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© Motivations

© Existence and qualitative properties
@ Formulation of the problem
@ Results
@ Sketch of the proof

© Investigation of the free-boundary
@ A generic picture...
o Comparaison with PME
@ Heuristic scenario for corners

@ Perspectives
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© Thermo-hydrodynamical models + laser energy — centripetal pressure/temperature
waves

o T ~ 107K : Spitzer electronic heat conductivity, NL A = \(T)

o Interface fuel/plasma :

=T", m=5/2
: ablation front <> free-boundary

v

o Interplay advection flow/ablation front : spherical wrinkling

o Singularities in the front # classical reaction-diffusion

Planar approximation : x € R (radial) and y € R?~* (transversal).
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© Existence and qualitative properties
@ Formulation of the problem
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B =cdx = —mpAp+(c+a)p.=]|Vp[ (1)

Boundary conditions

o Transversal periodicity : y € RY™* — y e T (compactness). Infinite cylinder
(x,y) €D :=Rx T

o x sufficiently negative : p(x,y) =0
@ x — 400 : slope = speed, p ~ cx (PME and ICF)
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@ p=u =0 : degenerate equation
@ Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)

@ No classical solutions!
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p > 0 continuous is a weak solution iff
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Definition 2 : viscosity solutions [Crandall, Lions '83]

L[f] = —mfAf + (c + a)f — |VF]? (L[p] = 0)

(x.¥)
U(x,y) Py

L[®] >0 LIV <0

o(x,y

(x.y)

In general “viscosity # weak”. Here OK because p € Lipschitz.
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General idea

e Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
@ Construction by vanishing viscosity : p = éli\n}Jp‘s with p® > & > 0. Regularization
through boundary conditions.

@ Tailored sub and super solutions
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@ Limit § N\, 07 strongly degenerate! (loss of ellipticity —mpAp + ... = 0)
WL estimates uniformly in § :

p’—p  inCh(D).

© Stability of viscosity/weak solutions under locally uniform limit : p = lim p° is a
locally Lipschitz solution.
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decomposition)

@ Free-boundary : monotonicity dxp > 0

I(y) :=inf (x, p(x,y)>0), p(x,y) >0< x> I(y)
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@ In general T is Lipschitz [Caffarelli, Vazquez, Wolanski '87]
o If [ non-degenerate and C*" then T also (t > 0) [Caffarelli, Wolanski '90]
o Difficult question related to the non-degeneracy Vp’rt #0

Wave solution = trivial time-evolution. Geometrical description ?
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Q = {x=1I(y)} is Lipschitz
@ Equation for the free-boundary :

c+a(y)

yeT?, V,I? = h(y) = —
A SR )

(HJ)

in the viscosity sense.

Geometrical equation (HJ) : stationary equivalent of the free-boundary differential
equation in the PME.
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o Non-degeneracy and regularity of I’

@ Existence and investigation of corners (m < 1) # (m > 1)

o Uniqueness of the wave profile

Possible extensions

o Stability of the wave for the Cauchy problem
o Construction of particular explicit solutions
@ More general flows, non-periodical

o Cell flows
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Thank you for listening !
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