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Introduction

We consider the L2 critical (gKdV) equation

(gKdV)

{
ut + (uxx + u5)x = 0, (t, x) ∈ [0,T )× R,
u(0, x) = u0(x), x ∈ R.

Recall the following important facts:

• The Cauchy problem is locally well-posed in H1

[Kenig-Ponce-Vega, 92] ([Kato, 83])

• Mass and energy conservation

M0 =

∫
u2(t), E0 =

1

2

∫
u2x (t)− 1

6

∫
u6(t)

• Scaling invariance (λ > 0)

uλ(t, x) =
1

λ
1
2

u
( t

λ3
,
x

λ

)
, ‖uλ‖L2 = ‖u‖L2 , E (uλ) =

1

λ2
E (u)



• Solitons are special solutions defined by (λ > 0, x0 ∈ R)

Rλ,x0(t, x) =
1

λ
1
2

Q

(
1

λ
(x − x0)− 1

λ3
t

)

Q(x) =

(
3

cosh2 (2x)

)1/4

, Q ′′ − Q + Q5 = 0, E (Q) = 0

• Global existence for “small” L2 norm: [Weinstein, 83]

‖u0‖L2 < ‖Q‖L2 ⇒ the solution is global in H1

Main questions of this talk:

• Blow up problem for initial data:

u0 ∈ H1, ‖Q‖L2 ≤ ‖u0‖L2 ≤ ‖Q‖L2 + α0, α0 � 1

• Classification of all possible behaviors for ‖u0 − Q‖H1 � 1



First results on blow up for L2 critical gKdV

[Martel-Merle, 00-02]

Assume

u0 ∈ H1, ‖Q‖L2 ≤ ‖u0‖L2 < ‖Q‖L2 + α0, α0 � 1

Then:

(i) Blow up in finite or infinite time if E0 < 0.
No information on the blow up regime.

(ii) Assuming blow up, Q is the universal blow up profile.

(iii) Blow up in finite time if E0 < 0 and
∫
x>1 x

6u20(x)dx <∞.
Moreover, for a sequence tn → T ,

‖ux(tn)‖L2 ≤
C (u0)

T − tn

(iv) Global existence for minimal mass initial data with decay.



Blow up for L2 critical NLS

(NLS)

{
i∂tu + ∆u + |u|

4
N u = 0,

u|t=0 = u0
(t, x) ∈ [0,T )× RN

∆QNLS − QNLS + Q
1+ 4

N
NLS = 0, QNLS > 0 even

• [Merle, 93]

The only H1 blow up solution of (NLS) with minimal mass
‖u0‖L2 = ‖QNLS‖L2 is (up to symmetries)

SNLS(t, x) =
1

tN/2
e−i(

|x|2
4t
− 1

t
)QNLS

(x
t

)
• Existence of unstable nontrivial 1

(T−t) blow up solutions.

[Bourgain-Wang, 98], [Krieger-Schlag, 09],
[Merle-Raphaël-Szeftel, 11]



“log-log” blow up for (NLS)

• [Landman-Papanicolaou-Sulem-Sulem, 88], etc.
log-log conjecture

• [Perelman, 01]

Construction of a large class of log-log blow up solutions close to
QNLS.

• [Merle-Raphaël, 03-06]

(i) Construction of an open set in H1 of log-log blow up solutions
close to QNLS (including all H1 data with E0 ≤ 0 close to QNLS)

‖∇uNLS(t)‖L2 ∼ C ∗
√

log | log(T − t)|
T − t

(ii) Quantization of the focused mass at the blow up point x(T ):

|uNLS(t)|2 ⇀ ‖QNLS‖2L2δx=x(T ) + |u∗|2, u∗ ∈ L2.



Statement of new results for critical gKdV
[Martel-Merle-Raphaël, 12]

Define (α0 � 1)

A =

{
u0 = Q + ε0 with ‖ε0‖H1 < α0 and

∫
x>1

x10ε20(x)dx < 1

}
THM 1 (Negative or zero energy data close to Q)

Let u0 ∈ A. If E (u0) ≤ 0 and u(t) is not a soliton, then u(t) blows
up in finite time T with

‖ux(t)‖L2 ∼
t∼T

‖Q ′‖L2
`0(T − t)

for `0(u0) > 0

u(t)− 1

λ
1
2 (t)

Q

(
.− x(t)

λ(t)

)
→

t→T
u∗ in L2

λ(t) ∼
t∼T

`0(T − t), x(t) ∼
t∼T

1

`20(T − t)

See [Rodnianski-Sterbenz, 10], [Raphaël-Rodnianski, 12],
[Merle-Raphaël-Rodnianski, 11]



THM 2 (Existence and uniqueness of minimal mass blow up sol.)

