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Aim of the work

• Crack growth: We want to determine the evolution of a brittle body

Griffith’s principle: Competition between
? the energy spent to produce new crack (surface energy)

? the energy released by crack’s growth (volume energy)

• Quasistatic: The configuration is a global minimizer of the total energy

A law of energy balance holds and the process is rate-independent

• Finite elasticity: Orientation-reversing deformations are penalized

All previous existence results are incompatible with non-interpenetration
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Setting of the problem

Ω

Γ

Ω ⊆ R
n elastic body

Γ ⊆ Ω crack of measure Hn−1(Γ)<+∞

u : Ω \ Γ → R
n deformation of the elastic part

t ∈ [0, T ] time

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 3 / 20



Setting of the problem

Ω

Γ

Ω ⊆ R
n elastic body

Γ ⊆ Ω crack of measure Hn−1(Γ)<+∞

u : Ω \ Γ → R
n deformation of the elastic part

t ∈ [0, T ] time

E(u, Γ) := W(u) + Hn−1(Γ)

W(u) :=

∫

Ω

W (∇u(x)) dx bulk energy
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t ∈ [0, T ] time

E(u, Γ) := W(u) + Hn−1(Γ)

W(u) :=

∫

Ω

W (∇u(x)) dx bulk energy

u
∣

∣

∂Ω
= ψ(t) boundary condition (time-dependent datum)

(where ψ is extended to the whole of Ω )
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Setting of the problem

Ω

Γ

Ω ⊆ R
n elastic body

Γ ⊆ Ω crack of measure Hn−1(Γ)<+∞

u : Ω \ Γ → R
n deformation of the elastic part

t ∈ [0, T ] time

E(u, Γ) := W(u) + Hn−1(Γ)

W(u) :=

∫

Ω

W (∇u(x)) dx bulk energy

u
∣

∣

∂Ω
= ψ(t) boundary condition (time-dependent datum)

(where ψ is extended to the whole of Ω )

Problem
Find t 7→ (u(t), Γ(t)) such that (u(t), Γ(t)) minimizes E(u, Γ)

taking into account the irreversibility of fracture
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Minimum energy configurations
Fixed t ∈ [0, T ] , we consider the solutions to the static problem

Equilibria (Griffith)

(u(t), Γ(t)) should be stationary for E(v , Γ)

on the set {(v , Γ): v
∣

∣

∂Ω
= ψ(t) , Γ ⊇ Γ(t)}

The notion of critical point is not defined in this setting!
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Minimum energy configurations
Fixed t ∈ [0, T ] , we consider the solutions to the static problem

Equilibria (Griffith)

(u(t), Γ(t)) should be stationary for E(v , Γ)

on the set {(v , Γ): v
∣

∣

∂Ω
= ψ(t) , Γ ⊇ Γ(t)}

Among the stationary points, we consider only the global minima

Unilateral minimum problem

E(u(t), Γ(t)) ≤ E(v , Γ) ∀ v
∣

∣

∂Ω
= ψ(t) ∀ Γ ⊇ Γ(t)
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Minimum energy configurations
Fixed t ∈ [0, T ] , we consider the solutions to the static problem

Equilibria (Griffith)

(u(t), Γ(t)) should be stationary for E(v , Γ)

on the set {(v , Γ): v
∣

∣

∂Ω
= ψ(t) , Γ ⊇ Γ(t)}

Among the stationary points, we consider only the global minima

Unilateral minimum problem

E(u(t), Γ(t)) ≤ E(v , Γ) ∀ v
∣

∣

∂Ω
= ψ(t) ∀ Γ ⊇ Γ(t)

We consider quasistatic evolutions

Evolution problem

Find t 7→ (u(t), Γ(t)) with the unilateral minimum property at every t
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Strategy

E(u, Γ) := W(u) + Hn−1(Γ)

1 Initial data: (u0, Γ0) minimal at t = 0
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Strategy

E(u, Γ) := W(u) + Hn−1(Γ)

1 Initial data: (u0, Γ0) minimal at t = 0

2 Time discretization: (t0
k = 0, t1

k , . . . , tk−1
k , tk

k = T ) such that

t0
k < t1

k < . . . < tk−1
k < tk

k and max
i

(t i
k − t i−1

k ) → 0 as k→∞
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k , Γ0

k ) := (u0, Γ0)

