Existence of travelling waves for a degenerate advection-diffusion equation

Léonard MONSAINGEON

CNA, September 11, 2012

For $(t, \mathbf{x}, y) \in \mathbb{R} imes \mathbb{R} imes \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = 0$$

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = \mathbf{0}$$

Unknown $u(t, x, y) \ge 0$ (temperature, density...) and $\lambda = \lambda(u) = \lambda_0 u^m$ for m > 0

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = \mathbf{0}$$

Unknown $u(t, x, y) \ge 0$ (temperature, density...) and $\lambda = \lambda(u) = \lambda_0 u^m$ for m > 0

 $\partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) u_x = 0$

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = \mathbf{0}$$

Unknown $u(t, x, y) \ge 0$ (temperature, density...) and $\lambda = \lambda(u) = \lambda_0 u^m$ for m > 0

$$\partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) u_x = 0$$

Questions

• \exists wave solutions u(t, x, y) = v(x + ct, y)

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = 0$$

Unknown $u(t, x, y) \ge 0$ (temperature, density...) and $\lambda = \lambda(u) = \lambda_0 u^m$ for m > 0

$$\partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) u_x = 0$$

Questions

- \exists wave solutions u(t, x, y) = v(x + ct, y)
- Impact of the advection flow $\alpha(y)$ on the free-boundary

For $(t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$

$$\partial_t u - \nabla \cdot (\lambda \nabla u) + \alpha(y) \mathbf{e}_{\mathbf{x}} \cdot \nabla u_{\mathbf{x}} = 0$$

Unknown $u(t, x, y) \ge 0$ (temperature, density...) and $\lambda = \lambda(u) = \lambda_0 u^m$ for m > 0

$$\partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) u_x = 0$$

Questions

- \exists wave solutions u(t, x, y) = v(x + ct, y)
- Impact of the advection flow $\alpha(y)$ on the free-boundary $\Gamma = \partial \{u > 0\}$

Outline of the talk

- O Motivations
- Existence and qualitative properties joint work with A. Novikov and J.-M. Roquejoffre
- Investigation of the free-boundary
- O Perspectives

Motivations

Existence and qualitative properties

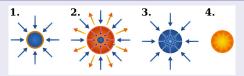
- Formulation of the problem
- Results
- Sketch of the proof

3 Investigation of the free-boundary

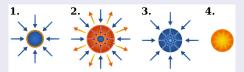
- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

Inertial Confinement Fusion (ICF)

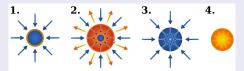


Inertial Confinement Fusion (ICF)



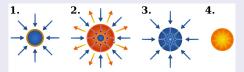
 $\bullet~$ Thermo-hydrodynamical models + laser energy \rightarrow centripetal pressure/temperature waves

Inertial Confinement Fusion (ICF)



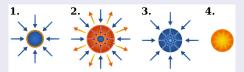
- $\bullet~$ Thermo-hydrodynamical models + laser energy $\rightarrow~$ centripetal pressure/temperature waves
- $T \sim 10^7 \text{K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2

Inertial Confinement Fusion (ICF)



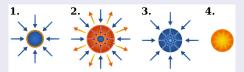
- $\bullet~$ Thermo-hydrodynamical models + laser energy $\rightarrow~$ centripetal pressure/temperature waves
- $T \sim 10^7 {
 m K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Inertial Confinement Fusion (ICF)



- $\bullet\,$ Thermo-hydrodynamical models + laser energy $\rightarrow\,$ centripetal pressure/temperature waves
- $T \sim 10^7 \text{K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

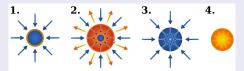
Questions



- $\bullet\,$ Thermo-hydrodynamical models + laser energy $\rightarrow\,$ centripetal pressure/temperature waves
- $T \sim 10^7 {
 m K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

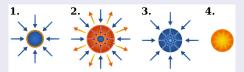
• Interplay advection flow/ablation front : spherical wrinkling



- $\bullet\,$ Thermo-hydrodynamical models + laser energy $\rightarrow\,$ centripetal pressure/temperature waves
- $T \sim 10^7 {
 m K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

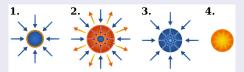
- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front



- $\bullet~$ Thermo-hydrodynamical models + laser energy $\rightarrow~$ centripetal pressure/temperature waves
- $T \sim 10^7 {
 m K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front \neq classical reaction-diffusion



- $\bullet~$ Thermo-hydrodynamical models + laser energy $\rightarrow~$ centripetal pressure/temperature waves
- $T \sim 10^7 {
 m K}$: Spitzer electronic heat conductivity, NL $\lambda = \lambda(T) = T^m$, m = 5/2
- Interface fuel/plasma : ablation front \leftrightarrow free-boundary

Questions

- Interplay advection flow/ablation front : spherical wrinkling
- Singularities in the front \neq classical reaction-diffusion

Planar approximation : $x \in \mathbb{R}$ (radial) and $y \in \mathbb{R}^{d-1}$ (transversal).