(i) There exists a solution S ∈ C((0,+∞),H1) with minimal mass

‖S(t)‖L2 = ‖Q‖L2

such that

‖Sx(t)‖L2 ∼
‖Q ′‖L2

t
as t ↓ 0,

S(t)− 1

t
1
2

Q

(
.+ 1

t + c̄t

t

)
→ 0 in L2 as t ↓ 0,

where c̄ is a universal constant.

(ii) Let u(t) be a solution with minimal mass which blows up in
finite time. Then, u = S up to invariances.



THM 3 (Classification and universality of S(t))

Let 0 < α0 � α∗ � 1. Only three scenarios are possible for u0 ∈ A

(Blow up) u(t) blows up in finite time with blow up rate 1
T−t .

(Soliton) u(t) is global, bounded and locally converges to a
soliton as t → +∞.

(Exit) there exists t∗ > 0 such that u(t) exits at t = t∗ the L2

neighborhood of size α∗ of the family of solitons.
Moreover, for some τ∗, u(t∗) is L2 close (related to α0) to
S(τ∗) (up to symmetries).

Consequence: Assume that S(t) scatters at +∞. Then, the
(Exit) scenario implies scattering.

Classification results for NLKG, NLW [Nakanishi-Schlag, 10],
[Krieger-Nakanishi-Schlag, 10] ([Duyckaerts-Kenig-Merle, 06-09])

Stable manifold: [Krieger-Schlag, 05], [Beceanu, 07]



Blow up rates for initial data with slow decay u0 6∈ A
THM 4 (Unstable blow up rates)

There exist blow up solutions with the following blow up rates:

(i) Blow up in finite time: for any ν > 11
13 ,

‖ux(t)‖L2 ∼ t−ν as t → 0+.

(ii) Blow up in infinite time:

‖ux(t)‖L2 ∼ et as t → +∞.

For any ν > 0,

‖ux(t)‖L2 ∼ tν as t → +∞.

Moreover, such solutions can be taken arbitrarily close to solitons.

See [Krieger-Schlag-Tataru, 08], [Bejenaru-Tataru, 09],
[Donninger-Krieger, 12], [Perelman, 12]



Formal derivation of the dynamics in A

u(t, x) =
1

λ
1
2 (t)

Qb(t)

(
x − x(t)

λ(t)

)
, Qb = Q + bP

ut = −λt
λ

(ΛQb)λ − xt
λ

(Q ′b)λ+btP
λ, ΛQb =

1

2
Qb + y(Qb)y ,

⇒ − λ2λtΛQb + (Q ′′b − λ2xtQb + Q5
b)′+λ3btP = 0

Fix λ2xt = 1 and −λ2λt = b. At first order in b,

b ΛQ + b (LP)′ + λ3btP + O(b2) = 0

where LP = −P ′′ + P − 5Q4P. We fix

(LP)′ = −ΛQ and λ3bt = −2b2



Combining the equations of λt and bt , one gets

d

dt

(
b

λ2

)
=

1

λ2

(
bt − 2

λt
λ
b

)
= 0

and

−λt =
b

λ2
= `0 (scaling law)

Three scenarios:

I `0 > 0:

λt = −`0 < 0 ⇒ blow up and λ(t) = `0(T − t)

Example: E0 < 0 but also E0 = 0 (rigidity argument)

I `0 = 0:
λ(t) = Cte ⇒ soliton

I `0 < 0:

λt = −`0 > 0 ⇒ defocusing and then (Exit)



Full ansatz - control of the remainder term

We decompose the solution u(t, x) as

u(t, x) =
1

λ
1
2 (t)

Qb(t)

(
x − x(t)

λ(t)

)
+

1

λ
1
2 (t)

ε

(
t,
x − x(t)

λ(t)

)
where (b, λ, x) are adjusted to obtain orthogonality conditions on ε.

The function ε(s, y) and (b, λ, x) are governed by

εs − (Lε)y =
(
λs
λ +b

)
ΛQ +

(
xs
λ−1

)
Q ′+λs

λ Λε+ O(b2 + |bs |+ |ε|2)

and
∫
εQ =

∫
εΛQ =

∫
εyΛQ = 0 (s is the rescaled time ds

dt = 1
λ3

)

The uniform control of some norm of ε is a fundamental point in
all the regimes to justify the dynamics of the parameters.



Tools for a simplified linear model (with orthogonality)

εs − (Lε)y = α(s)ΛQ + β(s)Q ′

I Energy conservation at the level of ε:

∀s, (Lε(s), ε(s)) = Cte

I Monotonicity argument: for A� 1,

d

ds

∫
“y>−A“

(ε2y + ε2 − 5Q4ε2)(s, y)dy ≤ e−
A
10 ‖ε(s)‖2H1

I Viriel type argument (under orthogonality conditions):

− d

ds

∫
yε2 = H(ε, ε) ≥ µ0‖ε(s)‖2H1



Main estimate on ε

Definition of a Liapunov functional for ε(s)

F(s) ∼
∫ [

ε2yψ1 + ε2ψ2 − 5Q4ε2ψ1

]
(s, y)dy

where
• ψ1(y) = 0 for y < −A, ψ1(y) = 1 for y > −1

2A,
• ψ2(y) = 0 for y < −A, ψ2(y) = 1 + y for y > −1

2A.

