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Introduction

Let Ω ⊂ R
d with Lipschitz boundary ( container ) and let

u denote the configuration of the two-fluid system.
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Introduction

Let Ω ⊂ R
d with Lipschitz boundary ( container ) and let

u denote the configuration of the two-fluid system.

Let W be a nonnegative bulk free energy with

{W = 0} = {a, b}.
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Introduction

Gibb’s criteria for equilibria leads to the study of the problem

(P ) minimize

∫

Ω
W (u(x)) dx under the constraint

∫

Ω
u(x) dx = m

where m = (θa+ (1 − θ)b)Ld(Ω), 0 < θ < 1.
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Introduction

Naturally (P ) may admit infinitely many solutions.
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Introduction

Naturally (P ) may admit infinitely many solutions.

In order to select physically preferred solutions,
following the ideas of the gradient theory of phase
transitions (Van der Waals, 1893), the following model
was introduced by Cahn and Hilliard (1958) which
assigns to each configuration u of the two-fluid system
an energy of the form:

Eε(u) =

∫

Ω
W (u(x)) + ε2|∇u(x)|2 dx,

where ε > 0 is a small parameter.
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Introduction

The competing effects of the two integrals favor
separation of phases (i.e. configurations where u takes
values close to a and b), while penalizing
inhomogeneities of u and , consequently, the
introduction of too many transition regions.
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Introduction

The competing effects of the two integrals favor
separation of phases (i.e. configurations where u takes
values close to a and b), while penalizing
inhomogeneities of u and , consequently, the
introduction of too many transition regions.

Gurtin (1983) conjectured that solutions of

(Pε) minimize Eε(u) under the constraint

∫

Ω
u(x) dx = m

converge to minimizers of (P ) having minimal interfacial
energy.

Coupled second order singular perturbations for phase transitions CMU 06/09/11 – p. 5/41



Introduction

Gurtin’s conjecture was proved (using De Giorgi’s
notion of Γ-convergence and following the ideas of
Modica and Mortola) ) by Carr, Gurtin and Slemrod
(1984) in the scalar case d = 1 and independently by
Modica and Sternberg (1987 − 1988) in the higher
dimensional case d ≥ 2.
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Introduction

Gurtin’s conjecture was proved (using De Giorgi’s
notion of Γ-convergence and following the ideas of
Modica and Mortola) ) by Carr, Gurtin and Slemrod
(1984) in the scalar case d = 1 and independently by
Modica and Sternberg (1987 − 1988) in the higher
dimensional case d ≥ 2.

The vectorial case (u : Ω ⊂ R
d → R

N , d,N ≥ 2) was
considered by Fonseca and Tartar (1989), Sternberg
(1991) and Barroso and Fonseca (1994).
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Introduction

Further generalizations (not exhaustive):

case where W has more than two wells (Baldo,
Sternberg, Ambrosio);
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Introduction

Further generalizations (not exhaustive):

case where W has more than two wells (Baldo,
Sternberg, Ambrosio);

coupled problem (Bouchitte’, Owen and Sternberg,
Fonseca and Popovici).
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Introduction

The characterization of the Γ-limit for functionals
involving second order terms ( in the context of elastic
solid-solid phase transitions) is due to Conti, Fonseca,
Leoni for an energy of the form:

∫

Ω
W (∇u) + ǫ2|∇2u|2 dx.
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Introduction

The characterization of the Γ-limit for functionals
involving second order terms ( in the context of elastic
solid-solid phase transitions) is due to Conti, Fonseca,
Leoni for an energy of the form:

∫

Ω
W (∇u) + ǫ2|∇2u|2 dx.

We refer also to Chermisi, Dal Maso, Fonseca, Leoni,
for a model on pattern formation based on
Ginzburg-Landau energy

∫

Ω
W (u) − qǫ2|∇u|2 + ǫ4|∇2u|2 dx, q > 0
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Statement of the problem

In this work (two-wells, coupled, vectorial, dependence on
second gradient ) we consider the sequence of energy
functionals

1

ε

∫

Ω
f
(

x, u(x), ε∇u(x), ε2∇2u(x)
)

dx
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Statement of the problem

In this work (two-wells, coupled, vectorial, dependence on
second gradient ) we consider the sequence of energy
functionals

1

ε

∫

Ω
f
(

x, u(x), ε∇u(x), ε2∇2u(x)
)

dx

where u ∈W 2,2(Ω; RN ) is a vector-valued function which
describes the state of the mixture of N fluids
(N ∈ N, N ≥ 2), Ω is an open bounded subset of R

d

(d ∈ N, d ≥ 2) with Lipschitz boundary which represents the
container and ε > 0 is a small parameter.
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Statement of the problem

We assume that each scalar component of u, which
identifies the density of an ingredient of the mixture is
nonnegative, that is,

u ∈ R
N
+ := [0,+∞)N .
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Statement of the problem

We assume that each scalar component of u, which
identifies the density of an ingredient of the mixture is
nonnegative, that is,

u ∈ R
N
+ := [0,+∞)N .