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

• Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p = \frac{m+1}{m}u^m$

$$\partial_t p - mp\Delta p = \left|\nabla p\right|^2$$

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p = \frac{m+1}{m}u^m$

$$\partial_t p - mp\Delta p = |\nabla p|^2$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p = \frac{m+1}{m}u^m$

$$\partial_t p - mp\Delta p = \left|\nabla p\right|^2$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

Explicit wave solution

$$\forall c > 0, \qquad p_c(t, x, y) = c[x + ct]^+$$

• Temperature formulation $u \ge 0$

$$\partial_t u - \Delta \left(u^{m+1} \right) = 0$$
 (PME)

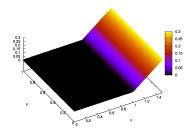
- Well studied topics [Aronson, Bénilan, Caffarelli, Peletier, Pierre, Vàzquez...]
- Pressure formulation $p = \frac{m+1}{m}u^m$

$$\partial_t p - mp\Delta p = \left|
abla p \right|^2$$

Pressure \in Lipschitz : well adapted to study the free-boundary.

Explicit wave solution

 $\forall c > 0, \qquad p_c(t, x, y) = c[x + ct]^+$



$$\partial_t p - mp\Delta p = |\nabla p|^2$$

$$p_c(t, x, y) = c[x + ct]^+$$

$$\partial_t p - mp\Delta p = |\nabla p|^2$$

$$p_c(t, x, y) = c[x + ct]^+$$

• 1D solution $\partial_y p_c = 0$

$$\partial_t p - mp\Delta p = |\nabla p|^2$$

$$p_c(t, x, y) = c[x + ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct

$$\partial_t p - mp\Delta p = |\nabla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$

$$\partial_t p - mp\Delta p = |\nabla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$
- Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

$$\partial_t p - mp\Delta p + \alpha(y)\partial_x p = |\nabla p|^2$$

$$p_c(t, x, y) = c[x + ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$
- Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

$$\partial_t p - mp\Delta p + lpha(y)\partial_x p = |
abla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$

1

• Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

$\alpha \neq 0$?

● ∃ a wave with boundary conditions?

$$\partial_t p - mp\Delta p + lpha(y)\partial_x p = |
abla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$

1

• Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

- ∃ a wave with boundary conditions?
- Propagation speeds c > 0?

$$\partial_t p - mp\Delta p + lpha(y)\partial_x p = |
abla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$

1

• Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

- ∃ a wave with boundary conditions?
- Propagation speeds c > 0?
- Qualitative properties $x \to \infty$?

$$\partial_t p - mp\Delta p + \alpha(y)\partial_x p = |\nabla p|^2$$

$$p_c(t,x,y) = c[x+ct]^+$$

- 1D solution $\partial_y p_c = 0$
- Free-boundary $\Gamma = \partial \{p > 0\}$: flat hyper-surface x(t) = x(0) ct
- x sufficiently negative : $p_c(t, x, y) = 0$

1

• Slope = speed, $p \underset{x \to +\infty}{\sim} cx$

- ∃ a wave with boundary conditions?
- Propagation speeds c > 0?
- Qualitative properties $x \to \infty$?
- Behaviour of the free-boundary?

Motivations

2 Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

$$u(t, x, y) \ge 0 \qquad \qquad \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 p = \frac{m+1}{m} u^m \qquad \qquad \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2$$

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c\partial_x \quad \Rightarrow \quad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c \partial_x \quad \Rightarrow \quad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Boundary conditions

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c\partial_x \quad \Rightarrow \quad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

Boundary conditions

• Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness).

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c\partial_x \quad \Rightarrow \quad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

Boundary conditions

• Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D := \mathbb{R} \times \mathbb{T}^{d-1}$

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c\partial_x \quad \Rightarrow \quad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

Boundary conditions

- Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D := \mathbb{R} \times \mathbb{T}^{d-1}$
- x sufficiently negative : $p(x, y) \equiv 0$

$$\begin{array}{ll} u(t,x,y) \geq 0 & \partial_t u - \Delta \left(u^{m+1} \right) + \alpha(y) \partial_x u = 0 \\ p = \frac{m+1}{m} u^m & \partial_t p - mp \Delta p + \alpha(y) \partial_x p = |\nabla p|^2 \end{array}$$