• (ui
k , Γi

k) a solution of: min {E(u, Γ): u
∣

∣

∂Ω
= ψ(t i

k ) , Γ ⊇ Γi−1
k }

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 5 / 20



Strategy

E(u, Γ) := W(u) + Hn−1(Γ)

1 Initial data: (u0, Γ0) minimal at t = 0

2 Time discretization: (t0
k = 0, t1

k , . . . , tk−1
k , tk

k = T ) such that

t0
k < t1

k < . . . < tk−1
k < tk

k and max
i

(t i
k − t i−1

k ) → 0 as k→∞

3 Approximate solutions:

• (u0
k , Γ0

k ) := (u0, Γ0)

• (ui
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k) a solution of: min {E(u, Γ): u
∣

∣
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= ψ(t i

k ) , Γ ⊇ Γi−1
k }

4 Time-continuous limit as k→∞ : (u(t), Γ(t)) with t 7→ Γ(t) increasing
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Strategy

E(u, Γ) := W(u) + Hn−1(Γ)
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2 Time discretization: (t0
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k < tk
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k − t i−1

k ) → 0 as k→∞

3 Approximate solutions:

• (u0
k , Γ0

k ) := (u0, Γ0)

• (ui
k , Γi

k) a solution of: min {E(u, Γ): u
∣

∣

∂Ω
= ψ(t i

k ) , Γ ⊇ Γi−1
k }

4 Time-continuous limit as k→∞ : (u(t), Γ(t)) with t 7→ Γ(t) increasing

5 Global stability: (u(t), Γ(t)) unilateral minimum for every t

6 Energy-dissipation balance

⇒ We must control the bulk energy W(u) in the passage to the limit

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 5 / 20



Bulk energy with polynomial growth

W(u) :=

∫

Ω

W (∇u(x)) dx

In the limit process one makes use of the lower semicontinuity of W

This is guaranteed by some classical theorems of the calculus of variations

under assumptions of polynomial growth on the energy density W
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Bulk energy with polynomial growth

W(u) :=

∫

Ω

W (∇u(x)) dx

In the limit process one makes use of the lower semicontinuity of W

This is guaranteed by some classical theorems of the calculus of variations

under assumptions of polynomial growth on the energy density W

Previous existence results for crack growth:
• Dal Maso-Toader (2002), Chambolle (2003), and Francfort-Larsen (2003)

Linearized elasticity:
W (∇u) = |∇u − I|2
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Bulk energy with polynomial growth

W(u) :=

∫

Ω

W (∇u(x)) dx

In the limit process one makes use of the lower semicontinuity of W

This is guaranteed by some classical theorems of the calculus of variations

under assumptions of polynomial growth on the energy density W

Previous existence results for crack growth:
• Dal Maso-Toader (2002), Chambolle (2003), and Francfort-Larsen (2003)

Linearized elasticity:
W (∇u) = |∇u − I|2

• Dal Maso-Francfort-Toader (2005)

Nonlinear elasticity: W quasiconvex with polynomial growth

C1|∇u|
p

≤ W (∇u) ≤ C2|∇u|
p
, p > 1
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Finite elasticity

W(u) :=

∫

Ω

W (∇u(x)) dx

Local non-interpenetration

W (F ) = +∞ if det F ≤ 0
F ∈ M

n×n

W (F ) → +∞ if det F → 0+
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Local non-interpenetration

W (F ) = +∞ if det F ≤ 0
F ∈ M

n×n

W (F ) → +∞ if det F → 0+

Finite-energy deformations are orientation-preserving

W(u) < +∞ ⇒ det∇u(x) > 0 a.e.
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Finite elasticity

W(u) :=

∫

Ω

W (∇u(x)) dx

Local non-interpenetration

W (F ) = +∞ if det F ≤ 0
F ∈ M

n×n

W (F ) → +∞ if det F → 0+

Finite-energy deformations are orientation-preserving

W(u) < +∞ ⇒ det∇u(x) > 0 a.e.