Therefore, the bulk energy density f(x, u, ξ,Λ) is defined on
Ω × R

N
+ × R

N×d × T N×N×d, where we denote by SymN the
space of symmetric N ×N matrices and by T N×N×d the
space of tensors Λ = (Λ1, . . . ,Λd), Λi ∈ SymN , i = 1, . . . , d.
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Statement of the problem

We assume that
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Statement of the problem

We assume that

[(H1)] f : Ω × R
N
+ × R

N×d × T N×N×d → [0,+∞) is
continuous;
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Statement of the problem

We assume that

[(H1)] f : Ω × R
N
+ × R

N×d × T N×N×d → [0,+∞) is
continuous;

[(H2)] f(x, u,O,O) = 0 if and only if u ∈ {α, β} ⊂ R
N
+ , α 6= β;

Coupled second order singular perturbations for phase transitions CMU 06/09/11 – p. 11/41



Statement of the problem

[(H3)] there exists a continuous function
g : Ω × R

N
+ → [0,+∞) such that

1

C0

(

g(x, u)+|ξ|2+|Λ|2
)

≤ f
(

x, u, ξ,Λ
)

≤ C0

(

g(x, u)+|ξ|2+|Λ|2
)

for all (x, u, ξ,Λ) ∈ Ω × R
N
+ × R

N×d × T N×N×d, where g
satisfies

1

C0
|u|q − C0 ≤ g(x, u) ≤ C0(1 + |u|q)

for some q ≥ 2, some C0 > 0,
and for all (x, u) ∈ Ω × R

N
+ ;
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Statement of the problem

[(H4)] for every x0 ∈ Ω and every τ > 0 there exists δ > 0
such that |x− x0| < δ implies

|f(x, u, ξ,Λ) − f(x0, u, ξ,Λ)| ≤ τf(x, u, ξ,Λ)

for all (u, ξ,Λ) ∈ R
N
+ × R

N×d × T N×N×d;
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Statement of the problem

[(H4)] for every x0 ∈ Ω and every τ > 0 there exists δ > 0
such that |x− x0| < δ implies

|f(x, u, ξ,Λ) − f(x0, u, ξ,Λ)| ≤ τf(x, u, ξ,Λ)

for all (u, ξ,Λ) ∈ R
N
+ × R

N×d × T N×N×d;

[(H5)] for every M > 0 there exists CM > 0 such that for
every u1, u2 ∈ R

N
+ with |u1|, |u2| ≤M , and every

(x, ξ,Λ) ∈ Ω × R
N×d × T N×N×d,

∣

∣f(x, u1, ξ,Λ) − f(x, u2, ξ,Λ)
∣

∣ ≤ CM |u1 − u2|(1 + |ξ|2 + |Λ|2);
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Statement of the problem

[(H6)] there exist δ0 > 0 and C > 0 such that

f(x, u,O,O) ≤ C|u− α|2

whenever |u− α| < δ0 and x ∈ Ω, and

f(x, u,O,O) ≤ C|u− β|2

whenever |u− β| ≤ δ0 and x ∈ Ω.
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Statement of the problem

We also assume that the total amount of bulk material is
preserved, i.e.,

∫

Ω
u(x) dx = V, (0.1)

for some V = (V 1, . . . , V N ) ∈ R
N
+ satisfying

|Ω|αi ≤ V i ≤ |Ω|βi, for every i = 1, . . . , N , (0.2)

where αi and βi are the i-th components of α and β,
respectively, and |Ω| denotes the Lebesgue measure of Ω.
We write

V := {u : (0.1), (0.2) hold }.
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Statement of the problem

The aim of this paper is to study the asymptotic behavior
as, ε→ 0+, of the sequence of functionals

Eε(u; Ω) :=
1

ε

∫

Ω
f(x, u(x), ε∇u(x), ε2∇2u(x)) dx,

for u ∈W 2,2(Ω; RN
+ ),

(0.3)

subject to the constraints (0.1) and (0.2).
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BV functions

We briefly recall some basic facts about functions of
bounded variation.
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BV functions

We briefly recall some basic facts about functions of
bounded variation.

