Existence of travelling waves for a degenerate advection-diffusion equation

Léonard MONSAINGEON

CNA, September 11, 2012

INSTITUT
de MATHEMATIQUES de TOULOUSE

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{x} \cdot \nabla u_{x}=0
$$

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{x}=0
$$

Unknown $u(t, x, y) \geq 0$ (temperature, density...) and $\lambda=\lambda(u)=\lambda_{0} u^{m}$ for $m>0$

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{x}=0
$$

Unknown $u(t, x, y) \geq 0$ (temperature, density...) and $\lambda=\lambda(u)=\lambda_{0} u^{m}$ for $m>0$

$$
\partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) u_{x}=0
$$

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{x}=0
$$

Unknown $u(t, x, y) \geq 0$ (temperature, density...) and $\lambda=\lambda(u)=\lambda_{0} u^{m}$ for $m>0$

$$
\partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) u_{x}=0
$$

Questions

- \exists wave solutions $u(t, x, y)=v(x+c t, y)$

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{x}=0
$$

Unknown $u(t, x, y) \geq 0$ (temperature, density...) and $\lambda=\lambda(u)=\lambda_{0} u^{m}$ for $m>0$

$$
\partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) u_{x}=0
$$

Questions

- \exists wave solutions $u(t, x, y)=v(x+c t, y)$
- Impact of the advection flow $\alpha(y)$ on the free-boundary

Overview

Model

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$
\partial_{t} u-\nabla \cdot(\lambda \nabla u)+\alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{x}=0
$$

Unknown $u(t, x, y) \geq 0$ (temperature, density...) and $\lambda=\lambda(u)=\lambda_{0} u^{m}$ for $m>0$

$$
\partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) u_{x}=0
$$

Questions

- \exists wave solutions $u(t, x, y)=v(x+c t, y)$
- Impact of the advection flow $\alpha(y)$ on the free-boundary $\Gamma=\partial\{u>0\}$

Outline of the talk

(1) Motivations
(2) Existence and qualitative properties joint work with A. Novikov and J.-M. Roquejoffre
(3) Investigation of the free-boundary
(c) Perspectives
(1) Motivations
(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

Physical motivations

Physical motivations

Inertial Confinement Fusion (ICF)

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}$: Spitzer electronic heat conductivity, $\mathrm{NL} \lambda=\lambda(T)=T^{m}, m=5 / 2$

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}$: Spitzer electronic heat conductivity, $\mathrm{NL} \lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}:$ Spitzer electronic heat conductivity, NL $\lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}:$ Spitzer electronic heat conductivity, NL $\lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}:$ Spitzer electronic heat conductivity, NL $\lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}:$ Spitzer electronic heat conductivity, NL $\lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front \neq classical reaction-diffusion

Physical motivations

Inertial Confinement Fusion (ICF)

- Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves
- $T \sim 10^{7} \mathrm{~K}:$ Spitzer electronic heat conductivity, NL $\lambda=\lambda(T)=T^{m}, m=5 / 2$
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front \neq classical reaction-diffusion

Planar approximation $: x \in \mathbb{R}$ (radial) and $y \in \mathbb{R}^{d-1}$ (transversal).

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p=\frac{m+1}{m} u^{m}$

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p=\frac{m+1}{m} u^{m}$

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p=\frac{m+1}{m} u^{m}$

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

- Explicit wave solution

$$
\forall c>0, \quad p_{c}(t, x, y)=c[x+c t]^{+}
$$

Mathematical motivations : the Porous Media Equation $\alpha(y) \equiv 0$

- Temperature formulation $u \geq 0$

$$
\begin{equation*}
\partial_{t} u-\Delta\left(u^{m+1}\right)=0 \tag{PME}
\end{equation*}
$$

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p=\frac{m+1}{m} u^{m}$

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

- Explicit wave solution

$$
\forall c>0, \quad p_{c}(t, x, y)=c[x+c t]^{+}
$$

$$
\partial_{t} p-m p \Delta p \quad=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

$$
\partial_{t} p-m p \Delta p \quad=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$

$$
\partial_{t} p-m p \Delta p \quad=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$

$$
\partial_{t} p-m p \Delta p \quad=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$

$$
\partial_{t} p-m p \Delta p \quad=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$

$$
\partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$

$$
\partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$

```
\alpha\not=0?
- \(\exists\) a wave with boundary conditions?
```

$$
\partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$

$\alpha \neq 0$?

