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Classical Solid Mechanics (A.-L. Cauchy, G. Green)

reference configuration deformed configuration

x u(x)

Ω ⊂ R3

u

u(Ω) ⊂ R3

Total energy of elastic deformation∫
Ω
W (Du(x))dx︸ ︷︷ ︸

elastic

−
∫

Ω
f · u dx︸ ︷︷ ︸

external force

.

where W : R3×3 → R stored energy function.

3/35



Peridynamics

S.A. Silling (J. Mech. Phys. Solids 2000) proposed a reformulation of

classical continuum mechanics:∫
Ω

∫
Ω
w(x − x ′, u(x)− u(x ′))dx ′ dx .

Features:

I non-local: points at a positive distance exert a force upon

each other.

I absence of gradients.

I main example: w =
|y − y ′|p

|x − x ′|α
for some p ≥ 1 and

0 ≤ α < n + p. Also K (x − x ′) |y − y ′|p.

I Deformations with discontinuities (fracture, dislocation,

cavitation. . . ) do not require a separate treatment.
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This motivates the study of functionals of the form

I(u) =

∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′ dx

for w : Ω× Ω× Rd × Rd → R and Ω ⊂ Rn. By Fubini’s theorem

we can assume

w(x , x ′, y , y ′) = w(x ′, x , y ′, y),

which is the realization in this context of Newton’s third law.

In this talk we will study existence, passage nonlocal local,

relaxation and an alternative model.
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For existence, we will use the direct method of Calculus of

Variations to find conditions on w for I to have a minimizer. The

method is based on coercivity and lower semicontinuity.
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How does lower semicontinuity work in the local case?

Necessary and sufficient condition for∫
Ω
W (x , u(x))dx

to be swlsc in Lp is that W (x , ·) is convex. (L. Tonelli 1921)

Necessary and sufficient condition for∫
Ω
W (x , u(x),Du(x))dx

to be swlsc in W 1,p is that W (x , y , ·) is quasiconvex.

(C. B. Morrey 1952)
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It is essential the choice of topology.

In our nonlocal case, if

w ≈ |y − y ′|p

|x − x ′|α

with α > n we will choose the weak topology in W s,p (with

s + np = α).

If

w ≈ |y − y ′|p

|x − x ′|α

with α < n we will choose the weak topology in Lp.

For simplicity, in this talk we will focus on the Lp case.
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P. Elbau (arXiv 2011): Necessary and sufficient condition for

I(u) =

∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′ dx

to be swlsc in Lp is that for a.e. x ∈ Ω and all u ∈ Lp(Ω,Rd),

y 7→
∫

Ω
w(x , x ′, y , u(x ′))dx ′ is convex in Rd .

A fake proof:

∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′

:= F (x , u(x))

dx .

Seems that semicontinuity for double integral holds iff F (x , ·) is

convex, i.e., for a.e. x ∈ Ω and all u ∈ Lp(Ω,Rd), the function

y 7→
∫

Ω
w(x , x ′, y , u(x ′))dx ′ is convex.
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(NC) y 7→
∫

Ω
w(x , x ′, y , u(x ′))dx ′ is convex.

Strangely, condition (NC) (weaker than convexity of w(x , x ′, ·, y ′))

depends on the domain Ω.

By a Lebesgue-point argument, we can prove:

Proposition. IΩ′ is weakly lower semicontinuous in Lp(Ω′,Rd)

for all Ω′ ⊂ Ω (equivalently, the function in (NC) is convex for all

Ω′ ⊂ Ω) iff for a.e. x , x ′ ∈ Ω and all y ′ ∈ Rd , the function

w(x , x ′, ·, y ′) is convex.
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How does coercivity work in the local case?

For ∫
Ω
W (x , u(x))dx

we impose W (x , y) ≥ c |y |p.