A function u ∈ L1(Ω; RN ) is a function of bounded variation,
briefly u ∈ BV (Ω; RN ), if its distributional derivative Du is a
bounded N×d-valued Radon measure. This means that for
all ψ ∈ C1

c (Ω) the integration-by-parts formula
∫

Ω

∂ψ

∂xj
ui dx =

∫

Ω
ψDui

j , i = 1, . . . , N, j = 1, . . . , d,

holds.
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BV functions

Clearly, we have that u ∈W 1,1(Ω; RN ) when Du ∈ L1(Ω; RN )

and the measures Dui
j are absolutely continuous with

respect to the Lebesgue measure.
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BV functions

Clearly, we have that u ∈W 1,1(Ω; RN ) when Du ∈ L1(Ω; RN )

and the measures Dui
j are absolutely continuous with

respect to the Lebesgue measure. Let Ωu be the set of
points where the approximate limit of u exists, i.e., x ∈ Ω

such that there exist z ∈ R
N with

lim
ε→0

∫

Q(x,ε)
|u(y) − z| dy = 0.

If x ∈ Ωu and z = u(x) we say that u is approximately continuous
at x (or that x is a Lebesgue point of u). The function u is
approximately continuous Ld-a.e. x ∈ Ωu and

Ld(Ω \ Ωu) = 0. (0.5)

Coupled second order singular perturbations for phase transitions CMU 06/09/11 – p. 18/41



BV functions

We have the following Lebesgue-Radon-Nikodým
decomposition

Du = ∇uLd Ω +Dsu

where ∇u ∈ L1(Ω; RN×d) is the density of the absolutely
continuous part of Du and Dsu is the singular part of Du
with respect to Ld.
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BV functions

Let Su be the jump set of this function, i.e., the set of points
x ∈ Ω \ Ωu for which there exists a, b ∈ R

N and a unit vector
ν ∈ Sd−1, normal to Su at x, such that a 6= b and

lim
ε→0+

1

εd

∫

{y∈Qν(x,ε) : (y−x)·ν>0}
|u(y) − a| dy = 0 (0.6)

and

lim
ε→0+

1

εd

∫

{y∈Qν(x,ε) : (y−x)·ν<0}
|u(y) − b| dy = 0. (0.7)

The triple (a, b, ν) uniquely determined by (0.6) and (0.7) up
to permutation of (a, b), and a change of sign of ν and is
denoted by (u+(x), u−(x), νu(x)).
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BV functions

We report the following Structure Theorem for
BV -functions.
We need first some terminology: A Hd−1-measurable set
E ⊂ R

d is said to be a countably Hd−1-rectifiable set if it can
be covered Hd−1 almost everywhere by a countable family
of (d− 1)-dimensional surfaces of class C1.
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BV functions

We report the following Structure Theorem for
BV -functions.
We need first some terminology: A Hd−1-measurable set
E ⊂ R

d is said to be a countably Hd−1-rectifiable set if it can
be covered Hd−1 almost everywhere by a countable family
of (d− 1)-dimensional surfaces of class C1.

Theorem 0.2 (Structure Theorem for BV -functions ). If Ω ⊂ R
d is open

and u ∈ BV (Ω; RN ), then Su is a countably Hd−1-rectifiable set

oriented by νu, and Dsu can be decomposed as Dcu+Dju, where

|Dcu|(E) = 0 for every Borel set E with Hd−1(E) <∞, and

Dju = (u+ − u−) ⊗ νuH
d−1 Su.
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Limiting energy

To describe the limiting energy and state the main theorem,
we need to introduce some notation.

Given ν ∈ S
d−1 := {x ∈ R

d : ‖x‖ = 1} let {ν1, . . . , νd−1, ν} be
an orthonormal basis of R

d,

Let Sν be the strip:

Sν :=

{

x ∈ R
d : |y · ν| <

1

2

}

and let Qν denote an open unit cube centered at the origin
with two of its faces normal to ν.
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Limiting energy

We define the class of admissible density functions by

A(ν) :=

{

w ∈W 2,2
loc (Sν ; R

N
+ ) : w(y) = α if y · ν = −

1

2
,

w(y) = β if y · ν =
1

2
,

w(y) = w(y + kνi),

for all y ∈ Sν , i = 1, . . . , d− 1, and k ∈ Z

}

.