- \exists a wave with boundary conditions?
- Propagation speeds $c>0$?

$$
\partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$

$\alpha \neq 0$?

- \exists a wave with boundary conditions?
- Propagation speeds $c>0$?
- Qualitative properties $x \rightarrow \infty$?

$$
\partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
$$

$\alpha \equiv 0$: some further remarks

$$
p_{c}(t, x, y)=c[x+c t]^{+}
$$

- 1D solution $\partial_{y} p_{c}=0$
- Free-boundary $\Gamma=\partial\{p>0\}$: flat hyper-surface $x(t)=x(0)-c t$
- x sufficiently negative : $p_{c}(t, x, y)=0$
- Slope $=$ speed, $p \underset{x \rightarrow+\infty}{\sim} c x$
- \exists a wave with boundary conditions?
- Propagation speeds $c>0$?
- Qualitative properties $x \rightarrow \infty$?
- Behaviour of the free-boundary?
(2) Existence and qualitative properties
- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Temperature/pressure variables

$$
\begin{array}{ll}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Boundary conditions

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Boundary conditions

- Transversal periodicity $: y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness).

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Boundary conditions

- Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D:=\mathbb{R} \times \mathbb{T}^{d-1}$

Temperature/pressure variables

$$
\begin{array}{cl}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Boundary conditions

- Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D:=\mathbb{R} \times \mathbb{T}^{d-1}$
- x sufficiently negative : $p(x, y) \equiv 0$

Temperature/pressure variables

$$
\begin{array}{ll}
u(t, x, y) \geq 0 & \partial_{t} u-\Delta\left(u^{m+1}\right)+\alpha(y) \partial_{x} u=0 \\
p=\frac{m+1}{m} u^{m} & \partial_{t} p-m p \Delta p+\alpha(y) \partial_{x} p=|\nabla p|^{2}
\end{array}
$$

Wave propagation

Speed $c>0$, profile $p(x+c t, y)$

$$
\begin{equation*}
\partial_{t}=c \partial_{x} \quad \Rightarrow \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{1}
\end{equation*}
$$

Boundary conditions

- Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D:=\mathbb{R} \times \mathbb{T}^{d-1}$
- x sufficiently negative : $p(x, y) \equiv 0$
- $x \rightarrow+\infty$: slope $=$ speed, $p \sim c x$ (PME and ICF)

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

- $p=u=0$: degenerate equation

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

- $p=u=0$: degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

- $p=u=0$: degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

- $p=u=0$: degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

Definition 1 : weak solutions

Notions of solution

$$
p=\frac{m+1}{m} u^{m} \quad\left\{\begin{aligned}
-\Delta\left(u^{m+1}\right)+(c+\alpha) u_{x} & =0 \\
-m p \Delta p+(c+\alpha) p_{x} & =\left|\nabla p^{2}\right|
\end{aligned}\right.
$$

$p \geq 0$: formally elliptic, but...

- $p=u=0$: degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

Definition 1 : weak solutions

$p \geq 0$ continuous is a weak solution iff

$$
\forall \varphi \in \mathcal{C}_{c}^{\infty}, \quad \int u^{m+1} \Delta \varphi+(c+\alpha) u \varphi_{x}=0
$$

Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions '83]

Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions '83]

$$
\mathcal{L}[f]=-m f \Delta f+(c+\alpha) f_{x}-|\nabla f|^{2} \quad(\mathcal{L}[p]=0)
$$

Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions '83]

$$
\mathcal{L}[f]=-m f \Delta f+(c+\alpha) f_{x}-|\nabla f|^{2} \quad(\mathcal{L}[p]=0)
$$

Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions '83]

$$
\mathcal{L}[f]=-m f \Delta f+(c+\alpha) f_{x}-|\nabla f|^{2} \quad(\mathcal{L}[p]=0)
$$

In general "viscosity \neq weak".

Notions of solution (continued)

Definition 2 : viscosity solutions [Crandall, Lions '83]

$$
\mathcal{L}[f]=-m f \Delta f+(c+\alpha) f_{x}-|\nabla f|^{2} \quad(\mathcal{L}[p]=0)
$$

In general "viscosity \neq weak". Here OK because $p \in$ Lipschitz.
(1) Motivations
(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Theorem

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Theorem

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists".

