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Overview

Model

For (t, x , y) ∈ R× R× Rd−1

∂tu −∇ · (λ∇u) + α(y)ex · ∇ux = 0

Unknown u(t, x , y) ≥ 0 (temperature, density...) and λ = λ(u) = λ0um for m > 0

∂tu −∆
(
um+1)+ α(y)ux=0

Questions
∃ wave solutions u(t, x , y) = v(x + ct, y)

Impact of the advection flow α(y) on the free-boundary Γ = ∂{u > 0}
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Outline of the talk

1 Motivations

2 Existence and qualitative properties
joint work with A. Novikov and J.-M. Roquejoffre

3 Investigation of the free-boundary

4 Perspectives
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Physical motivations

Inertial Confinement Fusion (ICF)

Thermo-hydrodynamical models + laser energy → centripetal pressure/temperature
waves

T ∼ 107K : Spitzer electronic heat conductivity, NL λ = λ(T ) = Tm, m = 5/2

Interface fuel/plasma : ablation front ↔ free-boundary

Questions
Interplay advection flow/ablation front : spherical wrinkling

Singularities in the front 6= classical reaction-diffusion

Planar approximation : x ∈ R (radial) and y ∈ Rd−1 (transversal).
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Mathematical motivations : the Porous Media Equation α(y) ≡ 0

Temperature formulation u ≥ 0

∂tu −∆
(
um+1) = 0 (PME)

Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
Pressure formulation p = m+1

m um

∂tp −mp∆p = |∇p|2

Pressure ∈ Lipschitz : well adapted to study the free-boundary.
Explicit wave solution

∀c > 0, pc(t, x , y) = c[x + ct]+
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∂tp −mp∆p

+ α(y)∂xp

= |∇p|2

α ≡ 0 : some further remarks

pc(t, x , y) = c[x + ct]+

1D solution ∂ypc = 0

Free-boundary Γ = ∂{p > 0} : flat hyper-surface x(t) = x(0)− ct

x sufficiently negative : pc(t, x , y) = 0

Slope = speed, p ∼
x→+∞

cx

α 6= 0 ?
∃ a wave with boundary conditions ?

Propagation speeds c > 0 ?

Qualitative properties x →∞ ?

Behaviour of the free-boundary ?
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Temperature/pressure variables

u(t, x , y) ≥ 0 ∂tu −∆
(
um+1)+ α(y)∂xu = 0

p = m+1
m um ∂tp −mp∆p + α(y)∂xp = |∇p|2

Wave propagation
Speed c > 0, profile p(x + ct, y)

∂t = c∂x ⇒ −mp∆p + (c + α)px = |∇p|2 (1)

Boundary conditions

Transversal periodicity : y ∈ Rd−1 −→ y ∈ Td−1 (compactness). Infinite cylinder
(x , y) ∈ D := R× Td−1

x sufficiently negative : p(x , y) ≡ 0

x → +∞ : slope = speed, p ∼ cx (PME and ICF)
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Notions of solution

p = m+1
m um

{
−∆

(
um+1)+ (c + α)ux = 0
−mp∆p + (c + α)px = |∇p2|

p ≥ 0 : formally elliptic, but...
p = u = 0 : degenerate equation

Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)

No classical solutions !

Definition 1 : weak solutions
p ≥ 0 continuous is a weak solution iff

∀ϕ ∈ C∞c ,
∫
um+1∆ϕ+ (c + α)uϕx = 0
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Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions ’83]

L[f ] = −mf ∆f + (c + α)fx − |∇f |2 (L[p] = 0)

p(x , y)

(x , y)

φ(x , y)

ψ(x , y)

L[Φ] ≥ 0 L[Ψ] ≤ 0

In general “viscosity 6= weak”. Here OK because p ∈ Lipschitz.
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Theorem

(x , y) ∈ D = R× Td−1, −mp∆p + (c + α)px = |∇p|2 (E)

Normalize
∫

Td−1

α(y)dy = 0 (shear flow) and assume

c > c∗ := −minα (> 0).

Then “the scenario of PME persists”. More precisely :

1 There exists a continuous viscosity/weak solution p ≥ 0 of (E) such that
I p(x , y) ≡ 0 for x sufficiently negative
I p(x , y) ∼ cx when x → +∞

2 p is globally Lipschitz on D, and smooth on D+ := {p > 0}
3 Monotonicity in the propagation direction ∂xp|D+ > 0
4 Parametrization of the free-boundary Γ = ∂{p > 0} 6= ∅ : ∃ I (y) upper

semi-continuous such that |max I −min I | < +∞,

p(x , y) > 0 ⇔ x > I (y)
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Theorem (continued)

5 p is 1D linear at infinity :

px → c and py → 0 uniformly in y when x → +∞
6 For 1 < m /∈ N, asymptotic expansion at infinity

p(x , y) = cx + cst︸ ︷︷ ︸
PME

+ x
(
a1x−

1
m + a2x−

2
m + ...+ aNx−

N
m

)
+ o(1)

7 Speed selection by the slope : if q(x , y) is any wave solution with speed c > 0 such
that q(x , y) ∼ λx when x → +∞, then λ = c.

Unanswered questions
{p > 0} = {x > I (y)} and I is only upper s-c : Γ = ∂{p > 0} 6= {x = I (y)} ?
Regularity of the free-boundary ?