Wave propagation

Speed c > 0, profile p(x + ct, y)

$$\partial_t = c\partial_x \quad \Rightarrow \quad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

Boundary conditions

- Transversal periodicity : $y \in \mathbb{R}^{d-1} \longrightarrow y \in \mathbb{T}^{d-1}$ (compactness). Infinite cylinder $(x, y) \in D := \mathbb{R} \times \mathbb{T}^{d-1}$
- x sufficiently negative : $p(x, y) \equiv 0$
- $x \rightarrow +\infty$: slope = speed, $p \sim cx$ (PME and ICF)

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

• p = u = 0 : degenerate equation

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

- p = u = 0 : degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

- p = u = 0 : degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

- p = u = 0 : degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

Definition 1 : weak solutions

$$p = \frac{m+1}{m}u^m \qquad \begin{cases} -\Delta \left(u^{m+1}\right) + (c+\alpha)u_x = 0\\ -mp\Delta p + (c+\alpha)p_x = |\nabla p^2| \end{cases}$$

- p = u = 0 : degenerate equation
- Free-boundary, discontinuity of the gradient (cf. planar solution of the PME)
- No classical solutions !

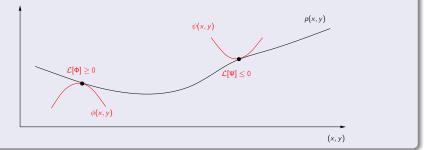
Definition 1 : weak solutions

 $p \ge 0$ continuous is a weak solution iff

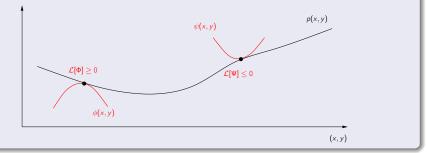
$$\forall \varphi \in \mathcal{C}^{\infty}_{c}, \qquad \int u^{m+1} \Delta \varphi + (c+\alpha) u \varphi_{x} = 0$$

$$\mathcal{L}[f] = -mf\Delta f + (c+\alpha)f_x - |\nabla f|^2 \qquad (\mathcal{L}[p] = 0)$$

$$\mathcal{L}[f] = -mf\Delta f + (c + \alpha)f_{x} - |\nabla f|^{2} \qquad (\mathcal{L}[p] = 0)$$

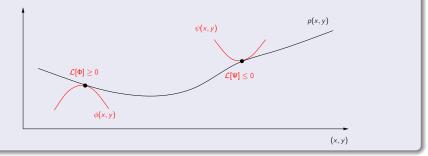


$$\mathcal{L}[f] = -mf\Delta f + (c + \alpha)f_{x} - |\nabla f|^{2} \qquad (\mathcal{L}[p] = 0)$$



In general "viscosity \neq weak".

$$\mathcal{L}[f] = -mf\Delta f + (c + \alpha)f_{x} - |\nabla f|^{2} \qquad (\mathcal{L}[p] = 0)$$



In general "viscosity \neq weak". Here OK because $p \in$ Lipschitz.

Motivations

2 Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
 (E

)

Theorem

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0 \text{ (shear flow) and assume}$$
$$c > c^* := -\min \alpha \quad (> 0).$$

9/22

Theorem

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

 $c > c^* := -\min \alpha$ (> 0).

Then "the scenario of PME persists".

Theorem

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

 $c > c^* := -\min \alpha \quad (> 0).$

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \to +\infty$

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \to +\infty$
- **2** p is globally Lipschitz on D,

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \rightarrow +\infty$
- **(a)** p is globally Lipschitz on D, and smooth on $D^+ := \{p > 0\}$

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \rightarrow +\infty$
- **(a)** p is globally Lipschitz on D, and smooth on $D^+ := \{p > 0\}$
- Solution Monotonicity in the propagation direction $\partial_x p|_{D^+} > 0$

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- $\textbf{O} \ \ There \ exists \ a \ continuous \ viscosity/weak \ solution \ p \geq 0 \ of \ (E) \ such \ that \\$
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \rightarrow +\infty$
- **(a)** p is globally Lipschitz on D, and smooth on $D^+ := \{p > 0\}$
- **(a)** Monotonicity in the propagation direction $\partial_x p|_{D^+} > 0$
- Parametrization of the free-boundary $\Gamma = \partial \{p > 0\} \neq \emptyset$:

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \rightarrow +\infty$
- **(a)** p is globally Lipschitz on D, and smooth on $D^+ := \{p > 0\}$
- Solution Monotonicity in the propagation direction $\partial_x p|_{D^+} > 0$
- Parametrization of the free-boundary Γ = ∂{p > 0} ≠ Ø : ∃ I(y) upper semi-continuous such that | max I min I| < +∞,</p>

