frac{\|\varepsilon\|_{T}}{\|u-\hat{u}\|_{T}}$ Compared with standard residual indicator

$$
\eta^{2}=\sum_{T \in \mathcal{T}} \eta_{T}^{2} \quad, \quad \eta_{T}^{2}=\frac{1}{2} \sum_{F \in \mathcal{F}_{I}} h_{T}\left\|r_{F}\right\|_{0, F}^{2}+\sum_{F \in \partial T \cap \partial \Omega_{N}} h_{T}\left\|r_{F}\right\|_{0, F}^{2},
$$

Poisson Problem with (near) Singularity

Error Convergence and Conditioning of Bump Matrix:

- Preconditioning (symmetric, diagonal rescaling) necessary for adapted meshes

Discontinuous Diffusion Problem

Problem: $-a \Delta u=0$ in $\Omega=(-1,1)^{3}$

- $a=10^{5}$ in $(0,1)^{3}, a=1$ elsewhere
- $u=1$ at $x=1$ and $u=0$ at $x=-1$
- Homogeneous Neumann conditions on other four faces

An Adapted Mesh and a Look Inside

Discontinuous Diffusion Problem

Global Effectivities: $\frac{\|\varepsilon \varepsilon\|}{\|\bar{u}-\hat{u}\|}$

$$
\bar{u} \in V_{>3 \times 10^{6}}
$$

$$
\|u-\hat{u}\|^{2}=\|u-\bar{u}\|^{2}+\|\bar{u}-\hat{u}\|^{2}=\|u-\bar{u}\|^{2}+\left(\|\bar{u}\|^{2}-\|\hat{u}\|^{2}\right)
$$

Discontinuous Diffusion Problem

Error Convergence and Conditioning of Bump Matrix:

Convection-Diffusion Problem

Problem: $-\epsilon \Delta u+u_{x}=1$ in $\Omega=(0,1)^{3}, u=x-\frac{e^{(x-1) / \epsilon}-e^{-1 / \epsilon}}{1-e^{-1 / \epsilon}}$

- $\epsilon=0.1$
- $u=0$ at $x=0$ and $x=-1$
- Homogeneous Neumann conditions on other four faces
u in the x-direction and an Adapted Mesh

Convection-Diffusion Problem

Global and Local Effectivities: $\frac{\|\varepsilon\|_{1}}{\|u-\hat{u}\|_{1}}, \frac{\|\varepsilon\|_{1, T}}{\|u-\widehat{u}\|_{1, T}}$

Convection-Diffusion Problem

Error Convergence and Conditioning of Bump Matrix:

Convection-Diffusion Problem

Global Effectivity and Error Convergence for $\epsilon=10^{-2}$:

Another Convection-Diffusion Problem

Problem: $-\Delta u+\mathbf{b} \cdot \nabla u=1$ in $\Omega=(-1,1)^{3}, u=0$ on $\partial \Omega$, where $\mathbf{b}=(-12 y, 12 x, 12 z)$

Global Effectivity and Error Convergence

Anisotropic Diffusion Problem

Problem: $-\nabla \cdot(A \nabla u)=1$ in $\Omega=(-1,1)^{3}$

- $A=\operatorname{diag}\left(1, \epsilon, \epsilon^{-1}\right), \epsilon=10^{-3}$
- Homogeneous Dirichlet conditions
- Error estimated as in Discontinuous-Diffusion problem

Global Effectivity and Error Convergence

Non-Linear Reaction-Diffusion Problem

Problem: $-\Delta u+e^{u}=f$ in $\Omega=(0,1)^{3}, u=0$ on $\partial \Omega$

$$
\begin{aligned}
u & =\left(x^{2}+y^{2}+z^{2}+10^{-4}\right)^{-3 / 2} \sin (\pi x) \sin (\pi y) \sin (\pi z) \\
B(\hat{u}+\varepsilon, v) & =F(v)-B(\hat{u}, v) \rightsquigarrow B(\hat{u} ; \varepsilon, v)=F(v)-B(\hat{u}, v) \text { for all } \varepsilon \in W
\end{aligned}
$$

Global Effectivity and Error Convergence

Non-Linear Reaction-Diffusion Problem

Hope for Flexibility in \mathbb{R}^{3}, Experience in \mathbb{R}^{2}

Measurements in Different Norms

$$
u=r^{1 / 4} \sin (\theta / 4) \in W^{2,1}(\Omega) \backslash H^{2}(\Omega)
$$

Hessian Recovery in $W^{2,1}(\Omega),|u|_{2,1}=\int_{\Omega}\left|u_{x x}\right|+2\left|u_{x y}\right|+\left|u_{y y}\right| d V=12$

$N T$	94	481	2031	8334	33704	135632
$\|\varepsilon\|_{2,1}$	7.8728	9.3262	10.282	10.992	11.496	11.798
$E F F$	0.6561	0.7772	0.8568	0.9160	0.9580	0.9832

Eigenvalue Problems

- Grubisic/Ovall 2008, Bank/Grubisic Ovall 2010, error estimates, adaptivity, covergence acceleration
- Analysis needs approximate error function(s) in \mathcal{H}
- Works for clusters of eigenvalues, degenerate (multiplicity >1) eigenvalues, low-regularity eigenfunctions

Goal-Oriented Adaptivity

- Interested in driving down error in some (small) regions.
- Must be mindful of pollution effects.

Sigsbee.8.poly: 27174 vertices, 54283 triangles

- Ovall 2007, in a similar vein as Rannacher/Becker, Giles/Süli, etc.
- Some form of dualweighting of the residual

