Nonlocal variational problems and applications to peridynamics

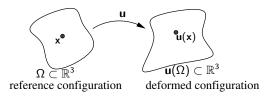
Carlos Mora-Corral University Autónoma of Madrid

(joint with José C. Bellido, Pablo Pedregal and Javier Cueto)

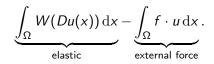
Existence of minimizers

- Lower semicontinuity
- Coercivity
- Existence
- Passage nonlocal ~~ local
- Relaxation
- Alternative model

Classical Solid Mechanics (A.-L. Cauchy, G. Green)



Total energy of elastic deformation



where $\mathcal{W}:\mathbb{R}^{3\times3}\rightarrow\mathbb{R}$ stored energy function.

Peridynamics

S.A. Silling (*J. Mech. Phys. Solids* 2000) proposed a reformulation of classical continuum mechanics:

$$\int_{\Omega}\int_{\Omega}w(x-x',u(x)-u(x'))\,\mathrm{d}x'\,\mathrm{d}x.$$

Features:

- non-local: points at a positive distance exert a force upon each other.
- absence of gradients.
- main example: $w = \frac{|y y'|^p}{|x x'|^{\alpha}}$ for some $p \ge 1$ and $0 \le \alpha < n + p$. Also $K(x x') |y y'|^p$.
- Deformations with discontinuities (fracture, dislocation, cavitation...) do not require a separate treatment.

This motivates the study of functionals of the form

$$\mathcal{I}(u) = \int_{\Omega} \int_{\Omega} w(x, x', u(x), u(x')) \, \mathrm{d}x' \, \mathrm{d}x$$

for $w: \Omega \times \Omega \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$. By Fubini's theorem we can assume

$$w(x, x', y, y') = w(x', x, y', y),$$

which is the realization in this context of Newton's third law.

In this talk we will study existence, passage nonlocal \rightsquigarrow local, relaxation and an alternative model.

Existence of minimizers

Lower semicontinuity

Coercivity

Existence

Passage nonlocal ~> local

Relaxation

Alternative model

For existence, we will use the *direct method of Calculus of Variations* to find conditions on w for \mathcal{I} to have a minimizer. The method is based on *coercivity* and *lower semicontinuity*.

Existence of minimizers

Lower semicontinuity

Coercivity

Existence

Passage nonlocal ~> local

Relaxation

Alternative model

How does lower semicontinuity work in the local case?

Necessary and sufficient condition for

$$\int_{\Omega} W(x,u(x))\,\mathrm{d}x$$

to be swlsc in L^p is that $W(x, \cdot)$ is convex. (L. Tonelli 1921)

Necessary and sufficient condition for

$$\int_{\Omega} W(x, u(x), Du(x)) \, \mathrm{d}x$$

to be swlsc in $W^{1,p}$ is that $W(x, y, \cdot)$ is quasiconvex. (C. B. Morrey 1952) It is essential the choice of topology.

In our nonlocal case, if

$$w pprox rac{|y - y'|^p}{|x - x'|^{lpha}}$$

with $\alpha > n$ we will choose the weak topology in $W^{s,p}$ (with $s + np = \alpha$).

lf

$$w \approx rac{|y-y'|^p}{|x-x'|^{lpha}}$$

with $\alpha < n$ we will choose the weak topology in L^p .

For simplicity, in this talk we will focus on the L^p case.

P. Elbau (arXiv 2011): Necessary and sufficient condition for

$$\mathcal{I}(u) = \int_{\Omega} \int_{\Omega} w(x, x', u(x), u(x')) \, \mathrm{d}x' \, \mathrm{d}x$$

to be swlsc in L^p is that for a.e. $x \in \Omega$ and all $u \in L^p(\Omega, \mathbb{R}^d)$,

$$y\mapsto \int_{\Omega}w(x,x',y,u(x'))\,\mathrm{d}x'$$
 is convex in $\mathbb{R}^d.$

A fake proof:

$$\int_{\Omega} \underbrace{\int_{\Omega} w(x, x', u(x), u(x')) \, \mathrm{d}x'}_{:= F(x, u(x))} \mathrm{d}x.$$

Seems that semicontinuity for double integral holds iff $F(x, \cdot)$ is convex, i.e., for a.e. $x \in \Omega$ and all $u \in L^p(\Omega, \mathbb{R}^d)$, the function

$$y\mapsto \int_{\Omega}w(x,x',y,u(x'))\,\mathrm{d}x'$$
 is convex.