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$
(E)
Normalize
$$\int_{\mathbb{T}^{d-1}} \alpha(y) dy = 0$$
(shear flow) and assume

- **(**) There exists a continuous viscosity/weak solution $p \ge 0$ of (E) such that
 - $p(x, y) \equiv 0$ for x sufficiently negative
 - $p(x, y) \sim cx$ when $x \rightarrow +\infty$
- **(a)** p is globally Lipschitz on D, and smooth on $D^+ := \{p > 0\}$
- Solution Monotonicity in the propagation direction $\partial_x p|_{D^+} > 0$
- Parametrization of the free-boundary Γ = ∂{p > 0} ≠ Ø : ∃ I(y) upper semi-continuous such that | max I min I| < +∞,</p>

$$p(x,y) > 0 \quad \Leftrightarrow \quad x > I(y)$$

• p is 1D linear at infinity :

9 p is 1D linear at infinity : $p_x \rightarrow c$ and $p_y \rightarrow 0$ uniformly in y when $x \rightarrow +\infty$

p is 1D linear at infinity : p_x → c and p_y → 0 uniformly in y when x → +∞
For 1 < m ∉ N, asymptotic expansion at infinity

$$p(x,y) = \underbrace{cx + cst}_{PME}$$

p is 1D linear at infinity : p_x → c and p_y → 0 uniformly in y when x → +∞
For 1 < m ∉ N, asymptotic expansion at infinity

$$p(x,y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

p is 1D linear at infinity : p_x → c and p_y → 0 uniformly in y when x → +∞
For 1 < m ∉ N, asymptotic expansion at infinity

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

• Speed selection by the slope :

p is 1D linear at infinity : p_x → c and p_y → 0 uniformly in y when x → +∞
For 1 < m ∉ N, asymptotic expansion at infinity

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

• Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that $q(x, y) \sim \lambda x$ when $x \to +\infty$, then $\lambda = c$.

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

Unanswered questions

• $\{p > 0\} = \{x > I(y)\}$ and I is only upper s-c : $\Gamma = \partial\{p > 0\} \neq \{x = I(y)\}$?

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

Unanswered questions

• $\{p > 0\} = \{x > I(y)\}$ and I is only upper s-c : $\Gamma = \partial\{p > 0\} \neq \{x = I(y)\}$? Regularity of the free-boundary?

$$p(x,y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

- $\{p > 0\} = \{x > I(y)\}$ and I is only upper s-c : $\Gamma = \partial\{p > 0\} \neq \{x = I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts :

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

- $\{p > 0\} = \{x > I(y)\}$ and I is only upper s-c : $\Gamma = \partial\{p > 0\} \neq \{x = I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts : uniqueness of the profile?

$$p(x, y) = \underbrace{cx + cst}_{PME} + x \left(a_1 x^{-\frac{1}{m}} + a_2 x^{-\frac{2}{m}} + \dots + a_N x^{-\frac{N}{m}} \right) + o(1)$$

Speed selection by the slope : if q(x, y) is any wave solution with speed c > 0 such that q(x, y) ~ λx when x → +∞, then λ = c.

- $\{p > 0\} = \{x > I(y)\}$ and I is only upper s-c : $\Gamma = \partial\{p > 0\} \neq \{x = I(y)\}$? Regularity of the free-boundary?
- Solution up to x-shifts : uniqueness of the profile?
- Optimal lower bound $c > c^* = -\min \alpha$?

Motivations

2 Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

• Uniform ellipticity as soon as p > 0: elliptic regularity.

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

- Uniform ellipticity as soon as p > 0 : elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

- Uniform ellipticity as soon as p > 0 : elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

- Uniform ellipticity as soon as p > 0: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

General idea

• Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

- Uniform ellipticity as soon as p > 0: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
- Construction by vanishing viscosity : $p = \lim_{\delta > 0} p^{\delta}$ with $p^{\delta} \ge \delta > 0$.

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

- Uniform ellipticity as soon as p > 0 : elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

- Domain truncature [Berestycki, Nikolaenko, Scheurer \sim 1980]
- Construction by vanishing viscosity : $p = \lim_{\delta \searrow 0} p^{\delta}$ with $p^{\delta} \ge \delta > 0$. Regularization through boundary conditions.

$$-mp\Delta p + [c + \alpha(y)]p_x = |\nabla p|^2$$

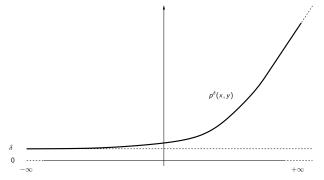
- Uniform ellipticity as soon as p > 0: elliptic regularity.
- Invariance under x-shifts : Sliding Method [Berestycki,Nirenberg] as comparison principle (~ viscosity solutions).

