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Classical Solid Mechanics (A.-L. Cauchy, G. Green)

QC RS u(Q) C R3
reference configuration deformed configuration

Total energy of elastic deformation

/QW(DU(X))dx—/Qf-udx.

Vv Vv
elastic external force

where W : R3%3 5 R stored energy function.
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Peridynamics

S.A. Silling (J. Mech. Phys. Solids 2000) proposed a reformulation of

classical continuum mechanics:

[, et st

Features:

» non-local: points at a positive distance exert a force upon

each other.

> absence of gradients.

ly —y'IP
x — x'|@
0<a<n+p. Also K(x—x")]y —y'|’.

> main example: w = for some p > 1 and

» Deformations with discontinuities (fracture, dislocation,

cavitation. .. ) do not require a separate treatment.
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This motivates the study of functionals of the form

I(u) = /Q /Q w(x, X', u(x), u(x')) dx’ dx

for w:Q x QxRIxR? =R and Q C R". By Fubini's theorem

we Can assume

w(x, X', y,y") = w(X',x,y",y),
which is the realization in this context of Newton's third law.

In this talk we will study existence, passage nonlocal ~ local,

relaxation and an alternative model.
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Existence of minimizers
Lower semicontinuity
Coercivity

Existence
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For existence, we will use the direct method of Calculus of
Variations to find conditions on w for Z to have a minimizer. The

method is based on coercivity and lower semicontinuity.
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How does lower semicontinuity work in the local case?

Necessary and sufficient condition for

/Q W(x, u(x))dx

to be swisc in LP is that W(x, ) is convex. (L. Tonelli 1921)

Necessary and sufficient condition for
/ W (x, u(x), Du(x)) dx
Q

to be swlsc in WP is that W(x,y, ) is quasiconvex.

(C. B. Morrey 1952)
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It is essential the choice of topology.
In our nonlocal case, if

ly —y'IP
|x — x|

w =

with o > n we will choose the weak topology in W*P (with
s+np=a).

If )

ly —y'|P

W |x — x'|@

with a < n we will choose the weak topology in LP.

For simplicity, in this talk we will focus on the LP case.
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P. Elbau (arXiv 2011): Necessary and sufficient condition for

(u _// w(x, X, u(x), u(x')) dx’ dx

to be swisc in LP is that for a.e. x € Q and all u € LP(Q,RY),

y — / w(x,x',y,u(x))dx’ is convex in RY.
Q

A fake proof:

/Q /QW(X7X,’ u(x), u(x")) dx"|dx.
= F(x, u(x))

Seems that semicontinuity for double integral holds iff F(x,-) is

convex, i.e., fora.e. x € Qand all u € LP(Q,Rd), the function

y / w(x,x',y,u(x"))dx" is convex.
Q
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(NC) y / w(x, x',y, u(x")) dx" is convex.
Q
Strangely, condition (NC) (weaker than convexity of w(x,x’,-,y’))
depends on the domain €.
By a Lebesgue-point argument, we can prove:

Proposition. Zq/ is weakly lower semicontinuous in LP(Q’, R9)
for all Q" C Q (equivalently, the function in (NC) is convex for all
Q' C Q) iff for a.e. x,x' € Q and all y’ € R9, the function

w(x,x',-,y") is convex.
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How does coercivity work in the local case?
For
/ W(x, u(x)) dx
Q
we impose W(x,y) > cly|”.
For

/ W (x, u(x), Du(x)) dx
Q

we impose W(x,y,z) > c|z|” and use boundary conditions to

apply a Poincaré inequality.
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> For
I(u) = / / w(x, x', u(x), u(x')) dx’ dx
QJQ
we can impose w(x,x’,y,y’) > c|y|P. But typically Z is
invariant under translations: Z(u) = Z(u + a) for all 2 € RY,
so w depends on (x, x’,y, y’) through (x,x',y — y').
» Functions in LP do not have traces on the boundary. Dirichlet

conditions are prescribed on Qp := {x € Q : dist(x,0Q) < d}.