(0.8)
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Limiting energy

We also introduce the surface energy density

σ : Ω × S
d−1 → [0,+∞) defined by

σ(x, ν) := inf

{
∫

Qν

1

t
f
(

x,w(y), t∇w(y), t2∇2w(y)
)

dy

t > 0, w ∈ A(ν)

}

. (0.9)
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Limiting energy

The limiting energy F : L1(Ω; RN
+ ) → [0,+∞] is given by

F (u; Ω):=











∫

Su

σ
(

x, νu(x)
)

dHd−1(x) if u ∈ BV
(

Ω; {α, β}
)

∩ V ,

+∞ otherwise,
(0.10)

where Su is the set of approximate jump points of u and νu

is the generalized unit inner normal to Su
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Main result

Theorem 0.3. Let Ω be a bounded open subset of R
d with Lipschitz

boundary. Assume further that (H1)–(H6) hold. Then, for every εn → 0+

as n→ +∞, the sequence of functionals

Fεn
: L1(Ω; RN

+ ) → [0,+∞] defined by

Fεn
(u; Ω) :=

{

Eεn
(u; Ω) if u ∈W 2,2(Ω; RN

+ ) ∩ V ,

+∞ otherwise
(0.11)

Γ-converges, with respect to the L1(Ω; RN
+ )-convergence, to the

limiting functional F : L1(Ω; RN
+ ) → [0,+∞] defined in (0.10).
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Remark

Hypotheses (H5) and (H6) are needed in order to comply
with the volume constraint.
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Γ-convergence

Taking into account the definition of Γ-convergence, in order
to prove Theorem 0.3 it suffices to show:

(Lower bound) For every u ∈ L1(Ω; RN
+ ), for every sequence

ǫn → 0+ and for every sequence un → u in L1(Ω; RN
+ ),

F (u) ≤ lim inf
n→∞

Fǫn
(un),

Coupled second order singular perturbations for phase transitions CMU 06/09/11 – p. 28/41



Γ-convergence

(Upper bound) For every η > 0, every u ∈ L1(Ω; RN
+ ), and

every sequence ǫn → 0+, there exists {un} ⊂ L1(Ω; RN
+ )

such that un → u in L1(Ω; RN
+ ) and

lim sup
n→∞

Fǫn
(un) ≤ F (u) + η.
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Sketch of proofs

The first step is to show that for every sequence
un ∈W 2,2(Ω; RN

+ ) ∩ V such that un → u in L1(Ω; RN
+ ) and for

every εn → 0+ we have that

lim inf
n→∞

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx = +∞,

unless u ∈ BV (Ω; {α, β}).
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Sketch of proofs

The first step is to show that for every sequence
un ∈W 2,2(Ω; RN

+ ) ∩ V such that un → u in L1(Ω; RN
+ ) and for

every εn → 0+ we have that

lim inf
n→∞

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx = +∞,

unless u ∈ BV (Ω; {α, β}). The proof (by contradiction) relies
on hypotheses (H2) and (H3) and follows the ideas in
Fonseca-Tartar.

Coupled second order singular perturbations for phase transitions CMU 06/09/11 – p. 30/41



Sketch of proofs

Just an outline of the proof in the case we suppose
u = βχE + α(1 − χE) but u /∈ BV (Ω; RN

+ ) (i.e. PerΩE = +∞).
Suppose that there exist εn → 0+ and un → u in L1(Ω; RN

+ )

such that

sup
n

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx ≤ C.
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Sketch of proofs

Just an outline of the proof in the case we suppose
u = βχE + α(1 − χE) but u /∈ BV (Ω; RN

+ ) (i.e. PerΩE = +∞).
Suppose that there exist εn → 0+ and un → u in L1(Ω; RN

+ )

such that

sup
n

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx ≤ C.

Defining ḡ(u) := minx∈Ω̄g(x, u) where g is the function in
(H3) and

Φ(v) := inf

{
∫ 1

−1

√

min{ḡ(ψ(s)),M}|ψ′(s)| ds,

ψ continuous and piecewise C1 ψ(−1) = α, ψ(1) = v
}

,
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Sketch of proofs

we have that Φ is Lipschitz continuous and Φ ◦ u = χEΦ(β)
satisfies |D(Φ ◦ u)|(Ω) < +∞. Hence PerΩ(E) <∞, a
contradiction.
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Sketch of proofs

Given the target function:

u0(x) :=











β if x · ν > 0,

α if x · ν < 0,
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Sketch of proofs

Given the target function:

u0(x) :=











β if x · ν > 0,

α if x · ν < 0,

Using a slicing argument ( similarly to Chermisi-Dal Maso-
Fonseca - Leoni) we derive a technical lemma that allows
us to replace a sequence {vk} converging to u0 in L1(Ω; RN

+ )

by a sequence {wk} ⊂ A(ν) still converging to u0 in
L1(Ω; RN

+ ), without increasing the total energy.
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Sketch of proofs

This sequence is obtained by an appropriate convex
combination between vk and the convolution of u0 ( on the
cube Qν) and then extended by periodicity to the strip Sν .

