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Euler equations

Euler Equations for incompressible, non-viscous (ideal) fluid flow in 2D:
ou+ (u-Vyu=-vVp,
divu=0,
u(t=0) = .
e u=(u',u?)is a vector field.
@ pis the scalar pressure.
@ (u- V)uis the directional derivative of u in its own direction.

@ If the fluid domain, €2, has a boundary, we enforce, u-n = 0 on the
boundary.

@ If the domain is unbounded, we impose conditions at infinity.
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Vorticity equation

Vorticity is defined by

w=curlu:=d;u® — du',
the scalar curl of u.
Vorticity equation in 2D:

Ow~+Uu-Vw =0,
divu =0,
curlu = w.

Jim Kelliher (UCR) Serfati solutions to 2D Euler 27 March 2012 3/24



Vorticity formulation

The vorticity formulation of the Euler equations, then, is

{athru-Vw:O,
u = Klw].

Biot-Savart law: If the fluid domain is R? then K[w] = K * w with

x+

K(x) = —.
) 2 |x[?

Now, K € L%C(RZ), 1 < p < 2and K is g-th power integrable at infinity,
with g > 2. Hence, to calculate K * w we need w € LY N LP with p/ > 2

and g <2;eg9.wel'NL>®,

Existence and uniqueness for vorticity in L> for a bounded domain is
due to Yudovich (1963), and extended to L' n L for R? by Majda.
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Going beyond the Biot-Savart law

Classical existence and unigueness results rely upon the integral,
1
X —
u) = [ K-y = [ B upay,
R? R X —y|
defining the Biot-Savart law being absolutely convergent.

In fact, Brunelli (2010) shows that the condition,

/ wo(X) dx < oo
Rz X ’

is equivalent to the Biot-Savart law integral being absolutely
convergent, and in this setting proves existence and uniqueness of
(u,w), with |u| growing at most like /|x| at infinity.

Brunelli’s condition forces decay at infinity and excludes periodic flows.
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Serfati

In 1995 Ph. Serfati published a four-page announcement in CRAS of
existence and uniqueness for 2D Euler in R? for ug € L such that
wo = curl Uy € L*. The proof was terse and incomplete, but brilliant.

With this type of initial data, the Biot-Savart law holds only as a
distribution, as Brunelli showed.

(Serfati has another 1995 paper, in which he proved well-posedness
for up in C'*7, r > 0, with u and Vp in C([0, x0); C'*7).)

In this talk, we discuss Serfati’'s work, with an extension to a type of
continuous dependence on initial data and to domains exterior to a
connected, simply connected obstacle.

This is a report on work in progress.
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Related results

@ Taniuchi (2004) gives a complete, and very different proof of
Serfati’s result in the full plane with a slight generalization to allow
slightly unbounded initial vorticity (as Yudovich 1995 did in a
bounded domain). Uses Littlewood-Paley decomposition and
Bony’s paradifferential calculus, and rests strongly on Serfati’s
other 1995 paper. Does not generalize to exterior domains.

@ Taniuchi, Tashiro, and Yoneda (2010) are concerned with almost
periodic flows in the full plane. They prove continuous
dependence (in B, ).

@ Giga, Inui, and Matsui (1999) prove existence and uniqueness of
solutions to the Navier-Stokes equations with velocity bounded
and uniformly continuous (which includes Serfati initial data).

@ Cozzi (2009, 2010) proves the vanishing viscosity limit of “viscous
Serfati” solutions to inviscid ones in the full plane.
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Motivation

Why study vorticity with no decay? Main uniqueness result is for
vorticity in L' N L (Yudovich 1963), but L' hypothesis is to make
sense of Biot-Savart law. Uniqueness should be a local
issue—behavior of vorticity at infinity should not be important.

In light of Taniuchi, Tashiro, and Yoneda’s work, why revisit Serfati?

@ Local versus non-local.
@ Need new idea to substitute for the use of Biot-Savart law.

