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Introduction, Motivation

Mouse Acetylcholinesterase

(mAChE) Monomer, 8362 Atoms Sandia Long-life Thermal Battery
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Model Problem

Setting

• Ω ⊂ Rd (d = 2, 3), bounded, polyhedral

• Γ = ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅

• H = {v ∈ H1(Ω) : v = 0 on ΓD in the trace sense}

Variational Problem

Find u ∈ H such that∫
Ω

(A∇u) · ∇v + (b · ∇u + cu)v dV︸ ︷︷ ︸
B(u,v)

=

∫
Ω

fv dV +

∫
ΓN

gv dS︸ ︷︷ ︸
F (v)

, ∀v ∈ H

• |B(v, w)| ≤ M‖v‖1‖w‖1 , B(v, v) ≥ m‖v‖2
1 (can have inf-sup instead)

• |F (v)| ≤ L‖v‖1

• Piecewise-smooth data, A,b, c, f, g
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Finite Element Discretization

Approximation Space:

• Mesh T : Conforming simplicial partition (triangles in R2, tetrahedra in R3)

– Simplices T : align with discontinuities in data A, b, c, f , g

– Vertices z: all V, non-Dirichlet V, Dirichlet VD

– Edges E: all E, non-Dirichlet E, Dirichlet ED

– Faces F : all F , non-Dirichlet F , Dirichlet FD

• Approximation Space V : piecewise polynomials of a fixed degree k

V = Pk(T ) = {v ∈ H ∩ C(Ω) : v|T ∈ Pk for all T ∈ T }

Discrete Approximation Problem:

• V = span{φj : 1 ≤ j ≤ N}, φj locally-supported

• Find û ∈ V such that B(û, v) = F (v) for all v ∈ V

• Bu = f where Bij = B(φj , φi) and fi = F (φi)

• B large, sparse, but ill-conditioned (κ(B) ∼ N2/d ∼ h−2)
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Motivation for A Posteriori Error Estimation and Adaptivity

Approximation Quality û ≈ u

B(u− û, v) = 0 for all v ∈ V =⇒ ‖u− û‖1 ≤ C inf
v∈V

‖u− v‖1

• Discretization error comparable to interpolation error

• Interpolation error related to regularity/smoothness of u

• Efficiently and reliably identify problem areas and adaptively improve

· · · −→ solve −→ estimate error −→ mark elements −→ refine −→ · · ·

Common Causes of Singularities in u

• (Re-entrant) corners and/or edges in domain

• Changes in boundary condition type (Dirichlet-Neumann interface)

• Discontinuities in problem data (abrupt changes in material properties)
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Types of Error Estimators on the Market

• Residual: Appropriate weighting of volumetric and “jump” portions of strong residual

– Oldest, most fully developed (reliablility and convergence) theory

• Gradient Recovery: Post-processing of ∇û by local or global “averaging”

– Problem-independent approach, popular in (some) engineering circles

– Sometimes see (more often than is currently explainable) asymptotically exact

estimation of error—super-convergence, strong smoothness assumptions

• Hierarchical Type: Approximate error function computed in an auxiliary space

– Very robust and flexible, often see gradient recovery-type performance

– Too expensive? I will argue “no”—certainly not for what you get

• Other Types used for Norm-Error Estimation: Equilibrated Residual, others based on

solution of local Dirichlet and/or Neumann problems

• Functional Error Estimation, Goal-Oriented Adaptivity: functional error G(u− û) of

interest

– Many above types can be modified to work in this setting
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Abstract View of Hierarchical Error Estimators

Original Problem

Find u ∈ H such that B(u, v) = F (v) for all v ∈ H

Discrete Problem

Find û ∈ V such that B(û, v) = F (v) for all v ∈ V

Discrete Error Problem

Find ε ∈ W such that B(ε, v) = F (v)−B(û, v) = B(u− û, v) for all v ∈ W

Some Common Choices for V , W :

• V = Pk(T ), W = Pk+1(T ) \ Pk(T )

• V = Pk(T ), W = Pk(T ′) \ Pk(T ), T ′ from uniform refinement(s) of T
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An Example in 2D—Thermal Battery Problem