(NC)
$$y \mapsto \int_{\Omega} w(x, x', y, u(x')) dx'$$
 is convex.

Strangely, condition (NC) (weaker than convexity of $w(x, x', \cdot, y')$) depends on the domain Ω .

By a Lebesgue-point argument, we can prove:

Proposition. $\mathcal{I}_{\Omega'}$ is weakly lower semicontinuous in $L^p(\Omega', \mathbb{R}^d)$ for all $\Omega' \subset \Omega$ (equivalently, the function in (NC) is convex for all $\Omega' \subset \Omega$) iff for a.e. $x, x' \in \Omega$ and all $y' \in \mathbb{R}^d$, the function $w(x, x', \cdot, y')$ is convex.

Existence of minimizers

Lower semicontinuity

Coercivity

Existence

 $\mathsf{Passage} \ \mathsf{nonlocal} \rightsquigarrow \mathsf{local}$

Relaxation

Alternative model

How does coercivity work in the local case?

For

$$\int_{\Omega} W(x, u(x)) \, \mathrm{d} x$$

we impose $W(x, y) \ge c |y|^p$.

For

$$\int_{\Omega} W(x, u(x), Du(x)) \, \mathrm{d}x$$

we impose $W(x, y, z) \ge c |z|^p$ and use boundary conditions to apply a Poincaré inequality.

For

$$\mathcal{I}(u) = \int_{\Omega} \int_{\Omega} w(x, x', u(x), u(x')) \, \mathrm{d}x' \, \mathrm{d}x$$

we can impose $w(x, x', y, y') \ge c |y|^p$. But typically \mathcal{I} is invariant under translations: $\mathcal{I}(u) = \mathcal{I}(u+a)$ for all $a \in \mathbb{R}^d$, so w depends on (x, x', y, y') through (x, x', y - y').

Functions in L^p do not have traces on the boundary. Dirichlet conditions are prescribed on Ω_D := {x ∈ Ω : dist(x, ∂Ω) < δ}.</p>

► Usual assumption in engineering that $w(x, x', \cdot, \cdot) \equiv 0$ if $|x - x'| \ge \delta$.

Coercivity inequality for Dirichlet conditions:

$$\lambda \int_{\Omega} |u(x)|^{p} \, \mathrm{d}x \leq \int_{\Omega} \int_{\Omega \cap B(x,\delta)} |u(x) - u(x')|^{p} \, \mathrm{d}x' \, \mathrm{d}x + \int_{\Omega_{D}} |u(x)|^{p} \, \mathrm{d}x$$

- F. Andreu, J. Mazón, J. Rossi & J. Toledo SIAM J Math Anal (2009),
- B. Aksoylu & M.L. Parks Appl Math Comput (2011),
- B. Hinds & P. Radu Appl Math Comput (2012).

Coercivity inequality for Neumann conditions:

$$\lambda \int_{\Omega} \left| u(x) - f_{\Omega} u \right|^{p} \mathrm{d}x \leq \int_{\Omega} \int_{\Omega \cap B(x,\delta)} \left| u(x) - u(x') \right|^{p} \mathrm{d}x' \, \mathrm{d}x.$$

J. Bourgain, H. Brezis & P. Mironescu J Anal Math (2002),

- A. C. Ponce JEMS (2004),
- F. Andreu, J. Mazón, J. Rossi & J. Toledo J Math Pures Appl (2008),
- B. Aksoylu & T. Mengesha Numer Funct Anal Optim (2010),
- R. Hurri-Syrjänen & A.V. Vähäkangas J Anal Math (2013).

Existence of minimizers

Lower semicontinuity

Coercivity

Existence

 $\mathsf{Passage} \ \mathsf{nonlocal} \rightsquigarrow \mathsf{local}$

Relaxation

Alternative model

Existence of minimizers in L^p

 $\Omega \subset \mathbb{R}^n. \quad \delta > 0. \quad \Omega_D = \{ x \in \Omega : \mathsf{dist}(x, \partial \Omega) < \delta \}. \quad p > 1.$

a)
$$c \chi_{B(0,\delta)}(x-x') |y-y'|^{p} \le w(x,x',y,y') \le a(x,x') + C |y|^{p}$$

with $a \in L^{1}(\Omega \times \Omega)$.

b) (NC).

Let $u_0 \in L^p(\Omega_D, \mathbb{R}^d)$. Then there exists a minimizer of $\int_\Omega \int_\Omega w(x, x', u(x), u(x')) \, \mathrm{d}x' \, \mathrm{d}x$

among $u \in L^p(\Omega, \mathbb{R}^d)$ such that $u = u_0$ a.e. on Ω_D .