- Domain truncature [Berestycki, Nikolaenko, Scheurer ~1980]
- Construction by vanishing viscosity : $p = \lim_{\delta \searrow 0} p^{\delta}$ with $p^{\delta} \ge \delta > 0$. Regularization through boundary conditions.
- Tailored sub and super solutions

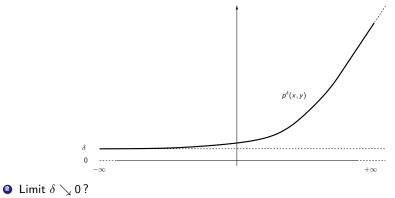
③ For $\delta > 0$, solve on truncated cylinders and let the length $L \rightarrow \infty$:

● For δ > 0, solve on truncated cylinders and let the length L → ∞ : ∃ a classical solution p^δ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.

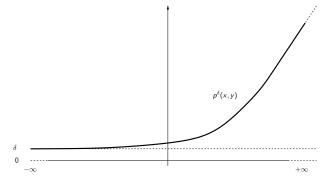
• For $\delta > 0$, solve on truncated cylinders and let the length $L \to \infty$: \exists a classical solution $p^{\delta} \ge \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.



● For δ > 0, solve on truncated cylinders and let the length L → ∞ : ∃ a classical solution p^δ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.

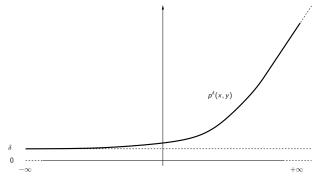


• For $\delta > 0$, solve on truncated cylinders and let the length $L \to \infty$: \exists a classical solution $p^{\delta} \ge \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.

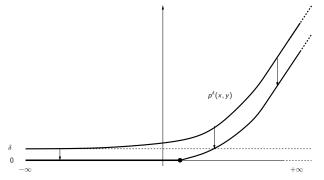


Solution Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-mp\Delta p + ... = 0$)

• For $\delta > 0$, solve on truncated cylinders and let the length $L \to \infty$: \exists a classical solution $p^{\delta} \ge \delta$ on the infinite cylinder, uniform ellipticity and x-monotonicity.



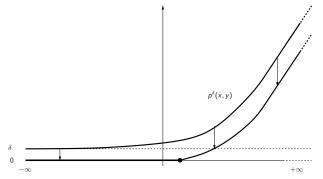
• Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-mp\Delta p + ... = 0$) $W_{loc}^{1,\infty}$ estimates uniformly in δ : ● For δ > 0, solve on truncated cylinders and let the length L → ∞ : ∃ a classical solution p^δ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.



2 Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-mp\Delta p + ... = 0$) $W_{loc}^{1,\infty}$ estimates uniformly in δ :

$$p^\delta o p$$
 in $\mathcal{C}^{\mathsf{0}}_{loc}(D)$.

For δ > 0, solve on truncated cylinders and let the length L → ∞ : ∃ a classical solution p^δ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.

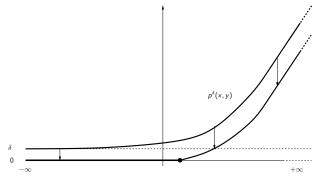


• Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-mp\Delta p + ... = 0$) $W_{loc}^{1,\infty}$ estimates uniformly in δ :

$$p^\delta o p \qquad ext{ in } \mathcal{C}^{\mathsf{0}}_{\mathit{loc}}(D).$$

Stability of viscosity/weak solutions under locally uniform limit :

For δ > 0, solve on truncated cylinders and let the length L → ∞ : ∃ a classical solution p^δ ≥ δ on the infinite cylinder, uniform ellipticity and x-monotonicity.



• Limit $\delta \searrow 0$? strongly degenerate! (loss of ellipticity $-mp\Delta p + ... = 0$) $W_{loc}^{1,\infty}$ estimates uniformly in δ :

$$p^\delta o p \qquad ext{ in } \mathcal{C}^{\mathsf{0}}_{\mathit{loc}}(D).$$

② Stability of viscosity/weak solutions under locally uniform limit : $p = \lim p^{\delta}$ is a locally Lipschitz solution.