This technical result is used in both the lower and upper
bound inequalities.
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Sketch of proofs: lower bound

Since

fn :=

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx

forms a sequence of nonnegative functions bounded in L1

norm, (up to a subsequence) converges weakly* in the
sense of measures to some nonnegative bounded Radon
measure ζ.
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Sketch of proofs: lower bound

Since

fn :=

∫

Ω

1

εn
f(x, un(x), εn∇un(x), ε2n∇

2un(x)) dx

forms a sequence of nonnegative functions bounded in L1

norm, (up to a subsequence) converges weakly* in the
sense of measures to some nonnegative bounded Radon
measure ζ.

We just need to show that

ζa(x) ≥ σ(x, νu(x)), for Hd−1 a.e. x ∈ Ω ∩ Su,

where ζa denotes the absolutely continuous part of ζ w.r.to
the measure Hd−1⌊∂E.
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Sketch of proofs: lower bound

The result follows from Lebesgue Besicovitch derivation
theorem since, choosing rk → 0+ s.t. ζ(∂(x+ rkQν)) = 0, we
have that

ζa(x) = lim
r→0+

ζ(Qν(x; r))

rd−1

= lim
k→∞

1

rd−1
k

lim
n→∞

Eεn
(un;Qν(x; rk)).
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Sketch of proofs: lower bound

The result follows from Lebesgue Besicovitch derivation
theorem since, choosing rk → 0+ s.t. ζ(∂(x+ rkQν)) = 0, we
have that

ζa(x) = lim
r→0+

ζ(Qν(x; r))

rd−1

= lim
k→∞

1

rd−1
k

lim
n→∞

Eεn
(un;Qν(x; rk)).

Change variables ( to the unit cube), diagonalization
provedure and then apply the technical lemma in order to
get a sequence in A(ν).
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Sketch of proofs: upper bound

Recall: (Upper bound) For every η > 0, every
u ∈ L1(Ω; RN

+ ), and every sequence ǫn → 0+, there
exists {un} ⊂ L1(Ω; RN

+ ) such that un → u in L1(Ω; RN
+ )

and
lim sup
n→∞

Fǫn
(un) ≤ F (u) + η.
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Sketch of proofs: upper bound

Recall: (Upper bound) For every η > 0, every
u ∈ L1(Ω; RN

+ ), and every sequence ǫn → 0+, there
exists {un} ⊂ L1(Ω; RN

+ ) such that un → u in L1(Ω; RN
+ )

and
lim sup
n→∞

Fǫn
(un) ≤ F (u) + η.

By blow-up techniques ( Fonseca - Muller ) to reduce
the problem to the case where u is like the target
function u0.
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+ ), and every sequence ǫn → 0+, there
exists {un} ⊂ L1(Ω; RN

+ ) such that un → u in L1(Ω; RN
+ )

and
lim sup
n→∞

Fǫn
(un) ≤ F (u) + η.

By blow-up techniques ( Fonseca - Muller ) to reduce
the problem to the case where u is like the target
function u0.
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Sketch of proofs: upper bound

This is done step by step relying on the following property
of σ that results from (H4):
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Sketch of proofs: upper bound

This is done step by step relying on the following property
of σ that results from (H4):

For all (x0, ν) ∈ Ω × S
d−1 and τ > 0 there exists δ > 0 such

|x− x0| < δ implies that

|σ(x, ν) − σ(x0, ν)| ≤ τC
(

1 + |α|q + |β|q + |α− β|2
)

.
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Sketch of proofs: upper bound

first for a cube assuming no explicit dependence on x,
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Sketch of proofs: upper bound

first for a cube assuming no explicit dependence on x,

then for a cube allowing for dependence on x,
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Sketch of proofs: upper bound

first for a cube assuming no explicit dependence on x,

then for a cube allowing for dependence on x,

next for a planar interface ( using Whitney’s Covering
Theorem ),
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Sketch of proofs: upper bound

first for a cube assuming no explicit dependence on x,

then for a cube allowing for dependence on x,

next for a planar interface ( using Whitney’s Covering
Theorem ),

then to a polygonal interface and finally for arbitrary
sets of finite perimeter (by standard approximation
results of sets of finite perimeter by polyhedral sets).
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Upper bound

In each step we construct a sequence vn,η satisfying the
upper bound inequality and then change it in order to
comply with the volume constraint through:

un,η := vn,η + bn,η, bn,η :=
1

|Ω|

∫

Ω
u0 − vn,η dx,

and rely on(H5) and (H6) so that the upper bound inequality
still holds.
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