(analogous statement for Neumann boundary conditions)

Existence of minimizers

- Lower semicontinuity
- Coercivity
- Existence

$\mathsf{Passage} \ \mathsf{nonlocal} \rightsquigarrow \mathsf{local}$

Relaxation

Alternative model

Nonlocal \rightsquigarrow local

Think of $w(x, x', y, y') \approx \frac{|y-y'|^p}{|x-x'|^{\alpha}}$. Call $\beta := p - \alpha$. Ingredients:

Scaling:

$$I_{\delta}(u) := \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{\Omega} \int_{\Omega \cap B(x,\delta)} w(x - x', u(x) - u(x')) \, \mathrm{d}x' \, \mathrm{d}x.$$

Blow-up at zero (homogenization of w):

$$w^{\circ}(\tilde{x},\tilde{y}):=\lim_{t\to 0}rac{1}{t^{eta}}w(t\tilde{x},t\tilde{y}).$$

• Density $\bar{w} : \mathbb{R}^{d \times n} \to \mathbb{R}$

$$\bar{w}(F) := \int_{\mathbb{S}^{n-1}} w^{\circ}(z, Fz) \,\mathrm{d}\mathcal{H}^{n-1}(z).$$

• Quasiconvexification: $\bar{w}^{qc} : \mathbb{R}^{d \times n} \to \mathbb{R}$ of \bar{w} .

$$I(u) := \int_{\Omega} \bar{w}^{qc}(Du(x)) \, \mathrm{d}x$$

Pointwise limit for regular functions: If $u \in C^1(\overline{\Omega}, \mathbb{R}^d)$,

$$\lim_{\delta\to 0} I_{\delta}(u) = \int_{\Omega} \bar{w}(Du(x)) \, \mathrm{d}x.$$

Proof:

$$\begin{split} & \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{\Omega \cap B(x,\delta)} w(x'-x,u(x')-u(x)) \, \mathrm{d}x' \\ &\simeq \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{\Omega \cap B(x,\delta)} w^{\circ}(x'-x,u(x')-u(x)) \, \mathrm{d}x' \\ &\simeq \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{\Omega \cap B(x,\delta)} w^{\circ}(x'-x,Du(x)(x'-x)) \, \mathrm{d}x' \\ &\simeq \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{B(0,\delta)} w^{\circ}(\tilde{x},Du(x)\tilde{x}) \, \mathrm{d}\tilde{x} \\ &= \bar{w}(Du(x)). \end{split}$$

$$\begin{cases} I_{\delta}(u) = \frac{C_{n,\beta}}{\delta^{n+\beta}} \int_{\Omega} \int_{\Omega \cap B(x,\delta)} w(x - x', u(x) - u(x')) \, \mathrm{d}x' \, \mathrm{d}x, \\ & \text{in } \mathcal{A}_{\delta} := \left\{ u \in L^{p}(\Omega, \mathbb{R}^{d}) \colon u = u_{0} \text{ in } \Omega_{\delta} := \left\{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \delta \right\} \right\} \\ & \left\{ \begin{split} I(u) = \int_{\Omega} \bar{w}^{qc}(Du(x)) \, \mathrm{d}x, \\ & \text{in } \mathcal{A} := \left\{ u \in W^{1,p}(\Omega, \mathbb{R}^{d}) \colon u = u_{0} \text{ on } \partial\Omega \right\} \end{split} \right.$$

Theorem. $I_{\delta} \xrightarrow{\Gamma} I$ in $L^{p}(\Omega, \mathbb{R}^{d})$ as $\delta \to 0$. Specifically,

- ▶ Compactness: If $u_{\delta} \in \mathcal{A}_{\delta}$ satisfy $I_{\delta}(u_{\delta}) \leq M$ then there exists $u \in \mathcal{A}$ such that $u_{\delta} \rightarrow u$ in $L^{p}(\Omega, \mathbb{R}^{d})$.
- Lower bound.
- Upper bound.

Use results by J. Bourgain, H. Brezis & P. Mironescu (2001), A. Ponce *Calc Var* (2004), B. Dacorogna *J. Funct. Anal.* (1982).

The Γ -convergence result requires the natural assumption

$$(\mathsf{NC}_{\delta}) \ y \mapsto \int_{\Omega \cap B(x,\delta)} w(x,x',y,y') \, \mathrm{d}x' \text{ is convex}$$

for a.e. $x \in \Omega$, all $y' \in \mathbb{R}^d$ and all $\delta > 0$ small enough.