Difficulty
Non-interpenetration is incompatible

with the assumption of polynomial growth made previously
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Finite elasticity

W(u) :=

∫

Ω

W (∇u(x)) dx

Local non-interpenetration

W (F ) = +∞ if det F ≤ 0
F ∈ M

n×n

W (F ) → +∞ if det F → 0+

Finite-energy deformations are orientation-preserving

W(u) < +∞ ⇒ det∇u(x) > 0 a.e.

Goal
Existence result compatible with non-interpenetration,

without assuming polynomial growth
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Functional setting

K

Ω

Γ

Ω ⊆ R
n open, Lipschitz

Γ ⊆ Ω rectifiable with Hn−1(Γ)< + ∞

Ω ⊂⊂ int K , with K compact, Lipschitz

u ∈ SBV (Ω; K )
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Functional setting

K

Ω

Γ

Ω ⊆ R
n open, Lipschitz

Γ ⊆ Ω rectifiable with Hn−1(Γ)< + ∞

Ω ⊂⊂ int K , with K compact, Lipschitz

u ∈ SBV (Ω; K )

Ju ⊆ Γ

Properties of SBV functions (De Giorgi-Ambrosio, 1988)
For every u ∈ SBV (Ω; K ) we can define

• the approximate gradient ∇u ∈ L1(Ω; Mn×n)

• the jump set Ju , a rectifiable subset of Ω

In Ω \ Ju the function u is approximately continuous
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Functional setting

K

Ω

Γ

Ω ⊆ R
n open, Lipschitz

Γ ⊆ Ω rectifiable with Hn−1(Γ)< + ∞

Ω ⊂⊂ int K , with K compact, Lipschitz

u ∈ SBV p(Ω; K )

Ju ⊆ Γ

SBV p(Ω; K ) :=
{

u ∈ SBV (Ω; K ) : ∇u ∈ Lp(Ω; Mn×n)
}

, p ≥ 2
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Functional setting

K

Ω

Γ

Ω ⊆ R
n open, Lipschitz

Γ ⊆ Ω rectifiable with Hn−1(Γ)< + ∞

Ω ⊂⊂ int K , with K compact, Lipschitz

u ∈ SBV p(Ω; K )

Ju ⊆ Γ

SBV p(Ω; K ) :=
{

u ∈ SBV (Ω; K ) : ∇u ∈ Lp(Ω; Mn×n)
}

, p ≥ 2

Weak∗ convergence in SBV p(Ω; K )
• uk → u a.e.

• ∇uk ⇀ ∇u weakly in Lp(Ω; Mn×n)

• Hn−1(Juk ) bounded

This notion of convergence is compact (Ambrosio, 1989)
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Bulk energy

u ∈ SBV p(Ω; K ) 7→ W(u) :=

∫

Ω

W (∇u(x)) dx
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Bulk energy

u ∈ SBV p(Ω; K ) 7→ W(u) :=

∫

Ω

W (∇u(x)) dx

• W : M
n×n → [0,+∞] continuous and polyconvex

W (F ) = G (adj1F , . . . , adjk F , . . . , adjnF )

with G continuous and convex

adjk F vector whose components are the minors of F of order k
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Bulk energy

u ∈ SBV p(Ω; K ) 7→ W(u) :=

∫

Ω

W (∇u(x)) dx

• W : M
n×n → [0,+∞] continuous and polyconvex

• Lower bound:

W (F ) ≥

n
∑

k=1

βk |adjk F |
pk

with βk > 0 for every k

p1 = p ≥ 2, pk ≥ p′ for k = 2, . . . , n − 1, pn > 1

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 9 / 20



Bulk energy

u ∈ SBV p(Ω; K ) 7→ W(u) :=

∫

Ω

W (∇u(x)) dx

• W : M
n×n → [0,+∞] continuous and polyconvex

• Lower bound:

W (F ) ≥
n

∑

k=1

βk |adjk F |pk

with βk > 0 for every k

p1 = p ≥ 2, pk ≥ p′ for k = 2, . . . , n − 1, pn > 1

Theorem (Fusco-Leone-March-Verde, 2006)
The functional W is lower semicontinuous

with respect to weak∗ convergence in SBV p(Ω; K )
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0
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• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0

• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0

• Multiplicative estimate on the Eshelby stress P(F ) := F T∇W (F ) − W I :

|P(F )| ≤ C (W (F ) + 1), C > 0
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0

• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0

• Multiplicative estimate on the Eshelby stress P(F ) := F T∇W (F ) − W I :

|P(F )| ≤ C (W (F ) + 1), C > 0

• Continuity of Kirchhoff stress K (F ) := ∇W (F ) F T :

∀ ε>0 ∃ δ>0 : |F ′ − I| < δ ⇒ |K (F ′F ) − K (F )| ≤ ε(W (F ) + 1)

(see Ball, Francfort-Mielke, . . . )
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0

• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0

• Multiplicative estimate on the Eshelby stress P(F ) := F T∇W (F ) − W I :

|P(F )| ≤ C (W (F ) + 1), C > 0

• Continuity of Kirchhoff stress K (F ) := ∇W (F ) F T :

∀ ε>0 ∃ δ>0 : |F ′ − I| < δ ⇒ |K (F ′F ) − K (F )| ≤ ε(W (F ) + 1)

(see Ball, Francfort-Mielke, . . . )

Example (Ogden materials, 1972)
For n = 3, we want:

W (F ) ≥ β1|F |
p1 + β2|cof F |

p2 + β3| det F |
p3
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0

• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0

• Multiplicative estimate on the Eshelby stress P(F ) := F T∇W (F ) − W I :

|P(F )| ≤ C (W (F ) + 1), C > 0

• Continuity of Kirchhoff stress K (F ) := ∇W (F ) F T :

∀ ε>0 ∃ δ>0 : |F ′ − I| < δ ⇒ |K (F ′F ) − K (F )| ≤ ε(W (F ) + 1)

(see Ball, Francfort-Mielke, . . . )

Example (Ogden materials, 1972)
For n = 3, β1,β2,β3 > 0, p1 = p ≥ 2, p2 ≥ p′ , p3 > 1,

W (F ) := β1|F |
p1 + β2|cof F |

p2 + β3| det F |
p3
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Bulk energy
• Frame-indifference: F ∈ M

n×n
, R ∈ SOn ⇒ W (RF ) = W (F )

• Regularity: W (F ) finite and C1 for det F > 0

• Local non-interpenetration: W (F ) = +∞ for det F ≤ 0

• Multiplicative estimate on the Eshelby stress P(F ) := F T∇W (F ) − W I :

|P(F )| ≤ C (W (F ) + 1), C > 0

• Continuity of Kirchhoff stress K (F ) := ∇W (F ) F T :

∀ ε>0 ∃ δ>0 : |F ′ − I| < δ ⇒ |K (F ′F ) − K (F )| ≤ ε(W (F ) + 1)

(see Ball, Francfort-Mielke, . . . )

Example (Ogden materials, 1972)
For n = 3, β1,β2,β3,γ > 0, p1 = p ≥ 2, p2 ≥ p′ , p3 > 1, q > 0,

W (F ) := β1|F |
p1 + β2|cof F |

p2 + β3| det F |
p3 + γ| det F |

−q
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Quasistatic evolution
Theorem (Dal Maso-L., 2010)

Under the previous assumptions on E(u, Γ) := W(u) + Hn−1(Γ)

there exists a map t 7→ (u(t), Γ(t)) starting at (u0, Γ0)

and satisfying the (smooth) boundary condition ψ(t) , such that
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Quasistatic evolution
Theorem (Dal Maso-L., 2010)

Under the previous assumptions on E(u, Γ) := W(u) + Hn−1(Γ)

there exists a map t 7→ (u(t), Γ(t)) starting at (u0, Γ0)

and satisfying the (smooth) boundary condition ψ(t) , such that

• Irreversibility:
s < t ⇒ Γ(s) ⊆ Γ(t)
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Quasistatic evolution
Theorem (Dal Maso-L., 2010)

Under the previous assumptions on E(u, Γ) := W(u) + Hn−1(Γ)

there exists a map t 7→ (u(t), Γ(t)) starting at (u0, Γ0)

and satisfying the (smooth) boundary condition ψ(t) , such that

• Irreversibility:
s < t ⇒ Γ(s) ⊆ Γ(t)

• Global stability: for every t ∈ [0, T ]

Ju(t) ⊆ Γ(t)