Q
Qp

» Usual assumption in engineering that w(x,x’,-,-) =0 if
|x — x| > 6.
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Coercivity inequality for Dirichlet conditions:

)\/ |u(x)|P dx g// lu(x) — u(x")|Pdx’ dx +/ lu(x)|P dx
Q QJanB(x,5) Qp

F. Andreu, J. Mazén, J. Rossi & J. Toledo SIAM J Math Anal (2009),
B. Aksoylu & M.L. Parks Appl Math Comput (2011),

B. Hinds & P. Radu Appl Math Comput (2012).

Coercivity inequality for Neumann conditions:

P
)\/ u(x) —][ ul dx < / / lu(x) — u(x)|P dx dx.
Q Q Q JanB(x.6)

J. Bourgain, H. Brezis & P. Mironescu J Anal Math (2002),

A. C. Ponce JEMS (2004),

F. Andreu, J. Mazén, J. Rossi & J. Toledo J Math Pures Appl (2008),
B. Aksoylu & T. Mengesha Numer Funct Anal Optim (2010),

R. Hurri-Syrjanen & A.V. Vahakangas J Anal Math (2013).
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Existence of minimizers in LP

QCcR" 6>0. Qp={xeQ:dist(x,002) <d}. p>1

a) cxgos(x—X) |y =¥ <wlx,x,y,y) <a(x,x)+ Cly|
with a € L}(Q x Q).

b) (NC).

Let up € LP(Qp,RY). Then there exists a minimizer of
// w(x, x', u(x), u(x')) dx’ dx
QJQ

among u € LP(Q,RY) such that u = up a.e. on Qp.

(analogous statement for Neumann boundary conditions)
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Passage nonlocal ~~ local
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Nonlocal ~ local

ly=y'IP

Think of w(x,x',y,y') =~ o Call B := p — a. Ingredients:

> Scallng

= 5"+’8//Qm5(x5 (x — X', u(x) — u(x")) dx’ dx.

» Blow-up at zero (homogenization of w):

1
w®(X,¥) = lim —Bw(t)?, ty).

t—0 t
» Density w : R9*" R
wuq;:f‘ w®(z, Fz) dH"(2).
Sn—l

» Quasiconvexification: w9 : RI*" 5 R of w.

K@:AWWWMMX
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Pointwise limit for regular functions: If u € C}(Q,RY),

im Is(u) :/QV_V(DU(X)) dx.

I
6—0

Proof-

Cop ‘}/‘ / / ’
: w(x — x,u(x") — u(x))dx
5 o™ (x') — u(x))

Chs J/F or / /
~_ w®(x — x,u(x") — u(x))dx
5”+B QﬂB(x75) ( ( ) ( ))

Cn B J/P or ! / /
~ w®(x" — x, Du(x)(x" — x))dx
5 s () =)

Cn,B / ~ ~\ 1o
~_ w° (X, Du(x)X) dx
575 [ W Duts)

=w(Du(x)).
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_5”+6//szms(xa (x = x', u(x) — u(x')) dx’ dx,

in Ay := {u € LP(Q,RY): u=ug in Qs := {x € Q:dist(x,00) < 5}}

I(u) = /Q w9 (Du(x)) dx,
in A:={ue WH(QRY): u=upon 9Q}

Theorem. /5 5 1in LP(,RY) as § — 0. Specifically,

» Compactness: If us € Ajs satisfy Is(us) < M then there exists
u € A such that us — u in LP(Q,RY).
» Lower bound.

» Upper bound.

Use results by J. Bourgain, H. Brezis & P. Mironescu (2001), A. Ponce
Calc Var (2004), B. Dacorogna J. Funct. Anal. (1982).

22/35



The -convergence result requires the natural assumption

NC5 — w X,X/,y,yl dX/ is convex
y
QNB(x,9)

for a.e. x € Q, all y’ € R and all § > 0 small enough.

By a Lebesgue-point argument, this is equivalent to saying that
w(x,x’, -, y") is convex. Hence w°(X,-) is convex and w is convex,

so no quasiconvexification of w is needed.

A more serious problem will arise.
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Relaxation
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Relaxation

The relaxation Z* of a functional Z is the lower semicontinuous

envelope in the appropriate topology:
Z*(u) =sup{l(u): I'lsc, | <T}.
Also

T*(u) = inf {um inf Z(u;) : uj — u}.

J—00
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How does relaxation work in the local case?

/qu

in the weak topology of LP(Q,RY) is

/Q We(x, u(x)) dx,

where W¢(x, -) is the convexification of W(x,-). L.C.Young 1931.

The relaxation of

The relaxation of
/Q W (x, u(x), Du(x)) dx
in the weak topology of W1P(Q,RY) is
/Q W9 (x, u(x), Du(x)) dx,
where W9 (x,y,-) is the quasiconvexification W(x, y,-).