F(t) is a mixed energy monotonicity and Viriel quantity

PROP. Under a suitable assumption on space decay of ε(s, y) on
the right (which requires decay on the initial data), it holds

d

ds

(
F
λ2

)
+
‖ε‖2

H1
loc

λ2
.

b4

λ2

The blue term is reminiscent of the “Kato smoothing effect”.
The term b4

λ2
is due to the equation of Qb (order b only).



Full estimates

• Control of b
λ2∣∣∣∣ b(t2)

λ2(t2)
− b(t1)

λ2(t1)

∣∣∣∣ . b2(t1)

λ2(t1)
+

b2(t2)

λ2(t2)
+
F(t1)

λ2(t1)

• Equation of λ ∣∣λ2λt + b
∣∣ . ‖ε(t)‖2H1

loc
+ |b|2

• Control of ε

F(t2)

λ2(t2)
+

∫ t2

t1

‖ε(t)‖2
H1
loc

λ5
dt .

F(t1)

λ2(t1)
+

b3(t1)

λ2(t1)
+

b3(t2)

λ2(t2)



Analysis of the (Exit) case

Definition of the L2 (Exit) time (α∗ small but fixed) :

t∗ = sup{0 < t < T , such that ∀t ′ ∈ [0, t], u(t) ∈ Tα∗}

where Tα∗ is an L2 tube around the family of solitons:

Tα∗ =

u ∈ H1 with inf
λ0>0, x0∈R

∥∥∥u − 1

λ
1
2
0

Q

(
.− x0
λ0

)∥∥∥
L2
< α∗


New and general approach to:

1. Construct the minimal mass solution S

2. Prove universality of the (Exit) case and a “no-return
lemma” based on the properties of S



Existence of a minimal mass solution

Choose a sequence of well-prepared initial data, for example:

un(0) = Qbn(0), bn(0) = −1

n
, ‖un(0)‖L2−‖Q‖L2 ∼ −

c

n
, εn(0) = 0

(Blowup) and (Soliton) are not possible ⇒ (Exit) regime

un(t, x) =
1

λ
1
2
n (t)

(Qbn(t) + εn)

(
t,
x − xn(t)

λn(t)

)

(λn)t ∼ −bn(0), λn(t) ∼ 1− bn(0)t, bn(t) = bn(0)λ2n(t).

At the (Exit) time t∗n : bn(t∗n) = −α∗, λ2n(t∗n) ∼ bn(t∗n )
bn(0)

∼ nα∗

(defocalisation)



Renormalize the solution at t∗n :

vn(τ, x) = λ
1
2
n (t∗n)un(t∗n + τλ3n(t∗n), λn(t∗n)x + xn(t∗n)).

vn(τ, x) =
1

λ
1
2
vn(τ)

(Qbvn + εvn)

(
τ,

x − xvn(τ)
λvn(τ)

)

λvn(τ) ∼ 1

λn(t∗n)

[
1− bn(0)(t∗n + τλ3n(t∗n))

]
∼ 1

λn(t∗n)

[
λn(t∗n)− τbn(0)λ3n(t∗n)

]
= 1− τbn(t∗n) = 1 + τα∗.

Mass, energy conservation and εn(0) = 0 ⇒ supτ ‖εvn‖H1 ≤ δ(α∗).

Extract a weak limit vn(0) ⇀ v(0) in H1 weak such that the
corresponding solution v(τ) blows up backwards at τ∗ ∼ − 1

α∗ .
Moreover, ‖v(0)‖L2 ≤ ‖Q‖L2 by weak limit and blow up yields

‖v(0)‖L2 = ‖Q‖L2 .



Description of the general (Exit) scenario

PROP Let (un(0)) be a sequence in H1 satisfying:

1. un(0) ∈ A;

2. ‖un(0)− Q‖H1 ≤ 1
n ;

3. the solution un satisfies the (Exit) scenario

Then, there exists τ∗ = τ∗(α∗) such that

λ
1
2
n (t∗n)un (t∗n , λn(t∗n) ·+xn(t∗n))→ λ

1
2
S (τ∗)S (τ∗, λS(τ∗) ·+xS(τ∗))

in L2 as n→ +∞.

The idea of the proof is similar as before, except that the H1

bound is lost for general (not well-prepared) initial data.

The uniqueness of S is decisive.