E(u(t), Γ(t)) ≤ E(v , Γ) ∀ Γ ⊇ Γ(t) ∀ v
∣

∣

∂Ω
= ψ(t) , Jv ⊆ Γ
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Quasistatic evolution
Theorem (Dal Maso-L., 2010)

Under the previous assumptions on E(u, Γ) := W(u) + Hn−1(Γ)

there exists a map t 7→ (u(t), Γ(t)) starting at (u0, Γ0)

and satisfying the (smooth) boundary condition ψ(t) , such that

• Irreversibility:
s < t ⇒ Γ(s) ⊆ Γ(t)

• Global stability: for every t ∈ [0, T ]

Ju(t) ⊆ Γ(t)

E(u(t), Γ(t)) ≤ E(v , Γ) ∀ Γ ⊇ Γ(t) ∀ v
∣

∣

∂Ω
= ψ(t) , Jv ⊆ Γ

• Energy balance: t 7→ E(u(t), Γ(t)) is AC and for a.e. t ∈ [0, T ]

d
dt

(

E(u(t), Γ(t))
)

=

∫

Ω

∇W (∇u(t)) : ∇
(

ψ̇(t) ◦ψ−1(t) ◦ u(t)
)

Such a map is called quasistatic evolution
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Quasistatic evolution

Remark
The process is “rate-independent” (see Mielke):

global stability and energy-dissipation balance hold
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Quasistatic evolution

Remark
The process is “rate-independent” (see Mielke):

global stability and energy-dissipation balance hold

Rate-independence
If u(t) is a solution associated to the datum ψ(t) ,

then u ◦α(t) is a solution associated to the datum ψ ◦ α(t)

for every reparametrization α of time
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Quasistatic evolution

Remark
The process is “rate-independent” (see Mielke):

global stability and energy-dissipation balance hold

Remark
Global stability means that at every t ∈ [0, T ] the pair (u(t), Γ(t)) is a solution

to the unilateral minimum problem

min {E(v , Γ): Γ(t) ⊆ Γ , v
∣

∣

∂Ω
= ψ(t) , Jv ⊆ Γ}

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 12 / 20



Quasistatic evolution

Remark
The process is “rate-independent” (see Mielke):

global stability and energy-dissipation balance hold

Remark
Global stability means that at every t ∈ [0, T ] the pair (u(t), Γ(t)) is a solution

to the unilateral minimum problem

min {E(v , Γ): Γ(t) ⊆ Γ , v
∣

∣

∂Ω
= ψ(t) , Jv ⊆ Γ}

Remark
Under further regularity assumptions, the energy balance law

d
dt

(

E(u(t), Γ(t))
)

=

∫

Ω

∇W (∇u(t)) : ∇
(

ψ̇(t) ◦ψ−1(t) ◦ u(t)
)

dx
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Quasistatic evolution

Remark
The process is “rate-independent” (see Mielke):

global stability and energy-dissipation balance hold

Remark
Global stability means that at every t ∈ [0, T ] the pair (u(t), Γ(t)) is a solution

to the unilateral minimum problem

min {E(v , Γ): Γ(t) ⊆ Γ , v
∣

∣

∂Ω
= ψ(t) , Jv ⊆ Γ}

Remark
Under further regularity assumptions, the energy balance law is equivalent to

d
dt

(

E(u(t), Γ(t))
)

=

∫

∂Ω

∇W (∇u(t)) νΩ · ∇ψ̇(t) dHn−1
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Sketch of the proof of the existence result
1 Approximation with incremental minimum problems by time discretization

• (u0
k , Γ0

k ) := (u0, Γ0)

• (ui
k , Γi

k) a solution of: min {E(u, Γ): Γ ⊇ Γi−1
k , u

∣

∣

∂Ω
= ψ(t i

k ) , Ju ⊆ Γ}
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2 Each approximate solution satisfies a discrete energy inequality
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k) a solution of: min {E(u, Γ): Γ ⊇ Γi−1
k , u

∣

∣

∂Ω
= ψ(t i

k ) , Ju ⊆ Γ}

2 Each approximate solution satisfies a discrete energy inequality

3 Passage to the limit as the time step vanishes (Compactness):

convergence of the discrete problems, irreversibility
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k , u