Sandia Long-life
Thermal Battery

Use radial symmetry, convert to 2D

V = P1(T ) , W = P2(T ) \ P1(T )
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Thermal Battery Problem: HB versus GR Refinement
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A Framework for Constructing and Analyzing
Hierarchical Estimators
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The Traditional Analysis

See Bank (Acta Numerica ’96), or Ainsworth&Oden book

Setting/Assumptions

• B is an inner-product (no convection), energy norm ||| · |||

• V ∩W = {0}, and V contains local constants (quite sensible)

• Strong Cauchy Inquality: |B(v, w)| ≤ γ|||v||||||w||| for v ∈ V and w ∈ W ,

where γ = γ(B, V,W ) < 1

• Saturation Assumption: infv∈V⊕W |||u− v||| ≤ β infv∈V |||u− v|||, where

β = β(B, V,W, F ) < 1

– This assumption “compels” one to choose W so that V ⊕W is a

natural approximation space

|||ε||| ≤ |||u− û||| ≤
(
(1− γ2)(1− β2)

)−1/2 |||ε|||
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A Different Approach to the Analysis

See Grubisic/Ovall (MC 2009), Holst/Ovall/Szypowski (APNUM 2011), Bank/Grubisic/Ovall (MC 2011??),

New Approach: For any v ∈ H, v̂ ∈ V and ŵ ∈ W ,

B(u− û, v) = B(ε, ŵ) + B(u− û, v − v̂ − ŵ)

= B(ε, ŵ) + [F (v − v̂ − ŵ)−B(û, v − v̂ − ŵ)]

|B(u− û, v)| ≤ [C1‖ε‖+ C2“residual oscillation”] ‖v‖

K0‖ε‖ ≤ ‖u− û‖ ≤ K1‖ε‖+ K2“residual oscillation”

• Not necessarily in energy-norm setting; always true (not just asymptotic); only

H1-regularity assumption on u

• Constants scale-invariant; clear what they depend on and how—do not depend on F !!

• Choose space W , and then v̂, ŵ, to make residual oscillation small

– v̂ + ŵ a well-chosen quasi-interpolant

– Local vanishing moments for v − (v̂ + ŵ)

• Choose space W so that computation of ε is cheap
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A Realization of this Framework in R3

The Error Equation Revisited:

B(u− û, v) = B(ε, w) + [F (v − v̂ − ŵ)−B(û, v − v̂ − ŵ)]

= B(ε, ŵ) +

Z
Ω
(f − b · ∇û− cû)(v − v̂ − ŵ)−A∇û · ∇(v − v̂ − ŵ) dx

+

Z
ΓN

(g −A∇û · n)(v − v̂ − ŵ) ds

= B(ε, ŵ) +

Z
Ω

R(v − v̂ − ŵ) dx +
X

F∈F

Z
F

r(v − v̂ − ŵ) ds

R|T = f − (−∇ ·A∇û + b · ∇û + cû)

r|F =

 −(A∇û) · nT − (A∇û) · nT ′ , F ∈ FI

g − (A∇û) · n , F ∈ FN
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A Realization of this Framework in R3

Approximation Space:

• V = P1(T ) = span{`z : z ∈ V}, `z(z
′) = δzz′ for all z, z′ ∈ V

• A (non-smooth) partition-of-unity
∑
z∈V

`z = 1 on Ω

• ωz
.
= supp(`z)

Error Equation (Again):

B(u− û, v) = B(ε, w) +
X
z∈V

Z
Ω

R(v`z − v̂z − ŵz) dx +
X

F∈F

Z
F

r(v − v̂ − ŵ) ds

• v̂ =
∑
z∈V

vz, ŵ =
∑
z∈V

wz v̂z, ŵz locally supported

• How to choose error space W? functions vz, wz?
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A Realization of this Framework in R3

B(u− û, v) = B(ε, w) +
X
z∈V

Z
Ω

R(v`z − v̂z − ŵz) dx +
X

F∈F

Z
F

r(v − v̂ − ŵ) ds

A Useful Quasi-Interpolant: Iv = v̂ + ŵ ∈ V ⊕WZ
Ω
(v`z − vz − wz) = 0 for all z ∈ V̄ ,

Z
F

(v − v̂ − ŵ) = 0 for all F ∈ F (1)

supp(vz) , supp(wz) ⊂ Ωz =

8<:ωz , z ∈ V
ωz ∪ ωz′ for some z′ ∈ V adjacent to z , z ∈ VD

Choosing W :

