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Introduction
We consider the L? critical (gKdV) equation

ur 4 (U + %) =0,  (t,x) €[0, T) xR,
(gKdV) { u(0, x) = uop(x), x € R.

Recall the following important facts:

e The Cauchy problem is locally well-posed in H*
[Kenig-Ponce-Vega, 92] ([Kato, 83])

e Mass and energy conservation
5 1
My = u (1.'), Ey = 5
e Scaling invariance (A > 0)

1 t x
Mo = (35 3)s el = lule, E@Y = 5E



e Solitons are special solutions defined by (A > 0, xp € R)

1 1 1
RM™O(t,x) = Q[ ~(x — x0) — —=t

3 1/4
(2X)> ) Q,/_Q+Q5:07 E(Q):O

cosh?

a0 = (

e Global existence for “small” L? norm: [Weinstein, 83]

|uolli2 < || Q]2 = the solution is global in H*

Main questions of this talk:

e Blow up problem for initial data:

o € HY, [Qlle < lluollz < [[Qlli2 + a0, a0 <1

e Classification of all possible behaviors for ||ug — Q|| ;1 < 1



First results on blow up for L2 critical gKdV
[Martel-Merle, 00-02]

Assume

u € HY, Q2 < lluollz < Q2 + a0, ap <1
Then:

(i) Blow up in finite or infinite time if Eg < 0.
No information on the blow up regime.

(ii) Assuming blow up, Q is the universal blow up profile.

(iii) Blow up in finite time if Eg < 0 and [ _; x®ud(x)dx < occ.
Moreover, for a sequence t, — T,

- C(w)

(e < 72

(iv) Global existence for minimal mass initial data with decay.



Blow up for L? critical NLS

. 4
(NLS) {’af”+A“+|”|N”:0’ (t,x) € [0, T) x RV
U|t:0:U0

AQNLs — @nis + QNLS =0, Qws>0even

e [Merle, 93]

The only H! blow up solution of (NLS) with minimal mass
luoll 2 = || @nrs]| 2 is (up to symmetries)

1 o x? s X
Snis(t, x) = N2 e "o =) Qurs (;)
e Existence of unstable nontrivial ﬁ blow up solutions.
[Bourgain-Wang, 98], [Krieger-Schlag, 09],
[Merle-Raphaél-Szeftel, 11]



“log-log” blow up for (NLS)

e [Landman-Papanicolaou-Sulem-Sulem, 88], etc.

log-log conjecture

e [Perelman, 01]

Construction of a large class of log-log blow up solutions close to
QNLS-

e [Merle-Raphaél, 03-06]

(i) Construction of an open set in H! of log-log blow up solutions
close to Qurs (including all H* data with Ey < 0 close to Qnrs)

log | log( T —
Vo (o)l ~ /BT =0

(ii) Quantization of the focused mass at the blow up point x(T):

lunes(8)]? = [|@nisl|Tabumx(m) + U, u* € L2



Statement of new results for critical gKdV
[Martel-Merle-Raphaél, 12]

Define (ap < 1)

x1022(x)dx < 1}
x>1

A= {uo = Q + g0 with ||o||yr < ap and /
THM 1 (Negative or zero energy data close to Q)
Let up € A. If E(ug) < 0 and u(t) is not a soliton, then u(t) blows
up in finite time T with
Qe
HUX( )HL2t T/ (-,— t)

u(t) — 1 - —x(t) u* in L2
(") Aé(t)Q< A(t) )th .

Alt) t:JTEO(T_ £, x(t) t~T 03(T 1— t)

for £o(up) >0

See [Rodnianski-Sterbenz, 10], [Raphaél-Rodnianski, 12],
[Merle-Raphaél-Rodnianski, 11]



THM 2 (Existence and uniqueness of minimal mass blow up sol.)

(i) There exists a solution S € C((0, +00), H') with minimal mass

ISz = 1Rl 2

such that )
IS0l ~ 190

1 _[.+i+et
S(t)—lQ<+tt+C>—>0 in L% as t |0,
t2

where € is a universal constant.

stlO0,

(i) Let u(t) be a solution with minimal mass which blows up in
finite time. Then, u = S up to invariances.



THM 3 (Classification and universality of S(t))

Let 0 < ap < a® < 1. Only three scenarios are possible for ug € A

(Blow up) u(t) blows up in finite time with blow up rate %
(Soliton) u(t) is global, bounded and locally converges to a

soliton as t — +00.

(Exit) there exists t* > 0 such that u(t) exits at t = t* the L?
neighborhood of size a* of the family of solitons.

Moreover, for some 7%, u(t*) is L? close (related to ap) to
S(7*) (up to symmetries).

Consequence: Assume that S(t) scatters at +00. Then, the
(Exit) scenario implies scattering.

Classification results for NLKG, NLW [Nakanishi-Schlag, 10],
[Krieger-Nakanishi-Schlag, 10] ([Duyckaerts-Kenig-Merle, 06-09])

Stable manifold: [Krieger-Schlag, 05], [Beceanu, 07]



Blow up rates for initial data with slow decay uy € A
THM 4 (Unstable blow up rates)

There exist blow up solutions with the following blow up rates:

11
13’

(i) Blow up in finite time: for any v >

|ux(t)||2 ~t™" as t—0F.
(ii) Blow up in infinite time:

llux(t)| 2 ~ €' as t — +oo.
For any v > 0,

lux(t)|| 2 ~ t¥ as t — 4o0.

Moreover, such solutions can be taken arbitrarily close to solitons.