By a Lebesgue-point argument, this is equivalent to saying that $w(x, x', \cdot, y')$ is convex. Hence $w^{\circ}(\tilde{x}, \cdot)$ is convex and \bar{w} is convex, so no quasiconvexification of \bar{w} is needed.

A more serious problem will arise.

Existence of minimizers

- Lower semicontinuity
- Coercivity
- Existence
- Passage nonlocal ~> local

Relaxation

Alternative model

Relaxation

The relaxation \mathcal{I}^* of a functional \mathcal{I} is the *lower semicontinuous* envelope in the appropriate topology:

$$\mathcal{I}^*(u) = \sup \left\{ I(u) : I \text{ lsc, } I \leq \mathcal{I} \right\}.$$

Also

$$\mathcal{I}^*(u) = \inf \left\{ \liminf_{j o \infty} \mathcal{I}(u_j) : u_j o u
ight\}.$$

How does relaxation work in the local case?

The relaxation of

$$\int_{\Omega} W(x, u(x)) \, \mathrm{d}x$$

in the weak topology of $L^p(\Omega, \mathbb{R}^d)$ is
$$\int_{\Omega} W^c(x, u(x)) \, \mathrm{d}x,$$

where $W^{c}(x, \cdot)$ is the convexification of $W(x, \cdot)$. L.C. Young 1931.

The relaxation of

$$\int_{\Omega} W(x, u(x), Du(x)) \, \mathrm{d}x$$

in the weak topology of $W^{1,p}(\Omega,\mathbb{R}^d)$ is

$$\int_{\Omega} W^{qc}(x, u(x), Du(x)) \, \mathrm{d}x,$$

where $W^{qc}(x, y, \cdot)$ is the quasiconvexification $W(x, y, \cdot)$.

B. Dacorogna J Funct Anal (1982).

In our nonlocal case, we will focus on the weak topology of L^p .

In the simplest case w = f(y - y'), recall that

$$\mathcal{I}(u) = \int_{\Omega} \int_{\Omega} f(u(x) - u(x')) \, \mathrm{d}x' \, \mathrm{d}x$$

is swlsc iff f is convex. If f is not convex, we are tempted to think that the relaxation \mathcal{I}^* is

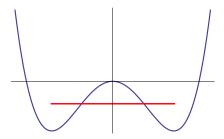
$$\int_{\Omega}\int_{\Omega}f^{c}(u(x)-u(x'))\,\mathrm{d}x'\,\mathrm{d}x,$$

where f^c is the convexification of f. This turns out *not* to be the case.

We suspect that \mathcal{I}^\ast does not admit an integral representation of the form

$$\int_{\Omega}\int_{\Omega}W(x,x',u(x),u(x'))\,\mathrm{d}x'\,\mathrm{d}x.$$

Example. Let w = f(y - y') with f =blue graph.



Then $\mathcal{I} \geq C$, even though f takes values both above and below C.

Moreover, if \mathcal{I}^* admitted an integral representation of the form

$$\int_{\Omega}\int_{\Omega}g(u(x)-u(x'))\,\mathrm{d}x'\,\mathrm{d}x$$

then g = red graph. So the relaxed energy density g would be neither above nor below f.

Existence of minimizers

- Lower semicontinuity
- Coercivity
- Existence
- Passage nonlocal ~> local
- Relaxation
- Alternative model

A new model is needed

In Solid Mechanics, the model

$$\int_{\Omega}\int_{\Omega}w(x-x',u(x)-u(x'))\,\mathrm{d}x'\,\mathrm{d}x$$

is wrong. Let's see why.

Start with

$$\mathcal{I}(u) = \int_{\Omega} \int_{\Omega} w(x, x', u(x), u(x')) \, \mathrm{d}x' \, \mathrm{d}x$$

and apply familiar conditions in Solid Mechanics.

a) \mathcal{I} is frame-indifferent iff w = w(x, x', |y - y'|).

b) \mathcal{I} is homogeneous and isotropic iff w = w(|x - x'|, y, y').