• A space W providing a single degree-of-freedom for each F ∈ F is sufficient for (1)

• We choose W ⊂ P3(T ) consisting of functions vanishing on every edge (cubic “face

bubbles”)

• V ⊕W is not a standard approximation space
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A Realization of this Framework in R3

‖u− û‖1 ≤ K1‖ε‖1 + K2osc(R, r)

Reliability Argument:

|B(u− û, v)| ≤ M‖ε‖1‖ŵ‖1 +
∑
z∈V̄

inf
Rz∈R

‖R−Rz‖0,Ωz ‖v`z − vz − wz‖0,Ωz

+
∑
F∈F

inf
rF∈R

‖r − rF ‖0,F ‖v − v̂ − ŵ‖0,F

|B(u− û, v)| ≤ C1‖ε‖1‖v‖1 + C21

∑
z∈V̄

Dz inf
Rz∈R

‖R−Rz‖0,Ωz‖v‖1,ωz

+ C22

∑
F∈F

|F |1/4 inf
rF∈R

‖r − rF ‖0,F ‖v‖1,ΩF

|B(u− û, v)| ≤ [C1‖ε‖1 + C2osc(R, r)] ‖v‖1

[osc(R, r)]2 =
∑
z∈V̄

D2
z inf

Rz∈R
‖R−Rz‖2

0,Ωz
+

∑
F∈F

|F |1/2 inf
rF∈R

‖r − rF ‖2
0,F
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Reflecting on Effectivity Result and Analysis

K0‖ε‖1 ≤ ‖u− û‖1 ≤ K1‖ε‖1 + K2osc(R, r)

• Argument style quite general

– Different operators (eg. curl-curl), different elements (eg. Nédélec,

Taylor-Hood)

– Let form of residuals determine choice of error space W

– Higher regularity: higher order elements for V , then more vanishing

moments for v − (v̂ + w)

• Results hold under minimal practical assumptions (not an asymptotic or

quasi-uniform analysis)

• Related notions of (data) oscillation in error analysis and AFEM

convergence: Dörfler/Nochetto (2002),

Nochetto/Siebert/Kreuzer/Cascon (2003,2008), Fierro/Veeser (2006),

Bornemann/Erdmann/Kornhuber (1996)
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Behavior of Face-Bump System

BFF ′ = B(bF ′ , bF ) D = diag(B)

B̂FF ′ = (bF ′ , bF )H1(Ω) D̂ = diag(B̂)

• Argue that B and D are spectrally-equivalent

1) Argue that B and B̂ are spectrally-equivalent, and D and D̂ are

spectrally-equivalent

2) Argue that B̂ and D̂ are spectrally-equivalent

1) If µ is an eigenvalue of B, then

mλmin(B̂) ≤ Re(µ) ≤ Mλmax(B̂) and |Im(µ)| ≤ Mλmax(B̂)

Argument for spectral equivalence of D and D̂ is even more trivial

Kentucky Applied and Computational Math Group Slide 18 Carnegie Mellon University, March 26, 2010



Behavior of Face-Bump System

Spectral Equivalence of B̂ and D̂

2) Let B̂T = element matrix for B̂, vT = element coefficient vector for v

vtB̂v =
∑
T∈T

vt
T B̂T vT

• If k0vt
T D̂T vT ≤ vt

T B̂T vT ≤ k1vt
T D̂T vT for every T , then

k0vtD̂v ≤ vtB̂v ≤ k1vtD̂v

(B̂T )ij = 2
3!|T |
7!


∑4

k=1 d−2
k , i = j

cos θkl

dkdl
− 2 cos θij

didj
, i 6= j

+
3!|T |
9!