See [Krieger-Schlag-Tataru, 08], [Bejenaru-Tataru, 09],
[Donninger-Krieger, 12], [Perelman, 12]



Formal derivation of the dynamics in A

= L0 (29). a-asw
B CANSTR ’
. At A Xt A A — 1
e = =55 (AQs)* = (@) +b P AQy = 5 Qb+ y(Qb)y.

= = A2NAQp + (QF — N2 Qp + @) +X3bP =0
Fix \2x; = 1 and —A\?\; = b. At first order in b,
bAQ + b(LP) + X3b:P + O(b*) =0
where LP = —P"” + P — 5Q*P. We fix

(LP) = —AQ and X3b, = —2b°



Combining the equations of A; and by, one gets
d (b 1 At
el (N B SALYNS I
dt <)\2> A2 (bt A b) 0

b
At = 2o lo (scaling law)

and

Three scenarios:
> lg > 0:

At =—ly<0 = blowupand \(t) =lo(T — t)

Example: Eg < 0 but also Ey = 0 (rigidity argument)
> (o =0:
A(t) = Cte = soliton

> (p < 0:

At = —lop >0 = defocusing and then (Exit)



Full ansatz - control of the remainder term

We decompose the solution u(t, x) as

o6 = 110 (5307 ) e (4550

where (b, A, x) are adjusted to obtain orthogonality conditions on ¢.

The function ¢(s,y) and (b, A, x) are governed by
es — (Le)y = (B 4+b) AQ + (2 —1) Q+5:Ac + O(b* + |bs| + ||?)

and [eQ = [eAQ = [eyAQ =0 (s is the rescaled time % = )

The uniform control of some norm of ¢ is a fundamental point in
all the regimes to justify the dynamics of the parameters.



Tools for a simplified linear model (with orthogonality)
es — (Le)y, = a(s)AQ + B(s) Q'

» Energy conservation at the level of ¢:
Vs, (Le(s),e(s)) = Cte
» Monotonicity argument: for A > 1,
d

A
G B 5@ sy < e ey

» Viriel type argument (under orthogonality conditions):

d

=2 [ vt = Hiee) = polle(s)



Main estimate on ¢

Definition of a Liapunov functional for £(s)

F(s) ~ / (20 + 20 — 5Q*204] (s, y)dy

where
o Y1(y) =0fory < —A ¢hi(y) =1fory > —3A,
e n(y) =0 for y < —A, 1/’2()/)=1+yfory>—%A,

F(t) is a mixed energy monotonicity and Viriel quantity

PROP. Under a suitable assumption on space decay of (s, y) on
the right (which requires decay on the initial data), it holds

d (]—") ey, _ b

ds \ \2 A2 Y2

The blue term is reminiscent of the "Kato smoothing effect”.
4 . .
The term % is due to the equation of Qp (order b only).



Full estimates

e Control of )%

b(ts)  b(t1)
() A3(t)

_P(n) |, () | F(n)
S N(0) " V() R

e Equation of A
[X2Xe + b S lle() 7+ (b1

e Control of €

F(t) ty Hg(t)Hi’foc F(t1) bX(t1)) b3(t2)
o, S ey o) * ()



Analysis of the (Exit) case

Definition of the L2 (Exit) time (a* small but fixed) :
t* =sup{0 < t < T, such that Vt' € [0, t], u(t) € Tar}

where 7o« is an L? tube around the family of solitons:

Tor = ue H' with inf Hu—1Q<‘_XO>

A0>0, x0€R )\% )\0
0

L2

New and general approach to:
1. Construct the minimal mass solution S

2. Prove universality of the (Exit) case and a “no-return
lemma"” based on the properties of S



Existence of a minimal mass solution

Choose a sequence of well-prepared initial data, for example:

1 c
un(0) = Qpy0), bn(0) = = llun(O)l| 2~ QU2 ~ =~ €n(0) =0

(Blowup) and (Soliton) are not possible = (Exit) regime

U (f x X — Xp(t)
0 g e ()

(An)e ~ =bn(0),  An(t) ~ 1= ba(0)t, bn(t) = ba(0)A5(2).
At the (Exit) time £5: ba(£) = —a®, A2(ts) ~ 248 ~ na*

(defocalisation)



Renormalize the solution at t}, :

1
Va(T,x) = A3 (£ un(ty + TAN(E), An(t3)x + xa(17)).

() = - Xl
) Aén(T)(van+€V")<’ Ava(r) )
A7) ~ /\ngt*) [1— ba(0)(t + TA3(£1))]
~ ey (8 = B O] = 1= rho(g;) = 1+ 7.

Mass, energy conservation and £,(0) = 0 = sup, |ley, || < d(a™).

Extract a weak limit v,(0) — v(0) in H! weak such that the
corresponding solution v(7) blows up backwards at 7 ~ —-..

Moreover, |[v(0)||;2 < ||Q||,2 by weak limit and blow up yields

IV(O)lle2 = 1Rl 2-



Description of the general (Exit) scenario

PROP Let (u,(0)) be a sequence in H! satisfying:
1. up(0) € A;
2. ua(0) = @l <
3. the solution u, satisfies the (Exit) scenario
Then, there exists 7% = 7*(a*) such that

1 1
Ad(tn)un (tn, An(ts) - +xa(t)) = AS(T7)S (77, As(77) - +x5(77))
in L2 as n — 4.

The idea of the proof is similar as before, except that the H*
bound is lost for general (not well-prepared) initial data.

The uniqueness of S is decisive.