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

• Slope = speed :

$$(x, y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon) \qquad , \qquad P^{\varepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)$$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := \alpha(Y/\varepsilon)
ightarrow 0, \qquad P^{\varepsilon}(X,Y) := \varepsilon p(X/\varepsilon,Y/\varepsilon)$$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon)
ightarrow 0, \qquad P^{\varepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)
ightarrow P^{0}(X)$$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

 $A^{\varepsilon}(Y) := \alpha(Y/\varepsilon) \to 0, \qquad P^{\varepsilon}(X,Y) := \varepsilon p(X/\varepsilon,Y/\varepsilon) \to P^{0}(X)$ Uniqueness for (PME) $\Rightarrow P^{0}(X) = \text{planar wave} = c[X]^{+}.$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon)
ightarrow 0, \qquad P^{arepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)
ightarrow P^{0}(X)$$

Uniqueness for (PME) $\Rightarrow P^0(X) = \text{planar wave} = c[X]^+$. In particular $p_x = P_X \rightarrow c$ and p is globally Lipschitz

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon)
ightarrow 0, \qquad P^{\varepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)
ightarrow P^{0}(X)$$

Uniqueness for (PME) $\Rightarrow P^0(X) = \text{planar wave} = c[X]^+$. In particular $p_x = P_X \rightarrow c$ and p is globally Lipschitz

Asymptotic expansion at infinity p(x, y) = cx + ... : technical! (Lyapunov-Schmidt decomposition)

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon)
ightarrow 0, \qquad P^{\varepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)
ightarrow P^{0}(X)$$

Uniqueness for (PME) $\Rightarrow P^0(X) = \text{planar wave} = c[X]^+$. In particular $p_x = P_X \rightarrow c$ and p is globally Lipschitz

- Asymptotic expansion at infinity p(x, y) = cx + ... : technical! (Lyapunov-Schmidt decomposition)
- Free-boundary : monotonicity $\partial_x p > 0$

$$(x,y) \in D = \mathbb{R} \times \mathbb{T}^{d-1}, \qquad -mp\Delta p + (c+\alpha)p_x = |\nabla p|^2$$

$$A^{\varepsilon}(Y) := lpha(Y/arepsilon)
ightarrow 0, \qquad P^{\varepsilon}(X,Y) := arepsilon p(X/arepsilon,Y/arepsilon)
ightarrow P^{0}(X)$$

Uniqueness for (PME) $\Rightarrow P^0(X) = \text{planar wave} = c[X]^+$. In particular $p_x = P_X \rightarrow c$ and p is globally Lipschitz

- Asymptotic expansion at infinity p(x, y) = cx + ... : technical! (Lyapunov-Schmidt decomposition)
- Free-boundary : monotonicity $\partial_x p > 0$

$$I(y) := \inf (x, p(x, y) > 0), \qquad p(x, y) > 0 \Leftrightarrow x > I(y)$$

Motivations

Existence and qualitative properties

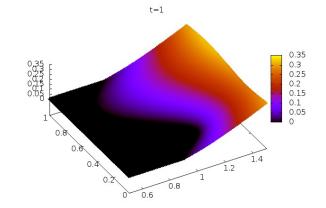
- Formulation of the problem
- Results
- Sketch of the proof

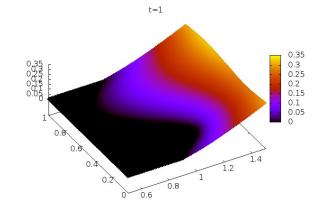
3 Investigation of the free-boundary

• A generic picture...

- Comparaison with PME
- Heuristic scenario for corners

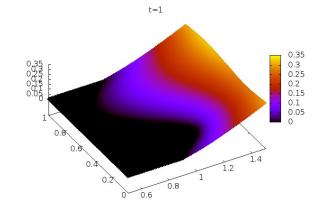
Perspectives





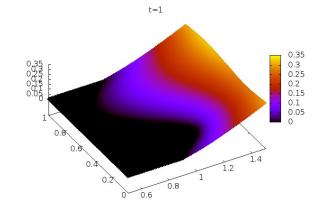
Reminder

Free-boundary $p(x, y) > 0 \Leftrightarrow x > I(y)$, periodical and



Reminder

Free-boundary $p(x, y) > 0 \Leftrightarrow x > I(y)$, periodical and upper semi-continuous



Reminder

Free-boundary $p(x, y) > 0 \Leftrightarrow x > I(y)$, periodical and upper semi-continuous

$$\Gamma = \partial \{p > 0\} \neq \{x = I(y)\}$$

Motivations

Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

3 Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$(\Gamma_t) \qquad \partial_t p = |\nabla p|^2$$

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\left[\Gamma_{t} \right) \qquad \partial_{t} p = \left| \nabla p \right|^{2}$$

Normal propagation with local speed $v = |\nabla p|$ (cf. the planar wave)

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\Gamma_t) \qquad \partial_t p = |\nabla p|^2$$

Normal propagation with local speed $v = |\nabla p|$ (cf. the planar wave)