For ∫
Ω
W (x , u(x),Du(x))dx

we impose W (x , y , z) ≥ c |z |p and use boundary conditions to

apply a Poincaré inequality.
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I For

I(u) =

∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′ dx

we can impose w(x , x ′, y , y ′) ≥ c |y |p. But typically I is

invariant under translations: I(u) = I(u + a) for all a ∈ Rd ,

so w depends on (x , x ′, y , y ′) through (x , x ′, y − y ′).

I Functions in Lp do not have traces on the boundary. Dirichlet

conditions are prescribed on ΩD := {x ∈ Ω : dist(x , ∂Ω) < δ}.

ΩD

Ω

I Usual assumption in engineering that w(x , x ′, ·, ·) ≡ 0 if

|x − x ′| ≥ δ.
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Coercivity inequality for Dirichlet conditions:

λ

∫
Ω
|u(x)|p dx ≤

∫
Ω

∫
Ω∩B(x ,δ)

|u(x)− u(x ′)|pdx ′ dx +

∫
ΩD

|u(x)|p dx

F. Andreu, J. Mazón, J. Rossi & J. Toledo SIAM J Math Anal (2009),

B. Aksoylu & M.L. Parks Appl Math Comput (2011),

B. Hinds & P. Radu Appl Math Comput (2012).

Coercivity inequality for Neumann conditions:

λ

∫
Ω

∣∣∣∣u(x)−−
∫

Ω
u

∣∣∣∣p dx ≤ ∫
Ω

∫
Ω∩B(x ,δ)

∣∣u(x)− u(x ′)
∣∣p dx ′ dx .

J. Bourgain, H. Brezis & P. Mironescu J Anal Math (2002),

A. C. Ponce JEMS (2004),

F. Andreu, J. Mazón, J. Rossi & J. Toledo J Math Pures Appl (2008),

B. Aksoylu & T. Mengesha Numer Funct Anal Optim (2010),

R. Hurri-Syrjänen & A.V. Vähäkangas J Anal Math (2013).
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Existence of minimizers in Lp

Ω ⊂ Rn. δ > 0. ΩD = {x ∈ Ω : dist(x , ∂Ω) < δ}. p > 1.

a) c χB(0,δ)(x − x ′)
∣∣y − y ′

∣∣p ≤ w(x , x ′, y , y ′) ≤ a(x , x ′) + C |y |p

with a ∈ L1(Ω× Ω).

b) (NC).

Let u0 ∈ Lp(ΩD ,Rd). Then there exists a minimizer of∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′ dx

among u ∈ Lp(Ω,Rd) such that u = u0 a.e. on ΩD .

(analogous statement for Neumann boundary conditions)
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Nonlocal local

Think of w(x , x ′, y , y ′) ≈ |y−y
′|p

|x−x ′|α . Call β := p − α. Ingredients:

I Scaling:

Iδ(u) :=
Cn,β

δn+β

∫
Ω

∫
Ω∩B(x ,δ)

w(x − x ′, u(x)− u(x ′))dx ′ dx .

I Blow-up at zero (homogenization of w):

w◦(x̃ , ỹ) := lim
t→0

1

tβ
w(tx̃ , tỹ).

I Density w̄ : Rd×n → R

w̄(F ) := −
∫
Sn−1

w◦(z ,Fz) dHn−1(z).

I Quasiconvexification: w̄qc : Rd×n → R of w̄ .

I (u) :=

∫
Ω
w̄qc(Du(x))dx .
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Pointwise limit for regular functions: If u ∈ C 1(Ω̄,Rd),

lim
δ→0

Iδ(u) =

∫
Ω
w̄(Du(x))dx .