Solution up to x-shifts : uniqueness of the profile ?

Optimal lower bound c > c∗ = −min α ?
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−mp∆p + [c + α(y)]px = |∇p|2

Structural properties

Uniform ellipticity as soon as p > 0 : elliptic regularity.

Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison
principle (∼ viscosity solutions).

General idea
Domain truncature [Berestycki, Nikolaenko, Scheurer ∼1980]
Construction by vanishing viscosity : p = lim

δ↘0
pδ with pδ ≥ δ > 0. Regularization

through boundary conditions.

Tailored sub and super solutions
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1 For δ > 0, solve on truncated cylinders and let the length L→∞ :

∃ a classical
solution pδ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.

−∞ +∞

pδ(x , y)

δ

0

2 Limit δ ↘ 0 ? strongly degenerate ! (loss of ellipticity −mp∆p + ... = 0)
W 1,∞

loc estimates uniformly in δ :

pδ → p in C0
loc(D).

3 Stability of viscosity/weak solutions under locally uniform limit : p = lim pδ is a
locally Lipschitz solution.
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(x , y) ∈ D = R× Td−1, −mp∆p + (c + α)px = |∇p|2

4 Slope = speed :

invariance under Lipschitz scaling and homogeneization.

Aε(Y ) := α(Y /ε)

⇀ 0

, Pε(X ,Y ) := εp(X/ε,Y /ε)

→ P0(X )

Uniqueness for (PME) ⇒ P0(X ) = planar wave = c[X ]+. In particular
px = PX → c and p is globally Lipschitz

5 Asymptotic expansion at infinity p(x , y) = cx + ... : technical ! (Lyapunov-Schmidt
decomposition)

6 Free-boundary : monotonicity ∂xp > 0

I (y) := inf
(
x , p(x , y) > 0

)
, p(x , y) > 0⇔ x > I (y)
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The Porous Media Equation

∂tp−mp∆p = |∇p|2 (PME)

Differential equation
Free-boundary Γt = ∂{p(t, .) > 0} and p|Γt = 0 :

(Γt) ∂tp = |∇p|2

Normal propagation with local speed v = |∇p| (cf. the planar wave)

Regularity
In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski ’87]

If Γ0 non-degenerate and C1,r then Γt also (t > 0) [Caffarelli, Wolanski ’90]

Difficult question related to the non-degeneracy ∇p
∣∣

Γt
6= 0

Wave solution ⇒ trivial time-evolution. Geometrical description ?
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Case α(y) 6= 0

−mp∆p + (c + α)px = |∇p|2

Definition
Non-degeneracy (strong) : px ≥ a > 0 in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate
equations : non-degeneracy ∼ Hopf Lemma/Harnack Principle

Proposition
Non-degeneracy ⇒ Γ = Lipschitz graph {x = I (y)}

Proof : Implicit Functions Theorem for ε-levelsets Γε = {p = ε}, no regularity at the
free-boundary

Lipschitz regularity = optimal ? ∃ corners ?
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−mp∆p + (c + α)px = |∇p|2

Proposition
Hypotheses : regularity and non-degeneracy at the free-boundary

p∆p|Γ+ = 0 and
px |Γ+ > 0 “from the right”.

1 Γ = {x = I (y)} is Lipschitz
2 Equation for the free-boundary :

y ∈ Td−1, |∇y I |2 = h(y) :=
c + α(y)

px |Γ (y)
− 1 (HJ)

in the viscosity sense.

Geometrical equation (HJ) : stationary equivalent of the free-boundary differential
equation in the PME.
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Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions

↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave :

minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}

Here h(y) = c+α(y)
px |Γ(y)

− 1. Zeros of h ?

18 / 22



Scenario

y ∈ Td−1 : H(∇y I , y) = 0, H(ζ, y) = |ζ|2 − h(y)

Regularity/uniqueness of viscosity solutions ↔ zeros of h(y)

Inward/outward corners : H(∇y I , y) = 0 6⇔ −H(∇y I , y) = 0. Here I (y) is
semi-concave : minimum=classical but maximum=possible corners

y1y0

h(y)

y ∈ Td−1 y1y0

|∇y I |2± = h(y0) 6= 0

|∇y I |2 = h(y1) = 0

y ∈ Td−1

I (y)

Existence of corners
For generic h(y) ≥ 0, ∃ corners

Maximum : {p = 0} penetrate {p > 0}
Here h(y) = c+α(y)

px |Γ(y)
− 1. Zeros of h ?

18 / 22



m < 1 m > 1

19 / 22



m < 1 m > 1

19 / 22



m < 1 m > 1

19 / 22



m < 1 m > 1

19 / 22



1 Motivations

2 Existence and qualitative properties
Formulation of the problem
Results
Sketch of the proof

3 Investigation of the free-boundary
A generic picture...
Comparaison with PME
Heuristic scenario for corners

4 Perspectives

20 / 22



To do list
Non-degeneracy and regularity of Γ

Existence and investigation of corners (m < 1) 6= (m > 1)

Uniqueness of the wave profile

Possible extensions
Stability of the wave for the Cauchy problem

Construction of particular explicit solutions

More general flows, non-periodical

Cell flows
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Thank you for listening !
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