Regularity

• In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\Gamma_t) \qquad \partial_t p = |\nabla p|^2$$

Normal propagation with local speed $v = |\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_0 non-degenerate and $C^{1,r}$ then Γ_t also (t > 0) [Caffarelli, Wolanski '90]

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\Gamma_t) \qquad \partial_t p = |\nabla p|^2$$

Normal propagation with local speed $v = |\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_0 non-degenerate and $C^{1,r}$ then Γ_t also (t > 0) [Caffarelli, Wolanski '90]
- Difficult question related to the non-degeneracy $\nabla p \Big|_{\Gamma_*} \neq 0$

$$\partial_t p - mp \Delta p = |\nabla p|^2$$
 (PME)

Free-boundary $\Gamma_t = \partial \{p(t,.) > 0\}$ and $p|_{\Gamma_t} = 0$:

$$\Gamma_t) \qquad \partial_t p = |\nabla p|^2$$

Normal propagation with local speed $v = |\nabla p|$ (cf. the planar wave)

Regularity

- In general Γ is Lipschitz [Caffarelli, Vàzquez, Wolanski '87]
- If Γ_0 non-degenerate and $C^{1,r}$ then Γ_t also (t > 0) [Caffarelli, Wolanski '90]
- Difficult question related to the non-degeneracy $\nabla p \Big|_{\Gamma_*} \neq 0$

Wave solution \Rightarrow trivial time-evolution. Geometrical description?

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity...

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma = \text{Lipschitz graph} \{x = I(y)\}$

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma = \text{Lipschitz graph} \{x = I(y)\}$

Proof : Implicit Functions Theorem for ε -levelsets $\Gamma_{\varepsilon} = \{p = \varepsilon\}$, no regularity at the free-boundary

$$-mp\Delta p + (c + \alpha)p_{x} = |\nabla p|^{2}$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma = \text{Lipschitz graph} \{x = I(y)\}$

Proof : Implicit Functions Theorem for ε -levelsets $\Gamma_{\varepsilon} = \{p = \varepsilon\}$, no regularity at the free-boundary

Lipschitz regularity = optimal?

$$-mp\Delta p + (c + \alpha)p_{x} = |\nabla p|^{2}$$

Definition

Non-degeneracy (strong) : $p_x \ge a > 0$ in the neighborhood of Γ

For (PME) : free-boundary differential equation, regularity... For general degenerate equations : non-degeneracy \sim Hopf Lemma/Harnack Principle

Proposition

Non-degeneracy $\Rightarrow \Gamma = \text{Lipschitz graph} \{x = I(y)\}$

Proof : Implicit Functions Theorem for ε -levelsets $\Gamma_{\varepsilon} = \{p = \varepsilon\}$, no regularity at the free-boundary

Lipschitz regularity = optimal? \exists corners?

Motivations

Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

3 Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

4 Perspectives

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary $p\Delta p|_{\Gamma^+} = 0$ and $p_x|_{\Gamma^+} > 0$ "from the right".

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary $p\Delta p|_{\Gamma^+} = 0$ and $p_x|_{\Gamma^+} > 0$ "from the right".

• $\Gamma = \{x = I(y)\}$ is Lipschitz

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary $p\Delta p|_{\Gamma^+} = 0$ and $p_x|_{\Gamma^+} > 0$ "from the right".

- $\Gamma = \{x = I(y)\}$ is Lipschitz
- 2 Equation for the free-boundary :

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary $p\Delta p|_{\Gamma^+} = 0$ and $p_x|_{\Gamma^+} > 0$ "from the right".

- $\Gamma = \{x = I(y)\}$ is Lipschitz
- **2** Equation for the free-boundary :

$$y \in \mathbb{T}^{d-1}, \qquad |\nabla_y I|^2 = h(y) := \frac{c + \alpha(y)}{p_x|_{\Gamma}(y)} - 1$$
 (HJ)

in the viscosity sense.

$$-mp\Delta p + (c + \alpha)p_x = |\nabla p|^2$$

Hypotheses : regularity and non-degeneracy at the free-boundary $p\Delta p|_{\Gamma^+} = 0$ and $p_x|_{\Gamma^+} > 0$ "from the right".

- $\Gamma = \{x = I(y)\}$ is Lipschitz
- equation for the free-boundary :

$$y \in \mathbb{T}^{d-1}, \qquad |\nabla_y I|^2 = h(y) := \frac{c + \alpha(y)}{p_x|_{\Gamma}(y)} - 1$$
 (HJ)

in the viscosity sense.