∣

∣

∂Ω
= ψ(t i

k ) , Ju ⊆ Γ}

2 Each approximate solution satisfies a discrete energy inequality

3 Passage to the limit as the time step vanishes (Compactness):

convergence of the discrete problems, irreversibility

4 Preservation of the global stability:

via the “Jump Transfer” Lemma (Francfort-Larsen, 2003)
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2 Each approximate solution satisfies a discrete energy inequality

3 Passage to the limit as the time step vanishes (Compactness):

convergence of the discrete problems, irreversibility

4 Preservation of the global stability:

via the “Jump Transfer” Lemma (Francfort-Larsen, 2003)

5 Preservation of the energy inequality:

via the “Multiplicative Splitting” Method (Francfort-Mielke, 2006)
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Sketch of the proof of the existence result
1 Approximation with incremental minimum problems by time discretization

• (u0
k , Γ0

k ) := (u0, Γ0)

• (ui
k , Γi

k) a solution of: min {E(u, Γ): Γ ⊇ Γi−1
k , u

∣

∣

∂Ω
= ψ(t i

k ) , Ju ⊆ Γ}

2 Each approximate solution satisfies a discrete energy inequality

3 Passage to the limit as the time step vanishes (Compactness):

convergence of the discrete problems, irreversibility

4 Preservation of the global stability:

via the “Jump Transfer” Lemma (Francfort-Larsen, 2003)

5 Preservation of the energy inequality:

via the “Multiplicative Splitting” Method (Francfort-Mielke, 2006)

6 Reverse energy inequality: via the global stability.

This proves energy balance
16
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First difficulty: Global stability

Convergence of minimizers (idea)
• Γk → Γ

• uk ⇀ u

• uk minimal:
E(uk ) ≤ E(v) ∀ v : Jv ⊆ Γk
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• uk minimal:
E(uk ) ≤ E(v k) ∀ v k : Jvk ⊆ Γk

Then u is minimal:

E(u) ≤ E(v) ∀ v : Jv ⊆ Γ

In order to pass to the limit. . .
Given v jumping on Γ , we construct vk jumping on Γk so that E(vk ) → E(v)

Then E(u) ≤ lim inf E(uk ) ≤ lim E(vk ) = E(v)
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First difficulty: Global stability

Convergence of minimizers (idea)
• Γk → Γ

• uk ⇀ u

• uk minimal:
E(uk ) ≤ E(v k) ∀ v k : Jvk ⊆ Γk

Then u is minimal:

E(u) ≤ E(v) ∀ v : Jv ⊆ Γ

In order to pass to the limit. . .
Given v jumping on Γ , we construct vk jumping on Γk so that E(vk ) → E(v)

Then E(u) ≤ lim inf E(uk ) ≤ lim E(vk ) = E(v)

In order to construct vk , we have to transfer the jumps of v from Γ to Γk
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Crack transfer

Transferring the jumps from Γ to Γk

Given v jumping on Γ , we construct vk := v ◦ϕk jumping on Γk
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Crack transfer

Transferring the jumps from Γ to Γk

Given v jumping on Γ , we construct vk := v ◦ϕk jumping on Γk

Francfort-Larsen, 2003
ϕk is defined using reflections
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Crack transfer

Transferring the jumps from Γ to Γk

Given v jumping on Γ , we construct vk := v ◦ϕk jumping on Γk

Francfort-Larsen, 2003
ϕk is defined using reflections

Reflections are forbidden by non-interpenetration

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 15 / 20



Crack transfer

Transferring the jumps from Γ to Γk

Given v jumping on Γ , we construct vk := v ◦ϕk jumping on Γk

Francfort-Larsen, 2003
ϕk is defined using reflections

Reflections are forbidden by non-interpenetration

Dal Maso-L., 2010
ϕk is defined using dilations

We can control W (∇vk ) by W (∇v)
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Crack transfer

Transferring the jumps from Γ to Γk

Given v jumping on Γ , we construct vk := v ◦ϕk jumping on Γk

Francfort-Larsen, 2003
ϕk is defined using reflections

Reflections are forbidden by non-interpenetration

Dal Maso-L., 2010
ϕk is defined using dilations close to identity

We can control W (∇vk ) by W (∇v) :

∇vk = ∇v · Λk , Λk coefficient matrix of the dilation

∃γ ∈ (0, 1) : |Λk − I| ≤ γ ⇒ W (∇v · Λk ) ≤ C(W (∇v) + 1)

(consequence of the estimate on the Eshelby tensor |P(F )| ≤ C (W (F ) + 1) )
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Second difficulty: Energy estimates
Problem: Compare W(u(t)) with W(u(s))

Different boundary conditions ψ(t) , ψ(s)

Additive splitting

Compare u(t) with ψ(t) −ψ(s) + u(s)

Not compatible with local irreversibility!