B. Dacorogna J Funct Anal (1982).
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In our nonlocal case, we will focus on the weak topology of LP.

In the simplest case w = f(y — y’), recall that

// (x)) dx’ dx

is swisc iff f is convex. If f is not convex, we are tempted to think

that the relaxation Z* is

//fc (x")) dx’ dx,

where € is the convexification of f. This turns out not to be the

Case.

We suspect that Z* does not admit an integral representation of

et sy .

the form
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Example. Let w = f(y — y’) with  =blue graph.

T

Then Z > C, even though f takes values both above and below C.

Moreover, if Z* admitted an integral representation of the form

/Q/Qg(u(x) — u(x")) dx" dx

then g =red graph. So the relaxed energy density g would be

neither above nor below f.
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Alternative model
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A new model is needed

In Solid Mechanics, the model

/ / w(x — X', u(x) — u(x")) dx’ dx
QJQ
is wrong. Let's see why.

Start with
I(u) = / / w(x, x, u(x), u(x)) dx’ dx
QJQ
and apply familiar conditions in Solid Mechanics.

a) 7 is frame-indifferent iff w = w(x,x’, |y — y'|).

b) Z is homogeneous and isotropic iff w = w(|x — x'|, y,y’).

30/35



Let the material be frame-indifferent, homogeneous and isotropic:
w = w(|x — x'|,|y — y’|). We do the nonlocal ~~ local passage.

Recall the process w ~» w® ~» w ~~ W. W.l.o.g., w = w°.
w(F) :][ w(z, Fz) d’H"fl(z) :][ w(|z|, |Fz|) d?—[”fl(z)
Snfl Snfl
_][ w(l, |Fz|) dH"_l(z).
Sn—l

Assume for simplicity that w is quasiconvex, hence W = w (and
ignore the fact that we needed the assumption that w(X,-) is convex, so

w is already convex). Thus, a quasiconvex W is retrievable in this
model iff
W(F) = W(|Fz|l)dH" 1 (z)  VF e R
Sn—l
Hence W is determined by the values of matrices multiple of the

identity: only one degree of freedom!
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W retrievable: ~ W(F) = W(|Fz|l)dH"(z).
S§n—1

There are very few retrievable W.
Examples:

> |F|? is retrievable, but no other squared norm is retrievable.
» |F|P is not retrievable for p # 2.

» det F is not retrievable.

The essence of this bug is that the quantity u(x’) — u(x) does not
discretize (or delocalize) the gradient but an average of directional
derivatives:

/QmB(x,a) w(x" — x,u(x’) — u(x)) dx’ ~ / w(X, Du(x) X) dX

B(0,8)

o~ C,,ﬁ?g][ w(z, Du(x) z) dH"71(2).
Sn—1

32/35



New model

Based on T. Mengesha & D. Spector 15 and T. Mengesha & Q. Du 15,

we adopt the model
Z(u) :/ W(Gu(x))dx
Q

where W : R™" — R is a typical stored-energy function in

hyperelasticity, and Gu is a nonlocal gradient:

ux) = [ U= o Xy,

|x — x| |x

In essence, this new model amounts to replacing

//W(.-.)dx'dx with /W(/(~-)>dx’dx.
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Functional setup

Gu(x) = / u(x) = u(x') ® Xj| p(x — x")dx'.

|x — x| |x — x

The natural functional space is
{uelP:GuelP}.
The properties of this function space depend on p.

For simplicity, we choose p leading to a known space. We follow
T. Shieh & D. Spector 15, 17. For s € (0,1), the choice

p(t) = t~"=5t1 gives rise to L5P(R"): the Bessel potential spaces,
hence

ulx) —u(x)  x—x

dx’

nox=xts T x = x| T

Gu(x) = D°(x) _/

The advantage of this space is that we know the continuous and

compact inclusions into L9.
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Current work: develop an existence theory for W polyconvex.

This entails:

» Definition of nonlocal divergence div®: Q. Du, M. Gunzburger,
R. Lehoucq, K. Zhou 13.

» Nonlocal integration by parts: T. Mengesha & D. Spector 15,
T. Mengesha & Q. Du 15:

/Dsu¢:—/udiv5¢.

» Nonlocal Piola’s identity: div® cof DSu = 0.

» Weak continuity of the determinant: if u; — u in 5P then
det DSu; — det Du in LL.
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