Geometrical equation (HJ) : stationary equivalent of the free-boundary differential equation in the PME.

$$y \in \mathbb{T}^{d-1}$$
: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

$$y \in \mathbb{T}^{d-1}$$
: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

• Regularity/uniqueness of viscosity solutions

$$y \in \mathbb{T}^{d-1}$$
: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

• Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)

$$y \in \mathbb{T}^{d-1}$$
: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

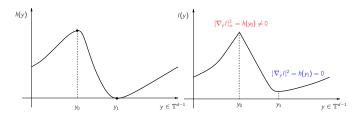
- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : H(∇_yI, y) = 0 ⇔ −H(∇_yI, y) = 0. Here I(y) is semi-concave :

$y \in \mathbb{T}^{d-1}$: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : $H(\nabla_y I, y) = 0 \notin -H(\nabla_y I, y) = 0$. Here I(y) is semi-concave : minimum=classical but maximum=possible corners

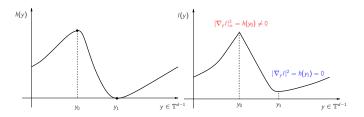
$y \in \mathbb{T}^{d-1}$: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : H(∇_yI, y) = 0 ⇔ −H(∇_yI, y) = 0. Here I(y) is semi-concave : minimum=classical but maximum=possible corners



$y \in \mathbb{T}^{d-1}$: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : H(∇_yI, y) = 0 ⇔ −H(∇_yI, y) = 0. Here I(y) is semi-concave : minimum=classical but maximum=possible corners

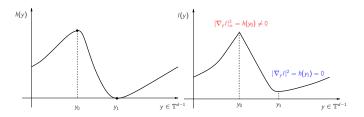


Existence of corners

• For generic $h(y) \ge 0$, \exists corners

$y \in \mathbb{T}^{d-1}$: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : H(∇_yI, y) = 0 ⇔ −H(∇_yI, y) = 0. Here I(y) is semi-concave : minimum=classical but maximum=possible corners

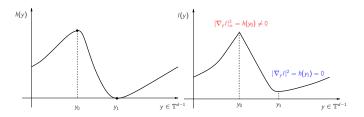


Existence of corners

- For generic $h(y) \ge 0$, \exists corners
- Maximum : $\{p = 0\}$ penetrate $\{p > 0\}$

$y \in \mathbb{T}^{d-1}$: $H(\nabla_y I, y) = 0$, $H(\zeta, y) = |\zeta|^2 - h(y)$

- Regularity/uniqueness of viscosity solutions \leftrightarrow zeros of h(y)
- Inward/outward corners : H(∇_yI, y) = 0 ⇔ −H(∇_yI, y) = 0. Here I(y) is semi-concave : minimum=classical but maximum=possible corners

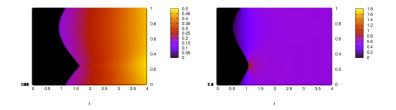


Existence of corners

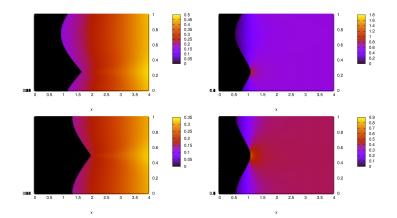
- For generic $h(y) \ge 0$, \exists corners
- Maximum : $\{p = 0\}$ penetrate $\{p > 0\}$

• Here
$$h(y) = \frac{c+\alpha(y)}{P_X|_{\Gamma}(y)} - 1$$
. Zeros of h?

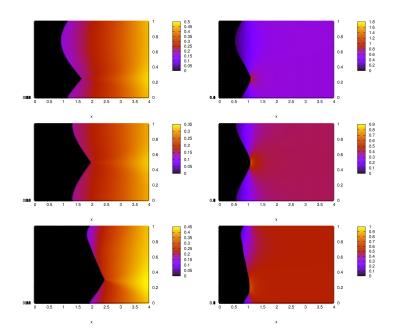
m > 1



m > 1



m > 1



19/22

Motivations

Existence and qualitative properties

- Formulation of the problem
- Results
- Sketch of the proof

3 Investigation of the free-boundary

- A generic picture...
- Comparaison with PME
- Heuristic scenario for corners

Perspectives

To do list

- $\bullet\,$ Non-degeneracy and regularity of $\Gamma\,$
- Existence and investigation of corners $(m < 1) \neq (m > 1)$
- Uniqueness of the wave profile

To do list

- $\bullet\,$ Non-degeneracy and regularity of $\Gamma\,$
- Existence and investigation of corners $(m < 1) \neq (m > 1)$
- Uniqueness of the wave profile

Possible extensions

- Stability of the wave for the Cauchy problem
- Construction of particular explicit solutions
- More general flows, non-periodical
- Cell flows

Thank you for listening!