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 16 / 20



Second difficulty: Energy estimates
Problem: Compare W(u(t)) with W(u(s))

Different boundary conditions ψ(t) , ψ(s)

Multiplicative splitting (Francfort-Mielke, 2006)

Compare u(t) with ψ(t) ◦ψ(s)−1 ◦ u(s)

Then one can employ the estimates on the stress tensors (Eshelby/Kirchhoff)

Assumptions on ψ(t, x) :

• ψ(t, ·) can be extended to a diffeomorphism of the container K into itself

• ψ and ∇ψ are of class C1 in time
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Second difficulty: Energy estimates
Problem: Compare W(u(t)) with W(u(s))

Different boundary conditions ψ(t) , ψ(s)

Multiplicative splitting (Francfort-Mielke, 2006)

Compare u(t) with ψ(t) ◦ψ(s)−1 ◦ u(s)

Then one can employ the estimates on the stress tensors (Eshelby/Kirchhoff)

Assumptions on ψ(t, x) :

• ψ(t, ·) can be extended to a diffeomorphism of the container K into itself

• ψ and ∇ψ are of class C1 in time

Up to now we have assumed that. . .
• ψ is C1 in space, while the deformations are only SBV

• ψ,∇ψ are C1 in time, so we can consider only C1 reparametrizations

Giuliano Lazzaroni (Uni Würzburg) Quasistatic crack growth in finite elasticity Feb 23rd, 2012 16 / 20



Second difficulty: Energy estimates
Problem: Compare W(u(t)) with W(u(s))

Different boundary conditions ψ(t) , ψ(s)

Multiplicative splitting (Francfort-Mielke, 2006)

Compare u(t) with ψ(t) ◦ψ(s)−1 ◦ u(s)

Then one can employ the estimates on the stress tensors (Eshelby/Kirchhoff)

Assumptions on ψ(t, x) :

• ψ(t, ·) can be extended to a diffeomorphism of the container K into itself

• ψ and ∇ψ are of class C1 in time

Weaker assumptions (L., 2011)
• ψ is Lipschitz in space

• the process is invariant under Lipschitz reparametrizations of time
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Drawback of global minimization

Global minimizers ⇒ Jumps between energy wells, overtaking barriers

E

Hn−1(Γ)

t1 ≥ 0

(Here n = 2)
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Local minimization

Local minimization ⇒ Jumps happen later, without overtaking barriers

E

Hn−1(Γ)

t1 ≥ 0

E

Hn−1(Γ)

t2 > t1

(Here n = 2)
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Local minimization

Local minimization ⇒ Jumps happen later, without overtaking barriers

E

Hn−1(Γ)

t1 ≥ 0

E

Hn−1(Γ)

t3 > t2

(Here n = 2)
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Approaches based on local minimization
They provide a better behaviour when jumps in time occur

• Vanishing viscosity: brittle crack

? Prescribed crack path

Toader-Zanini (2008), Negri-Ortner (2008), Knees-Mielke-Zanini (2008-10)

? Free crack path (with constraints)

Dal Maso-Toader (2002), L.-Toader (2011)

• Vanishing viscosity: cohesive zone

? Prescribed crack path

Dal Maso-Zanini (2007), Cagnetti (2008), Cagnetti-Toader (2008)

• ε -slides

? Free crack path

Larsen (2010)
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Conclusion
• We study problems of crack growth in the framework of finite elasticity

The model is compatible with the requirement of non-interpenetration

• Equilibrium configurations are global minima of the total energy

This allows us to consider a general class of possible cracks

• The evolution is approximated by solutions to discrete-time problems

The incremental solutions converge to a quasistatic evolution

• Nonphysical phenomena of jump between energy wells are possible

Jumps are better characterized by a local-minimality approach
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