Proof:

Cn,β

δn+β

∫
Ω∩B(x ,δ)

w(x ′ − x , u(x ′)− u(x))dx ′

'
Cn,β

δn+β

∫
Ω∩B(x ,δ)

w◦(x ′ − x , u(x ′)− u(x))dx ′

'
Cn,β

δn+β

∫
Ω∩B(x ,δ)

w◦(x ′ − x ,Du(x)(x ′ − x))dx ′

'
Cn,β

δn+β

∫
B(0,δ)

w◦(x̃ ,Du(x)x̃) dx̃

=w̄(Du(x)).
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Iδ(u) =

Cn,β

δn+β

∫
Ω

∫
Ω∩B(x ,δ)

w(x − x ′, u(x)− u(x ′))dx ′ dx ,

in Aδ :=
{
u ∈ Lp(Ω,Rd) : u = u0 in Ωδ := {x ∈ Ω : dist(x , ∂Ω) < δ}

}

I (u) =

∫
Ω
w̄qc(Du(x))dx ,

in A :=
{
u ∈W 1,p(Ω,Rd) : u = u0 on ∂Ω

}
Theorem. Iδ

Γ→ I in Lp(Ω,Rd) as δ → 0. Specifically,

I Compactness: If uδ ∈ Aδ satisfy Iδ(uδ) ≤ M then there exists

u ∈ A such that uδ → u in Lp(Ω,Rd).

I Lower bound.

I Upper bound.

Use results by J. Bourgain, H. Brezis & P. Mironescu (2001), A. Ponce

Calc Var (2004), B. Dacorogna J. Funct. Anal. (1982). 22/35



The Γ-convergence result requires the natural assumption

(NCδ) y 7→
∫

Ω∩B(x ,δ)
w(x , x ′, y , y ′) dx ′ is convex

for a.e. x ∈ Ω, all y ′ ∈ Rd and all δ > 0 small enough.

By a Lebesgue-point argument, this is equivalent to saying that

w(x , x ′, ·, y ′) is convex. Hence w◦(x̃ , ·) is convex and w̄ is convex,

so no quasiconvexification of w̄ is needed.

A more serious problem will arise.

23/35



Introduction

Existence of minimizers

Lower semicontinuity

Coercivity

Existence

Passage nonlocal local

Relaxation

Alternative model

24/35



Relaxation

The relaxation I∗ of a functional I is the lower semicontinuous

envelope in the appropriate topology:

I∗(u) = sup {I (u) : I lsc, I ≤ I} .

Also

I∗(u) = inf

{
lim inf
j→∞

I(uj) : uj → u

}
.
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How does relaxation work in the local case?

The relaxation of ∫
Ω
W (x , u(x))dx

in the weak topology of Lp(Ω,Rd) is∫
Ω
W c(x , u(x))dx ,

where W c(x , ·) is the convexification of W (x , ·). L.C. Young 1931.

The relaxation of ∫
Ω
W (x , u(x),Du(x))dx

in the weak topology of W 1,p(Ω,Rd) is∫
Ω
W qc(x , u(x),Du(x))dx ,

where W qc(x , y , ·) is the quasiconvexification W (x , y , ·).

B. Dacorogna J Funct Anal (1982).
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In our nonlocal case, we will focus on the weak topology of Lp.

In the simplest case w = f (y − y ′), recall that

I(u) =

∫
Ω

∫
Ω
f (u(x)− u(x ′))dx ′ dx

is swlsc iff f is convex. If f is not convex, we are tempted to think

that the relaxation I∗ is∫
Ω

∫
Ω
f c(u(x)− u(x ′))dx ′ dx ,

where f c is the convexification of f . This turns out not to be the

case.

We suspect that I∗ does not admit an integral representation of

the form ∫
Ω

∫
Ω
W (x , x ′, u(x), u(x ′))dx ′ dx .
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Example. Let w = f (y − y ′) with f =blue graph.

Then I ≥ C , even though f takes values both above and below C .

Moreover, if I∗ admitted an integral representation of the form∫
Ω

∫
Ω
g(u(x)− u(x ′))dx ′ dx

then g =red graph. So the relaxed energy density g would be

neither above nor below f .
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A new model is needed

In Solid Mechanics, the model∫
Ω

∫
Ω
w(x − x ′, u(x)− u(x ′))dx ′ dx

is wrong. Let’s see why.