Theorem

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$

Theorem

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D,

Theorem

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely:
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D, and smooth on $D^{+}:=\{p>0\}$

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D, and smooth on $D^{+}:=\{p>0\}$
(3) Monotonicity in the propagation direction $\left.\partial_{x} p\right|_{D^{+}}>0$

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D, and smooth on $D^{+}:=\{p>0\}$
(3) Monotonicity in the propagation direction $\left.\partial_{x} p\right|_{D^{+}}>0$
(9) Parametrization of the free-boundary $\Gamma=\partial\{p>0\} \neq \emptyset$:

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D, and smooth on $D^{+}:=\{p>0\}$
(3) Monotonicity in the propagation direction $\left.\partial_{x} p\right|_{D^{+}}>0$
(c) Parametrization of the free-boundary $\Gamma=\partial\{p>0\} \neq \emptyset: \exists I(y)$ upper semi-continuous such that $|\max I-\min I|<+\infty$,

$$
\begin{equation*}
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2} \tag{E}
\end{equation*}
$$

Normalize $\int_{\mathbb{T}^{d-1}} \alpha(y) \mathrm{d} y=0$ (shear flow) and assume

$$
c>c^{*}:=-\min \alpha \quad(>0)
$$

Then "the scenario of PME persists". More precisely :
(1) There exists a continuous viscosity/weak solution $p \geq 0$ of (E) such that

- $p(x, y) \equiv 0$ for x sufficiently negative
- $p(x, y) \sim c x$ when $x \rightarrow+\infty$
(2) p is globally Lipschitz on D, and smooth on $D^{+}:=\{p>0\}$
(3) Monotonicity in the propagation direction $\left.\partial_{x} p\right|_{D^{+}}>0$
(c) Parametrization of the free-boundary $\Gamma=\partial\{p>0\} \neq \emptyset: \exists I(y)$ upper semi-continuous such that $|\max I-\min I|<+\infty$,

$$
p(x, y)>0 \quad \Leftrightarrow \quad x>I(y)
$$

(O) p is $1 D$ linear at infinity :

Theorem (continued)

© p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}
$$

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{\boldsymbol{N}}{\boldsymbol{m}}}\right)+o(1)
$$

Theorem (continued)

(5) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{\boldsymbol{N}}{\boldsymbol{m}}}\right)+o(1)
$$

(1) Speed selection by the slope:

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{\boldsymbol{N}}{\boldsymbol{m}}}\right)+o(1)
$$

(1) Speed selection by the slope: if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope : if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope : if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

- $\{p>0\}=\{x>I(y)\}$ and I is only upper s-c : $\Gamma=\partial\{p>0\} \neq\{x=I(y)\}$?

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope : if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

- $\{p>0\}=\{x>I(y)\}$ and I is only upper s-c : $\Gamma=\partial\{p>0\} \neq\{x=I(y)\}$? Regularity of the free-boundary?

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope: if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

- $\{p>0\}=\{x>I(y)\}$ and I is only upper s-c : $\Gamma=\partial\{p>0\} \neq\{x=I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts :

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope: if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

- $\{p>0\}=\{x>I(y)\}$ and I is only upper s-c : $\Gamma=\partial\{p>0\} \neq\{x=I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts : uniqueness of the profile?

Theorem (continued)

(©) p is 1D linear at infinity : $p_{x} \rightarrow c$ and $p_{y} \rightarrow 0$ uniformly in y when $x \rightarrow+\infty$
(- For $1<m \notin \mathbb{N}$, asymptotic expansion at infinity

$$
p(x, y)=\underbrace{c x+c s t}_{P M E}+x\left(a_{1} x^{-\frac{1}{m}}+a_{2} x^{-\frac{2}{m}}+\ldots+a_{N} x^{-\frac{N}{m}}\right)+o(1)
$$

(1) Speed selection by the slope: if $q(x, y)$ is any wave solution with speed $c>0$ such that $q(x, y) \sim \lambda x$ when $x \rightarrow+\infty$, then $\lambda=c$.

Unanswered questions

- $\{p>0\}=\{x>I(y)\}$ and I is only upper s-c : $\Gamma=\partial\{p>0\} \neq\{x=I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts : uniqueness of the profile?
- Optimal lower bound $c>c^{*}=-\min \alpha$?
(2) Existence and qualitative properties
- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

General idea

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

General idea

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

General idea

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
- Construction by vanishing viscosity : $p=\lim _{\delta>0} p^{\delta}$ with $p^{\delta} \geq \delta>0$.