@ Broader potential applications in Serfati’s key idea (“Serfati
identity”).
@ Extension to an exterior domain.
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Why should bounded velocity solutions exist?
If initial velocity is in L2, a simple energy argument shows that the L2
norm of the velocity is conserved for all time.

L*>-analog:

o) = or | Koyt oy = [ Kxy)owly) oy
~— | KoV o
_ /Q KI(x, y) curl(u - Vu)(y) dy
= [ K p)divi(w- Yo dy
~— | ltw- Vo)1 VKi(xp) o
_ /Q(u -Vu)(y) - VEKI(x, y) dy.
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Using the identity,
/Q(U-VU)- V:—/Q(U-VV)-U
gives
o (x) = /Q (u-Vu)(y) - VKi(x, y) dy
_ /Q (uly) - V) V£ Ki(x, y) - u(y) dy.

After integrating in time,

W(t,x) = (WOY(x) /O /Q (U(s.y) - V) VL Ki(x.y) - u(s. ) dy ds.
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But...
In the full plane, V,V,K(x, y) is notin L'.

Let a be a smooth cutoff of the origin and let a.(-) = a(-/¢). Then
Serfati obtained what we call the Serfati identity:

Uj(f»X)=(Uo)j(X)+/Qae(X—Y)Kj(X,Y)(W(f,Y)—wo(}/)) dy

t
[ ] sy v Vi [(1 - adx - y)Kix )]
0 JQ
-u(s,y)dyds.

C
laKly:<Ce VR -a)kl| , < 2.

<
L
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Thus,
0 c [ 2
ull oo < lIU7||Loe + Ce+ < |u(s)lI7., ds.

Letting

~(/ u(s) ds)w

gives

t 1/2
lull e < W]l + C (/0 lu(s)|2. ds) .
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L*°-bound

Squaring both sides,
t
lullfe < 2)|u°)F + C/O lu(s)IIZ., ds.

Applying Gronwall’s lemma,

lu®)ll o < V2I|u°) .
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Existence in the full plane

@ What we have done so far is formal: we need to apply these
estimates to a sequence, u,, of smooth solutions to the Euler
equations whose initial data converges, in the Serfati norm, to u°.

@ We depart from Serfati’s approach in this regard, following more
closely Majda’s proof of existence of Yudovich solutions (vorticity
in L' N L*°, velocity in L?) that exploits the transport of the vorticity
by the flow, establishing convergence of particle trajectories.

@ Serfati’s bound on the velocity, which is uniform over n, replaces
the uniform bound, ||us/;.c < C [||w°\|L1 + ||CUOHL00].

@ Many technical details are being suppressed here: in particular,
smooth approximations of the initial velocity (in an exterior
domain) is fairly involved.
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Definition of weak solution

We require of our weak solutions those properties required to prove
uniqueness (which are satisfied by the solutions we construct):

Q Velocity lies in LS (R; S), where S is the space of divergence-free

vector fields tangent to the boundary with the norm,
lulls = llull e + llourl uf| o -

© Euler equations hold weakly against div-free test functions.

© Serfati identity holds for at least one cutoff function, a.

© Vorticity is transported by the flow.

© Velocity has a spatial log-Lipschitz MOC uniformly over finite time.

(4) and (5) are redundant in that each implies the other.
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Uniqueness

@ Serfati’s strategy: assume two solutions uy, U, with the same
initial data. Let X; and X> be their respective flow maps. Show
X1 = Xo. This implies uy = u».

@ We follow this basic strategy, but depart from Serfati (primarily) in
the first and last step.

@ Define pu: [0,00) — [0, 00) strictly increasing with 1(0) = 0 such
that
wu(h) = —Chlog h

for hin (0,1/e).
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Steps in proof of uniqueness

@ Define

h = h(t) = sup [ Xy (t, x) — Xa(t, )| .
X€EQ

@ We will bound

sup ‘u‘l(ta X1(t) X)) - U2(t7 X2(t7 X))| .
xXeQ

@ By the triangle inequality, |u1(t, X1) — ua(t, X2)|
< |ua(t, X1) — to(t, Xo)| + [ur (t, X1) — uz(t, X1)
< pu(|Xr = Xal) + [us (8, X1) — ua(t, X4)
< u(h(t)) + |us (8, X1) — ua(t, X4)],

where X; is short for Xj(t, x).