Start with

I(u) =

∫
Ω

∫
Ω
w(x , x ′, u(x), u(x ′))dx ′ dx

and apply familiar conditions in Solid Mechanics.

a) I is frame-indifferent iff w = w(x , x ′, |y − y ′|).

b) I is homogeneous and isotropic iff w = w(|x − x ′|, y , y ′).
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Let the material be frame-indifferent, homogeneous and isotropic:

w = w(|x − x ′|, |y − y ′|). We do the nonlocal  local passage.

Recall the process w  w◦  w̄  W . W.l.o.g., w = w◦.

w̄(F ) = −
∫
Sn−1

w(z ,Fz) dHn−1(z) = −
∫
Sn−1

w(|z |, |Fz |) dHn−1(z)

= −
∫
Sn−1

w(1, |Fz |) dHn−1(z).

Assume for simplicity that w̄ is quasiconvex, hence W = w̄ (and

ignore the fact that we needed the assumption that w(x̃ , ·) is convex, so

w̄ is already convex). Thus, a quasiconvex W is retrievable in this

model iff

W (F ) = −
∫
Sn−1

W (|Fz |I )dHn−1(z) ∀F ∈ Rn×n
+ .

Hence W is determined by the values of matrices multiple of the

identity: only one degree of freedom!
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W retrievable: W (F ) = −
∫
Sn−1

W (|Fz |I ) dHn−1(z).

There are very few retrievable W .

Examples:

I |F |2 is retrievable, but no other squared norm is retrievable.

I |F |p is not retrievable for p 6= 2.

I detF is not retrievable.

The essence of this bug is that the quantity u(x ′)− u(x) does not

discretize (or delocalize) the gradient but an average of directional

derivatives:∫
Ω∩B(x ,δ)

w(x ′ − x , u(x ′)− u(x))dx ′ '
∫
B(0,δ)

w(x̃ ,Du(x) x̃) dx̃

' Cn,β,δ −
∫
Sn−1

w(z ,Du(x) z)dHn−1(z).
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New model

Based on T. Mengesha & D. Spector 15 and T. Mengesha & Q. Du 15,

we adopt the model

I(u) =

∫
Ω
W (Gu(x))dx

where W : Rn×n → R is a typical stored-energy function in

hyperelasticity, and Gu is a nonlocal gradient:

Gu(x) =

∫
u(x)− u(x ′)

|x − x ′|
⊗ x − x ′

|x − x ′|
ρ(x − x ′) dx ′.

In essence, this new model amounts to replacing∫ ∫
w(· · · ) dx ′ dx with

∫
W

(∫
(· · · )

)
dx ′ dx .
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Functional setup

Gu(x) =

∫
u(x)− u(x ′)

|x − x ′|
⊗ x − x ′

|x − x ′|
ρ(x − x ′) dx ′.

The natural functional space is

{u ∈ Lp : Gu ∈ Lp} .

The properties of this function space depend on ρ.

For simplicity, we choose ρ leading to a known space. We follow

T. Shieh & D. Spector 15, 17. For s ∈ (0, 1), the choice

ρ(t) = t−n−s+1 gives rise to Ls,p(Rn): the Bessel potential spaces,

hence

Gu(x) = Ds(x) =

∫
Rn

u(x)− u(x ′)

|x − x ′|n+s
⊗ x − x ′

|x − x ′|
dx ′.

The advantage of this space is that we know the continuous and

compact inclusions into Lq.
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Current work: develop an existence theory for W polyconvex.

This entails:

I Definition of nonlocal divergence divs : Q. Du, M. Gunzburger,

R. Lehoucq, K. Zhou 13.

I Nonlocal integration by parts: T. Mengesha & D. Spector 15,

T. Mengesha & Q. Du 15:∫
Dsu φ = −

∫
u divs φ .

I Nonlocal Piola’s identity: divs cof Dsu = 0.

I Weak continuity of the determinant: if uj ⇀ u in Ls,p then

detDsuj ⇀ detDsu in L1.
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