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

General idea

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
- Construction by vanishing viscosity : $p=\lim _{\delta \searrow 0} p^{\delta}$ with $p^{\delta} \geq \delta>0$. Regularization through boundary conditions.

$$
-m p \Delta p+[c+\alpha(y)] p_{x}=|\nabla p|^{2}
$$

Structural properties

- Uniform ellipticity as soon as $p>0$: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (\sim viscosity solutions).

General idea

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
- Construction by vanishing viscosity : $p=\lim _{\delta \searrow 0} p^{\delta}$ with $p^{\delta} \geq \delta>0$. Regularization through boundary conditions.
- Tailored sub and super solutions
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty$:
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$?
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-m p \Delta p+\ldots=0$)
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-m p \Delta p+\ldots=0$) $W_{\text {loc }}^{1, \infty}$ estimates uniformly in δ :
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-m p \Delta p+\ldots=0$) $W_{\text {loc }}^{1, \infty}$ estimates uniformly in δ :

$$
p^{\delta} \rightarrow p \quad \text { in } \mathcal{C}_{\text {loc }}^{0}(D)
$$

(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-m p \Delta p+\ldots=0$) $W_{\text {loc }}^{1, \infty}$ estimates uniformly in δ :

$$
p^{\delta} \rightarrow p \quad \text { in } \mathcal{C}_{\text {loc }}^{0}(D)
$$

(3) Stability of viscosity/weak solutions under locally uniform limit:
(1) For $\delta>0$, solve on truncated cylinders and let the length $L \rightarrow \infty: \exists$ a classical solution $p^{\delta} \geq \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

(2) Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-m p \Delta p+\ldots=0$) $W_{\text {loc }}^{1, \infty}$ estimates uniformly in δ :

$$
p^{\delta} \rightarrow p \quad \text { in } \mathcal{C}_{\text {loc }}^{0}(D)
$$

(3) Stability of viscosity/weak solutions under locally uniform $\operatorname{limit}: p=\lim p^{\delta}$ is a locally Lipschitz solution.

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed :

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \quad, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon)
$$

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon)
$$

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

(1) Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

(1) Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

Uniqueness for $(\mathrm{PME}) \Rightarrow P^{0}(X)=$ planar wave $=c[X]^{+}$.

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

Uniqueness for $(\mathrm{PME}) \Rightarrow P^{0}(X)=$ planar wave $=c[X]^{+}$. In particular $p_{x}=P_{X} \rightarrow c$ and p is globally Lipschitz

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

Uniqueness for $(\mathrm{PME}) \Rightarrow P^{0}(X)=$ planar wave $=c[X]^{+}$. In particular $p_{x}=P_{X} \rightarrow c$ and p is globally Lipschitz

- Asymptotic expansion at infinity $p(x, y)=c x+\ldots$: technical! (Lyapunov-Schmidt decomposition)

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

Uniqueness for $(\mathrm{PME}) \Rightarrow P^{0}(X)=$ planar wave $=c[X]^{+}$. In particular $p_{x}=P_{X} \rightarrow c$ and p is globally Lipschitz

- Asymptotic expansion at infinity $p(x, y)=c x+\ldots$: technical! (Lyapunov-Schmidt decomposition)
- Free-boundary : monotonicity $\partial_{x} p>0$

$$
(x, y) \in D=\mathbb{R} \times \mathbb{T}^{d-1}, \quad-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

- Slope $=$ speed : invariance under Lipschitz scaling and homogeneization.

$$
A^{\varepsilon}(Y):=\alpha(Y / \varepsilon) \rightharpoonup 0, \quad P^{\varepsilon}(X, Y):=\varepsilon p(X / \varepsilon, Y / \varepsilon) \rightarrow P^{0}(X)
$$

Uniqueness for $(\mathrm{PME}) \Rightarrow P^{0}(X)=$ planar wave $=c[X]^{+}$. In particular $p_{x}=P_{X} \rightarrow c$ and p is globally Lipschitz

- Asymptotic expansion at infinity $p(x, y)=c x+\ldots$: technical! (Lyapunov-Schmidt decomposition)
- Free-boundary : monotonicity $\partial_{x} p>0$

$$
I(y):=\inf (x, \quad p(x, y)>0), \quad p(x, y)>0 \Leftrightarrow x>I(y)
$$

(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

Reminder

Free-boundary $p(x, y)>0 \Leftrightarrow x>I(y)$, periodical and

Reminder

Free-boundary $p(x, y)>0 \Leftrightarrow x>I(y)$, periodical and upper semi-continuous