Jim Kelliher (UCR) Serfati solutions to 2D Euler 27 March 2012 17 /24



@ Subtract Serfati identity for u; and u» to give
|U1 (t, X1 (t, X)) — Ug(t, X1 (t, X))| < I1 + 12,

where
b= ‘/Qa(xm, X) = Y)K(Xi (8, %), y) (@' (t,y) — 2(t,y)) dy|,

b= /O t /Q 9,9, (1 - a(Xi(s,x) — y)K(Xi(5.%), )|
U1 ® Uy — Up @ Up| (S, y) dy ds.

@ Change variables Lagrangianly, use measure-preserving property
of flow maps, and properties of K to show that

Iy < —C||w°||=hlog h= Cu(h).

This is the most difficult step, particularly in an exterior domain.
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@ Bound

t
b= /0 /Q 19,9, (1 — a(Xi(s, %) — Y)K(Xi (. ), )

c/ )) ds + c/ lUa(8. Xa(S,-)) — s (5, X1 (5, )| 1 dIs

again using properties of K.
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@ Putting these bounds together, what we have shown is that
lui(t, Xq(t, x)) — ua(t, Xo(t, X))
< ¢ [ u(hts)) ds + €1+ ()
+C /0 (5. Xe(s ) — Ur(5. X (s, ) 1 .
@ Letting

J(s) = [[u1 (s, X1(s,-)) — ta(s, Xa($, )|l 1

and taking the supremum over all x in 2, we conclude that

J(t <C/ (h(s))ds+ C(1+ h(t) )+C/J
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@ Letting
t
:/ J(s)ds
0

J(1t) < c/ ))ds+ C(1 + h(t))u(h(t)) + c/ J(s)d
becomes (after first showing that h(t) < M(t))
M'(t) < C(1 + t+ M(t))u(M(t)) + CM(t) =: v(M(1)).

@ As one can show, v is Osgood-continuous (fo1 ds/v(s) = o), SO
M(t) = 0 by Osgood’s lemma. Hence J = 0, so that X; = X>.
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“Continuous dependence on initial data”

Suppose that the initial velocities, u? and u3, having vorticities, w9 and
w), are such that u — u3 lies in the space,

Sy = {u e (L=(Q))2: divu=0,u-n=0,w ¢ LP(Q)}

for some p in (2, 00], with ||-||gp = |||l ;e + llw(:)|l . Then for all
sufficiently small s = ||u$ — U sp,

Jus(t) = ua(B) | < 506 + Culs01)® """ [log Cr + sote O]
[0(2 + t)eC + 1} :

where the constants, C and C;, depend on the initial data and on p,
with C; a continuous function of time.

v
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Controlling low frequencies gives smooth solutions

Theorem (Chemin 1996)

Let u° be a divergence-free vector field lying in the Zygmund space,
C", r > 1. There exists a unique T* > 0 and a unique solution to the

Euler equations with u lying in L35,.([0, T*); C"). Moreover,

T*
T < 00 —> / lu(t)], dt = oc.
0

But,

lu(®)lly < Cllu®)l i + Cllwu(®)ll = < Cllut)l]s :

Theorem (Reproducing a result of Serfati 1995)
In R?, these C"-solutions are global in time.
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Concluding remarks

@ Uniqueness argument can be adapted to a domain exterior to a
connected, simply connected domain.

@ Existence argument in an exterior domain awaits a reformulation
of Serfati’s identity that allows a uniform bound on the L> norms.

@ One of the motivations for studying Serfati’s result was to look at
perturbations of periodic initial velocity.

@ This line of study brings a natural question to mind: can we
characterize those vorticities which are “Serfati” (bounded velocity
with bounded vorticity) even in the full plane? Note that, if wg = 1
then ug must at least grow linearly, hence it is not Serfati. All
(doubly) periodic flows are Serfati, though, as are all compactly
supported bounded vorticities.
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