Let the material be frame-indifferent, homogeneous and isotropic: w = w(|x - x'|, |y - y'|). We do the nonlocal \rightsquigarrow local passage. Recall the process $w \rightsquigarrow w^{\circ} \rightsquigarrow \overline{w} \rightsquigarrow W$. W.I.o.g., $w = w^{\circ}$.

$$\begin{split} \bar{w}(F) &= \int_{\mathbb{S}^{n-1}} w(z,Fz) \, \mathrm{d}\mathcal{H}^{n-1}(z) = \int_{\mathbb{S}^{n-1}} w(|z|,|Fz|) \, \mathrm{d}\mathcal{H}^{n-1}(z) \\ &= \int_{\mathbb{S}^{n-1}} w(1,|Fz|) \, \mathrm{d}\mathcal{H}^{n-1}(z). \end{split}$$

Assume for simplicity that \bar{w} is quasiconvex, hence $W = \bar{w}$ (and ignore the fact that we needed the assumption that $w(\tilde{x}, \cdot)$ is convex, so \bar{w} is already convex). Thus, a quasiconvex W is *retrievable* in this model iff

$$W(F) = \int_{\mathbb{S}^{n-1}} W(|Fz|I) \, \mathrm{d}\mathcal{H}^{n-1}(z) \qquad \forall F \in \mathbb{R}^{n \times n}_+.$$

Hence W is determined by the values of matrices multiple of the identity: only one degree of freedom!

$$W$$
 retrievable: $W(F) = \int_{\mathbb{S}^{n-1}} W(|Fz|I) \, \mathrm{d}\mathcal{H}^{n-1}(z).$

There are very few retrievable W.

Examples:

- ▶ $|F|^2$ is retrievable, but no other squared norm is retrievable.
- $|F|^p$ is not retrievable for $p \neq 2$.
- det F is not retrievable.

The essence of this bug is that the quantity u(x') - u(x) does not discretize (or *delocalize*) the gradient but an average of directional derivatives:

$$\begin{split} \int_{\Omega \cap B(x,\delta)} w(x'-x,u(x')-u(x)) \, \mathrm{d} x' &\simeq \int_{B(0,\delta)} w(\tilde{x},Du(x)\,\tilde{x}) \, \mathrm{d} \tilde{x} \\ &\simeq C_{n,\beta,\delta} \int_{\mathbb{S}^{n-1}} w(z,Du(x)\,z) \, \mathrm{d} \mathcal{H}^{n-1}(z). \end{split}$$

New model

Based on T. Mengesha & D. Spector 15 and T. Mengesha & Q. Du 15, we adopt the model

$$\mathcal{I}(u) = \int_{\Omega} W(\mathcal{G}u(x)) \, \mathrm{d}x$$

where $W : \mathbb{R}^{n \times n} \to \mathbb{R}$ is a typical stored-energy function in hyperelasticity, and $\mathcal{G}u$ is a *nonlocal gradient*:

$$\mathcal{G}u(x) = \int \frac{u(x) - u(x')}{|x - x'|} \otimes \frac{x - x'}{|x - x'|} \rho(x - x') \, \mathrm{d}x'.$$

In essence, this new model amounts to replacing

$$\int \int w(\cdots) \, \mathrm{d} x' \, \mathrm{d} x \qquad \text{with} \qquad \int W\left(\int (\cdots)\right) \, \mathrm{d} x' \, \mathrm{d} x.$$

Functional setup

$$\mathcal{G}u(x) = \int \frac{u(x) - u(x')}{|x - x'|} \otimes \frac{x - x'}{|x - x'|} \rho(x - x') \, \mathrm{d}x'.$$

The natural functional space is

$$\left\{u\in L^p:\mathcal{G}u\in L^p\right\}.$$

The properties of this function space depend on ρ .

For simplicity, we choose ρ leading to a known space. We follow T. Shieh & D. Spector 15, 17. For $s \in (0, 1)$, the choice $\rho(t) = t^{-n-s+1}$ gives rise to $L^{s,p}(\mathbb{R}^n)$: the Bessel potential spaces, hence

$$\mathcal{G}u(x) = D^s(x) = \int_{\mathbb{R}^n} \frac{u(x) - u(x')}{|x - x'|^{n+s}} \otimes \frac{x - x'}{|x - x'|} \, \mathrm{d}x'.$$

The advantage of this space is that we know the continuous and compact inclusions into L^q .

Current work: develop an existence theory for W polyconvex. This entails:

- Definition of nonlocal divergence div^s: Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou 13.
- Nonlocal integration by parts: T. Mengesha & D. Spector 15, T. Mengesha & Q. Du 15:

$$\int D^{s} u \, \phi = - \int u \operatorname{div}^{s} \phi \, .$$

- Nonlocal Piola's identity: $\operatorname{div}^{s} \operatorname{cof} D^{s} u = 0$.
- ▶ Weak continuity of the determinant: if $u_j \rightharpoonup u$ in $L^{s,p}$ then det $D^s u_j \rightharpoonup \det D^s u$ in L^1 .