Reminder

Free-boundary $p(x, y)>0 \Leftrightarrow x>I(y)$, periodical and upper semi-continuous

$$
\Gamma=\partial\{p>0\} \quad \neq \quad\{x=I(y)\}
$$

(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture..
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

The Porous Media Equation

$$
\begin{equation*}
\partial_{t} p-m p \Delta p=|\nabla p|^{2} \tag{PME}
\end{equation*}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

The Porous Media Equation

$$
\begin{equation*}
\partial_{t} p-m p \Delta p=|\nabla p|^{2} \tag{PME}
\end{equation*}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:
$\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}$

The Porous Media Equation

$$
\begin{equation*}
\partial_{t} p-m p \Delta p=|\nabla p|^{2} \tag{PME}
\end{equation*}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

$$
\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}
$$

Normal propagation with local speed $v=|\nabla p|$ (cf. the planar wave)

The Porous Media Equation

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

$$
\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}
$$

Normal propagation with local speed $v=|\nabla p|$ (cf. the planar wave)

Regularity

- In general Г is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]

The Porous Media Equation

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

$$
\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}
$$

Normal propagation with local speed $v=|\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_{0} non-degenerate and $\mathcal{C}^{1, r}$ then Γ_{t} also $(t>0)$ [Caffarelli, Wolanski '90]

The Porous Media Equation

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

$$
\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}
$$

Normal propagation with local speed $v=|\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_{0} non-degenerate and $\mathcal{C}^{1, r}$ then Γ_{t} also $(t>0)$ [Caffarelli, Wolanski '90]
- Difficult question related to the non-degeneracy $\left.\nabla p\right|_{r_{\mathbf{t}}} \neq 0$

The Porous Media Equation

$$
\partial_{t} p-m p \Delta p=|\nabla p|^{2}
$$

Differential equation

Free-boundary $\Gamma_{t}=\partial\{p(t,)>0$.$\} and \left.p\right|_{\Gamma_{t}}=0$:

$$
\left(\Gamma_{t}\right) \quad \partial_{t} p=|\nabla p|^{2}
$$

Normal propagation with local speed $v=|\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_{0} non-degenerate and $\mathcal{C}^{1, r}$ then Γ_{t} also $(t>0)$ [Caffarelli, Wolanski '90]
- Difficult question related to the non-degeneracy $\left.\nabla p\right|_{\Gamma_{\mathbf{t}}} \neq 0$

Wave solution \Rightarrow trivial time-evolution. Geometrical description?

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity...

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy ~ Hopf Lemma/Harnack Principle

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma=$ Lipschitz graph $\{x=I(y)\}$

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma=$ Lipschitz graph $\{x=I(y)\}$
Proof: Implicit Functions Theorem for ε-levelsets $\Gamma_{\varepsilon}=\{p=\varepsilon\}$, no regularity at the free-boundary

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma=$ Lipschitz graph $\{x=I(y)\}$
Proof: Implicit Functions Theorem for ε-levelsets $\Gamma_{\varepsilon}=\{p=\varepsilon\}$, no regularity at the free-boundary

$$
\text { Lipschitz regularity }=\text { optimal } ?
$$

Case $\alpha(y) \neq 0$

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Definition

Non-degeneracy (strong) : $p_{x} \geq a>0$ in the neighborhood of Γ
For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma=$ Lipschitz graph $\{x=I(y)\}$
Proof: Implicit Functions Theorem for ε-levelsets $\Gamma_{\varepsilon}=\{p=\varepsilon\}$, no regularity at the free-boundary

$$
\text { Lipschitz regularity }=\text { optimal } ? \exists \text { corners? }
$$

(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary $\left.p \Delta p\right|_{\Gamma^{+}}=0$ and $\left.p_{x}\right|_{\Gamma^{+}}>0$ "from the right".