 8 , i = j

4 , i 6= j

• Straight-forward analysis shows that B̂T is spectrally-equivalent to D̂T ,

and hence B̂ is spectrally-equivalent to D̂. For piecewise linears, B̂T is

NOT spectrally-equivalent to D̂T .
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Illustrating the Above Assertions
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Poisson Problem with (near) Singularity

Problem:

−∆u = f in Ω , u = 0 on ∂Ω , u =
sin(πx) sin(πy) sin(πz)

(0.001 + x2 + y2 + z2)1.5

Initial Mesh and an Adapted Mesh
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Poisson Problem with (near) Singularity

Global and Local Effectivities:
|||ε|||

|||u− û|||
,

|||ε|||T
|||u− û|||T

Compared with

standard residual indicator

η2 =
∑
T∈T

η2
T , η2

T =
1

2

∑
F∈FI

hT ‖rF ‖2
0,F +

∑
F∈∂T∩∂ΩN

hT ‖rF ‖2
0,F ,
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Poisson Problem with (near) Singularity

Error Convergence and Conditioning of Bump Matrix:

• Preconditioning (symmetric, diagonal rescaling) necessary for adapted

meshes
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Discontinuous Diffusion Problem

Problem: −a∆u = 0 in Ω = (−1, 1)3

• a = 105 in (0, 1)3, a = 1 elsewhere

• u = 1 at x = 1 and u = 0 at x = −1

• Homogeneous Neumann conditions on other four faces

An Adapted Mesh and a Look Inside
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Discontinuous Diffusion Problem

Global Effectivities:
|||ε|||

|||ū− û|||
ū ∈ V>3×106

|||u− û|||2 = |||u− ū|||2 + |||ū− û|||2 = |||u− ū|||2 + (|||ū|||2 − |||û|||2)
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Discontinuous Diffusion Problem

Error Convergence and Conditioning of Bump Matrix:
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Convection-Diffusion Problem

Problem: −ε∆u + ux = 1 in Ω = (0, 1)3, u = x− e(x−1)/ε − e−1/ε

1− e−1/ε

• ε = 0.1

• u = 0 at x = 0 and x = −1

• Homogeneous Neumann conditions on other four faces

u in the x-direction and an Adapted Mesh
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Convection-Diffusion Problem

Global and Local Effectivities:
‖ε‖1

‖u− û‖1
,

‖ε‖1,T

‖u− û‖1,T
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Convection-Diffusion Problem

Error Convergence and Conditioning of Bump Matrix:
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Convection-Diffusion Problem

Global Effectivity and Error Convergence for ε = 10−2:
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Another Convection-Diffusion Problem

Problem: −∆u + b · ∇u = 1 in Ω = (−1, 1)3, u = 0 on ∂Ω, where

b = (−12y, 12x, 12z)

Global Effectivity and Error Convergence

Kentucky Applied and Computational Math Group Slide 31 Carnegie Mellon University, March 26, 2010



Anisotropic Diffusion Problem

Problem: −∇ · (A∇u) = 1 in Ω = (−1, 1)3

• A = diag(1, ε, ε−1), ε = 10−3

• Homogeneous Dirichlet conditions

• Error estimated as in Discontinuous-Diffusion problem

Global Effectivity and Error Convergence
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Non-Linear Reaction-Diffusion Problem

Problem: −∆u + eu = f in Ω = (0, 1)3, u = 0 on ∂Ω

u = (x2 + y2 + z2 + 10−4)−3/2 sin(πx) sin(πy) sin(πz)

B(û + ε, v) = F (v)−B(û, v) B(û; ε, v) = F (v)−B(û, v) for all ε ∈ W

Global Effectivity and Error Convergence
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Non-Linear Reaction-Diffusion Problem
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Hope for Flexibility in R3, Experience in R2
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Measurements in Different Norms

u = r1/4 sin(θ/4) ∈ W 2,1(Ω) \H2(Ω)

Hessian Recovery in W 2,1(Ω), |u|2,1 =
∫
Ω
|uxx|+ 2|uxy|+ |uyy| dV = 12

NT 94 481 2031 8334 33704 135632

|ε|2,1 7.8728 9.3262 10.282 10.992 11.496 11.798

EFF 0.6561 0.7772 0.8568 0.9160 0.9580 0.9832
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Eigenvalue Problems

• Grubisic/Ovall 2008, Bank/Grubisic Ovall 2010, error estimates, adaptivity, covergence

acceleration

• Analysis needs approximate error function(s) in H

– Works for clusters of eigenvalues, degenerate (multiplicity> 1) eigenvalues,

low-regularity eigenfunctions
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Goal-Oriented Adaptivity

• Interested in driving down error in some (small) regions.

• Must be mindful of pollution effects.

• Ovall 2007, in

a similar vein as

Rannacher/Becker,

Giles/Süli, etc.

• Some form of dual-

weighting of the

residual
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