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary $\left.p \Delta p\right|_{\Gamma^{+}}=0$ and $\left.p_{x}\right|_{\Gamma^{+}}>0$ "from the right".
(1) $\Gamma=\{x=I(y)\}$ is Lipschitz

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary $\left.p \Delta p\right|_{\Gamma^{+}}=0$ and $\left.p_{x}\right|_{\Gamma^{+}}>0$ "from the right".
(1) $\Gamma=\{x=I(y)\}$ is Lipschitz
(2) Equation for the free-boundary :

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary $\left.p \Delta p\right|_{\Gamma^{+}}=0$ and $\left.p_{x}\right|_{\Gamma^{+}}>0$ "from the right".
(1) $\Gamma=\{x=I(y)\}$ is Lipschitz
(2) Equation for the free-boundary :

$$
\begin{equation*}
y \in \mathbb{T}^{d-1}, \quad\left|\nabla_{y} I\right|^{2}=h(y):=\frac{c+\alpha(y)}{\left.p_{x}\right|_{\Gamma}(y)}-1 \tag{HJ}
\end{equation*}
$$

in the viscosity sense.

$$
-m p \Delta p+(c+\alpha) p_{x}=|\nabla p|^{2}
$$

Proposition

Hypotheses : regularity and non-degeneracy at the free-boundary $\left.p \Delta p\right|_{\Gamma^{+}}=0$ and $\left.p_{x}\right|_{\Gamma^{+}}>0$ "from the right".
(1) $\Gamma=\{x=I(y)\}$ is Lipschitz
(2) Equation for the free-boundary :

$$
\begin{equation*}
y \in \mathbb{T}^{d-1},\left.\quad\left|\nabla_{y}\right|\right|^{2}=h(y):=\frac{c+\alpha(y)}{\left.p_{x}\right|_{\Gamma}(y)}-1 \tag{HJ}
\end{equation*}
$$

in the viscosity sense.

Geometrical equation (HJ) : stationary equivalent of the free-boundary differential equation in the PME.

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners : $H\left(\nabla_{y} I, y\right)=0 \nLeftarrow-H\left(\nabla_{y} I, y\right)=0$. Here $I(y)$ is semi-concave :

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners: $H\left(\nabla_{y} I, y\right)=0 \nLeftarrow-H\left(\nabla_{y} I, y\right)=0$. Here $I(y)$ is semi-concave : minimum=classical but maximum=possible corners

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners: $H\left(\nabla_{y} I, y\right)=0 \nLeftarrow-H\left(\nabla_{y} I, y\right)=0$. Here $I(y)$ is semi-concave : minimum=classical but maximum=possible corners

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners : $H\left(\nabla_{y} l, y\right)=0 \Leftrightarrow-H\left(\nabla_{y} l, y\right)=0$. Here $I(y)$ is semi-concave : minimum=classical but maximum=possible corners

Existence of corners

- For generic $h(y) \geq 0, \exists$ corners

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners: $H\left(\nabla_{y} I, y\right)=0 \nLeftarrow-H\left(\nabla_{y} I, y\right)=0$. Here $I(y)$ is semi-concave : minimum=classical but maximum=possible corners

Existence of corners

- For generic $h(y) \geq 0, \exists$ corners
- Maximum : $\{p=0\}$ penetrate $\{p>0\}$

Scenario

$$
y \in \mathbb{T}^{d-1}: \quad H\left(\nabla_{y} l, y\right)=0, \quad H(\zeta, y)=|\zeta|^{2}-h(y)
$$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of $h(y)$
- Inward/outward corners: $H\left(\nabla_{y} I, y\right)=0 \nLeftarrow-H\left(\nabla_{y} I, y\right)=0$. Here $I(y)$ is semi-concave : minimum=classical but maximum=possible corners

Existence of corners

- For generic $h(y) \geq 0, \exists$ corners
- Maximum : $\{p=0\}$ penetrate $\{p>0\}$
- Here $h(y)=\frac{c+\alpha(y)}{\left.p_{x}\right|_{\Gamma}(y)}-1$. Zeros of h ?

$$
m<1
$$

$$
m>1
$$

$$
m<1
$$

$$
m>1
$$

$$
m<1
$$

$$
m>1
$$

$$
m<1
$$

$$
m>1
$$

(1) Motivations
(2) Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof
(3) Investigation of the free-boundary
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners
(4) Perspectives

To do list

- Non-degeneracy and regularity of Γ
- Existence and investigation of corners $(m<1) \neq(m>1)$
- Uniqueness of the wave profile

To do list

- Non-degeneracy and regularity of Γ
- Existence and investigation of corners $(m<1) \neq(m>1)$
- Uniqueness of the wave profile

Possible extensions

- Stability of the wave for the Cauchy problem
- Construction of particular explicit solutions
- More general flows, non-periodical
- Cell flows

Thank you for listening !

